81-12

СООБЩЕНИЯ Объединенного института ядерных исследований дубна

Экз. чит. ЗАЛНО-81-12

C 345 c + C 17A

1336/1-81

Е.П.Жидков, Р.В.Полякова, И.А.Шелаев, И.П.Юдин

ЧИСЛЕННЫЕ ЭКСПЕРИМЕНТЫ ПО МОДЕЛИРОВАНИЮ ДВУМЕРНОГО МАГНИТНОГО ПОЛЯ В СВЕРХПРОВОДЯЩЕМ ДИПОЛЕ

Жидков Е.П. и др.

P9-81-12

4

Численные эксперименты по моделированию двумерного магнитного поля в сверхпроводящем диполе

Исследуется точность численного моделирования сверхпроводящего диполя с прямоугольной апертурой методом отраженных токов и конечноразностным методом. Для численного расчета конечно-разностным методом использовалась система программ P01SSON. Проведенные численные эксперименты позволяют сделать следующие выводы.

1) Для СП синхротронного диполя с прямоугольной апертурой возможно для $B = 0,5 \pm 1,8$ Т создание высокооднородного ($\Delta H/H \sim 1.10^{-4}$)магнитного поля в ~70% размеров апертуры. При этом допуски на параметры, ответственные за однородность поля 10⁻⁴, составляют ±0,01 мм.

2) Расчеты нелинейностей поля с помощью системы программ POISSON можно проводить с точностью 10^{-4} для индукций В < 1,8 Т. Эта же точность характерна и для расчетов по методу отраженных токов. При В = 2,6 Т точность вычислений снижается до 10^{-3} .

3) При индукциях В ≈2,6 Т нелинейные эффекты проявляют себя заметным образом. В частности, относительные амплитуды третьей и пятой гармоник составляют соответственно 2,8% и 0,4% от первой.

Работа выполнена в Лаборатории вычислительной техники и автоматизации ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубна 1981

Zhidkov E.P. et al.

P9-81-12

Numerical Experiments on Simulation of, Two-Dimensional Magnetic Field in a Superconducting Dipole

A numerical simulation accuracy of a superconducting dipole with rectangular aperture is studied by the image current method and the finite-difference method. For the numerical calculations by the finite-difference method the POISSON set of programs is used. The performed numerical experiments permit to draw the following conclusions: 1) For superconducting synchrotron dipole with rectangular aperture the creation of high-homogeneous ($\Delta H/H \sim 1.10^{-4}$) magnetic fiels in a 70% measuring aperture is possible for $B = 0.5 \pm 1.8$ T the tole-rances on the responsible for field homogeneousity 10⁻⁴ parameters are equal to 0.01 mm; 2) the field non-linear calculation by the POISSON program set is possible to perform for induction of \$1.8 T by the accuracy 10⁻⁴. The same accuracy is characteristic for calculations by the image current method.

The calculation accūracy is reduced to 10^{-8} by 2.6 T. 3) The non-linear effects manifest themselves noticeably. In particular, the amplitudes of the third and fifth harmonics are equal to 2.8% and 0.4%, respectively, from the first one.

The investigation has been performed at the Laboratory of Computing Techniques and Automation, JINR. Communication of the Joint Institute for Nuclear Research. Dubna 1981

С 1981 Объединенный институт ядерных исследований Дубна

I. В данной работе проведено сравнение двух методов моделирования двумерного магнитного поля в сверхпроводящем (СП) диполе с прямоугольной апертурой:

I) конечно-разностного метода (система программ POISSON /1,2/) и 2) метода токовых отображений /3/ (программа MIC2).

Целью работы является исследование возможности получения высокооднородного (_ B/B ~ 10⁻⁴) магнитного поля, оценка точности расчетов используемыми методами, а также исследование нелинейных эффектов при полях до 2,6 Т.

Сравнение двух методов проведено на примере расчета СП магнита регулярного периода сверхпроводящего синхротрона-инжектора на 1,5 ГоВ по протонам^{4/}. Конфигурация поперечного сечения рассматриваемого СП диполя показана на ряс. I.

Конфигурация СП диполя. Размеры даны в [см].

Осъединениый инстату ядерных ирспедовани БИГЛИОТЕКА Железный экран рассматриваемого магнита изготовлен из стали Fe + 3,25%si . На рис.2 и в табл. I для этого материала приведена зависимость магнитной проницаемости и от величины магнитной индукции В для температур T=300 К и T=4,2 К^{/5/}.

Зависимость магнитной проницаемости л от величины магнитной индукции В для температур Т=300 К и Т=4,2 К.

Расчетные формулы и методика расчетов изложены для конечноразностного метода в работе⁶, а для метода отраженных токов – в работе³, поэтому в дальнейшем приводятся лишь результаты численных экспериментов. Как видно из табл.2, величины неоднородностей $C_n = B_n / B_1$, где B_n амплитуда n -ой гармоники, являются почти линейными функциями величины корпусной изоляции δ (см. рис. I). Во всяком случае, для $\mu = \infty$, как можно видеть из табл.2, неоднородности c_n создаются именно корпусной изоляцией и при $\delta \to o$ ($\delta_o = o$) все $c_n \to o$. Для реального случая $\mu = \mu$ (в) $c_n \neq o$ при $\delta = \delta_o = o$ в силу нелинейной зависимости $\mu = \mu$ (в) . Однако и здесь (B < I, B T) $|c_n| < 1, 5 \cdot 10^{-4}$.

Поскольку корпусная изоляция б в реальном магните необходима, то неоднородности с будут присутствовать неизбежно. В работе⁽³⁾ была предложена методика компенсации третьей и пя-

В работе''' была предложена методика компенсации третьей и пятой гармоник, создаваемых величиной δ , с помощью дополнительной изоляционной прокладки δ_{0} (см. рис. I), помещенной между 7 и 8 витками обмотки (всего в полуобмотке 24 витка), считая от центра магнита. На рис.За в приближении $\int_{M^{2}} \infty (MIC2)$ приведена зависимость с₃ и с₅ на радиусе r = 2,5 см от величины δ_{0} при $\delta = 0,5$ мм для случаев, когда компенсирующая прокладка δ_{0} помещена после 6-го витка (уI), после 7-го (УП) и после 8-го (УШ).Кроме того, для

<u>Таблица I</u>. Зависимость $\mathcal{H} = \mathcal{H}$ (в) для железа Fe+3,25%Si при температурах т=4,2к и т=300к.

T=4,21	K	T=300F	
м	B,T	J4	B,T
700	0,	II50	0,0075
2150	0,0595	2120	0,0600
5800	0,232	4450	0,14
[2500	0,687	6000	0,26
9130	0,995	8160	0,45
6800	I,II	7000	0,77
5250	I,I4	5560	0,92
4400	1,21	4740	I,04
3760	I,24	4110	I,13
3300	1,27	3540	1,17
2900	I,28	3160	1,22
2460	1,29	2840	I,25
1230	I,36	2350	I,29
684	I,47	1270	I,40
280	I,55	655	I,44
I53	I,68	278	I,53
106	1,75	151	I,66
82,5	1,81	106	I,75
67	I,85	82,5	I,8I
37	2,03	67,5	I,86
25	2,06		
19	2,10		
13	2,15		
8,8	2,50		
5,6	2,7		
4,2	2,9		
3,3	3,2		
2,7	3,5		
2,4	3,8		
2,0	4,2		
I,6	5,2		
I,4	6,0		
1,2	6,8		
I.00I	8.0		

<u>Таблица 2</u>. Величины B_1 и C_n [на радиусе r = 2,5 см], рассчитанные методом отраженных токов (MIC2) и с помощью системы программ POISSON . Число ампер-витков полной обмотки nI=48.500 A.

		POISSON		MIC2
		M = M(B)	JU = 00	<i>∫</i> 4 = ∞
	B _I , T	0,54813	0,54835	0,54704
0	C3, %	0,015	0,000	0,000
	C5, %	0,001	0,000	0,000
0	C7, %	0,002	0,001	0,000
	C9, %	-0,000	0,001	0,000
-	C _{II} ,%	0,002	0,000	0,000
	B _I , T	0,54788	0,54810	0,54734
0	C3, %	0,130	0,117	0,138
°°	C5, %	0,130	0,128	0,063
-	C7, %	-0,022	-0,022	-0,009
6=0,	C9, %	-0,025	-0,023	-0,009
	CII.%	0,016	0,013	0,001
	B _I , T	0,54917	0,54939	0,54817
0	C3, %	0,73I	0,717	0,701
e e	C ₅ , %	0,324	0,323	0,321
ю	C7, %	-0,039	-0,04I	-0,045
6=0, I	C9, %	-0,057	-0,054	-0,044
	C _{II} , %	0,063	0,059	0,004
o °=0,8	B _I , T	0,54814	0,54836	0,54797
	C3, %	-0,000	-0,014	-0,015
	C5, %	-0,016	-0,016	-0,026
	C7, %	0,135	0,134	0,110
0,5	C9, %	0,265	0,266	0,273
°,	C _{II} , %	0,079	0,078	0,285

этих трех случаев на рис.За приведена линия узлов $C_3 = C_5$ для различных δ как функция величин δ и δ_{\odot} , откуда видно, что помещение компенсирующей прокладки δ_{\circ} между 7 и 8 витками (УП) является оптимальным. При этом получение малых C_3 и C_5 сводится к подбору для данного δ такого δ_o , чтобы только $C_3 = 0$. При этом C_5 мало, но не равно нулю.

Рис.За

Рис.3 б Величины C_3 и C_5 на радиусе r = 2,5 см как функции от $\delta_o [\delta = 0,5$ мм]. Жирными линиями выделены допуски, равные $\pm 0,01$ мм, на параметры δ и δ_o .

5

На рис. Зб для случая (УП) $\delta = 0,5$ мм и $\delta_{\rm e} = 0,783$ мм приведены допуски на величины c_3 и c_5 при $\Delta \delta = \pm 0,01$ мм и $\Delta \delta_{\rm e} = \pm 0,01$ мм. Из этого рисунка видно, что максимальные значения $|c_{3,\max}| = 2,2 \times 10^{-4}$, $a | c_{5,\max}| = 2,8 \times 10^{-4}$ (на радиусе r = 2,5 см).

На рис.4 показаны (роізсов, $p \neq p(B)$, T=4,2K) величины суммарной неоднородности $\Delta B/B_1$ в зависимости от x при Y=0 и $\Delta B/B_1$ от Y при x=0 для диполей с параметрами I) $\mathcal{J} = 0,5$ мм, $\mathcal{J}_{\circ} = 0$ и П) $\mathcal{J} = 0,5$ мм, $\mathcal{J}_{\circ} = 0,8$ мм (УП). Стрелкой на рис.4 обозначена граница области апертуры, внутри которой $\Delta B/B_1 < 1 \cdot 10^{-4}$. Для диполя I радиус этой области $r_I = 0,34$ см; для диполя П $r_{II} = I,8$ см, т.е. компенсация третьей и пятой гармоник приводит к увеличению радиуса области однородности $\Delta B/B_1 < 1 \cdot 10^{-4}$ более чем в 5 раз.

Величины $\Delta B/B_1$ в зависимости от x при y=0 и $\Delta B/B_1$ от y при x=0 для диполей I ($\delta = 0,5$ мм, $\delta_0 = 0$) и П ($\delta = 0,5$ мм, $\delta_0 = 0,8$ мм после 7- го витка).

2. Для оценки точности используемых методов были проделаны следующие тесты при индукции 0,5 Т.

I) Из физических соображений расчеты с $\delta = \delta_{0}=0$ и $\mu = \infty$ должны давать все $c_n=0$. Из табл.2 видно, что расчеты по программе мic2 этому условию удовлетворяют с точностью $4 \cdot 10^{-6}$ для c_3 и лучше $5 \cdot 10^{-8}$ для остальных c_n [число отражений $N_x = N = 16$, см. работу⁽³⁾], а по программе POISSON – лучше $I \cdot 10^{-5}$ для всех c_n . Из табл.2 видно также, что расчеты для $\mu = \mu$ (в) (T=4,2K) приводят к увеличению с на 1,5 ж 10^{-4} , остальные с увеличиваются не более, чем на $2 \cdot 10^{-5}$.

2) Для конечно-разностного метода в табл.3 для диполя П ($\delta = 0,5$ мм $d_{\odot} = 0,8$ мм) приведено сравнение результатов расчетов с крупной сеткой (число элементов разбиения на I/4 диполя равно 323) и с сеткой в 2 раза мельче (число элементов разбиения на I/4 диполя равно 323) и с сеткой в 2 раза мельче (число элементов разбиения на I/4 диполя равно 1116). Заметим, что для ЭВМ типа $_{\rm CDC-6500}$ ОИЯИ система программ POISSON допускает максимально возможное число элементов разбиения, равное 1135. Из табл. 3 видно, что точность вычисления гармоник поля для мелкой и крупной сеток составляет примерно 10^{-4} . Эта точность сохраняется при полях 0,5т+ I,8 T.

3) В работе^{/3/} было показано, что при проведении гармонического анализа магнитного поля для определения относительных амплитуд гармоник c_n с точностью лучше 10^{-4} необходимо брать не менее $N_T = 40$ точек на окружности. В настоящей работе все результаты были получены именно с $N_T = 40$.

В табл.4 (POISSON) показано влияние радиуса, на котором определяются амплитуды c_n , на их величины. Проведенное сравнение показывает, что расчет c_n на радиусах от $r_o = 1,5$ см до $r_o = 2,0$ см имеет небольшой разброс: 10^{-6} для c_3 и ~ 10^{-4} для остальных c_n . Увеличение разброса $\triangle c_n$ для меньших радиусов вызывается тем, что внутри одного элемента расчетной сетки попадает более одной точки, в которой вычисляется поле. Здесь точность определения c_n в значительной мере зависит от способа пересчета значения поля из узлов сетки внутрь элемента сетки. При увеличении радиуса r_o от 2,0 см до 2,5 см наблюдаемое увеличение разброса c_n объясняется близостью узлов сетки, расположенных внутри токовой обмотки.

В настоящей работе на основании исследования, приведенного в табл.4, выбран оптимальный радиус $r_0 = 1.8$ см (что составляет 2/3 размеров апертуры), на котором впоследствии проводился гармонический анализ. Результаты затем пересчитывались на радиус r = 2.5 см.

Табл. 4 показывает, что учет реальной зависимости $\mathcal{M} = \mathcal{M}(B)$ [T=4,2K и T=300K] при малых индукциях B < I,8 т изменяет (по сравнению с $\mathcal{M} = \infty$) только с₃ (на I·IO⁻⁴), не влияя на остальные гармоники.

3. Для СП диполей I и II на рис. 5 и в табл. 5 приведено поведение величин $B_1 u c_n$ для значений тока в одном витке СП обмотки от I=500A до I=2,5ка. Как видно из рис.5, функция $B_1=B_1(I)$ становится нелинейной, а величины $c_n=c_n(I)$ перестают быть константами при токе в СП обмотке I>1,8 ка , т.е. высокооднородном поле в СП диполе II будет для интервала $B=0,0 \div 1,8$ Т. . Таким образом, нелинейные эффекты начинают себя проявлять лишь тогда, когда пучок, проходящий внутри апертуры СП диполя, будет существенно сжат. Заметим, что на рис.5 и в табл.5 величины С_п приведены по-прежнему для r=2,5 см.

Величины B_1, C_3, C_5 и C_7 на [радиусе r = 2,5 см] в зависимости от тока в витке СП обмотки. Сплошная линия - для диполя II, штриховая - для диполя I .

<u>Таблица 3</u>. Сравнение величин B₁ и C_n(%) [на радиусе r=2,5 см], вычисленных на крупной (I) и мелкой (П) сетках. СП диполь II ($\delta = 0,5$ мм, $\delta_0 = 0,8$ мм). Число ампер-витков полной обмотки nI = 48 · 500 А.

	<i>M</i> =	м (B)	JU = 00		
	I	TI	I	II	
B _T , T	0,54812	0,54813	0,54833	0,54835	
C ₃	-6,70.10-5	7,05-10-4	-2,05.10-4	-1,33-10-4	
C5	-3,28.10-4	-2,42.10-4	-3,41.10-4	-2,47.10-4	
Cy	9,00-10-5	7,71-10-4	8,03.10-5	7,64.10-4	
Cg	9,66-10-4	1,80.10-3	9,77.10-4	1,81-10-3	
CII	1,37-10-3	1,63.10-3	I,36-10 ⁻³	1,63-10-3	
C _{I3}	1,72-10-3	1,67-10-3	I,72·10 ⁻³	1,17-10	

куссиения их на разных радиусах r _o . си диподь и, ротском , пт=чо-500 A. г _o =1cm r _o =1,5 cm r _o =1,8 cm r _o =2 cm r _o =2,5 cm c _{n,max} d ^c n 1,63:10 ⁻⁷ -3,45:10 ⁻⁷ -2,21:10 ⁻⁶ -1,73:10 ⁻⁶ 3,37:10 ⁻⁵ 2,31:10 ⁻⁶ 3,59:10 ⁻⁵ 1,63:10 ⁻⁷ -3,45:10 ⁻⁷ -2,21:10 ⁻⁶ -1,73:10 ⁻⁶ 3,37:10 ⁻⁶ 2,35:10 ⁻⁷ 3,59:10 ⁻⁵ -3,30:10 ⁻⁶ -1,45:10 ⁻⁷ -2,21:10 ⁻⁶ -1,57:10 ⁻⁴ 2,37:10 ⁻⁴ 2,37:10 ⁻⁶ 4,59:10 ⁻⁵ -3,30:10 ⁻⁶ -1,45:10 ⁻⁵ 1,55:10 ⁻³ 3,37:10 ⁻⁴ 2,00:10 ⁻⁶ 1,35:10 ⁻³ -4,30:10 ⁻⁶ 6,56:10 ⁻⁵ 1,34:10 ⁻⁴ 2,19:10 ⁻³ 1,91:10 ⁻³ 1,91:10 ⁻³ 2,00:10 ⁻⁶ -5,510:10 ⁻⁵ 2,66:10 ⁻³ 2,66:10 ⁻⁴ 2,66:10 ⁻³ 2,410 ⁻⁶ -2,24:10 ⁻⁶ -1,43:10 ⁻⁶ -1,43:10 ⁻⁴ 2,31:0 ⁻⁶ 2,34:10 ⁻⁶ -2,24:10 ⁻⁶ -1,43:10 ⁻⁶ -1,43:10 ⁻⁴ 2,34:10 ⁻⁶ 2,34:10 ⁻⁶ -2,24:10 ⁻⁶ -1,43:10 ⁻⁵ -1,43:10 ⁻⁶ 2,34:10 ⁻⁶
инсления их на разных радиусах r _o . un диполь и, POLSCON , n1=40.500 A. r _o =1,5 см r _o =1,8 см r _o =2 см r _o =2,5 см c _{n,min} · c _{n,max} ac _n U,54814 U,54814 U,54815 U,54815 U,54815 I,42:1U ⁻⁵ -3,45:1U ⁻⁷ -2,21:10 ⁻⁶ -1,73:1U ⁻⁵ -2,34:1U ⁻⁴ -3,30:1U ⁻⁵ -1,57:1U ⁻⁴ -7,00:1U ⁻⁵ -2,34:1U ⁻⁴ -3,30:1U ⁻⁶ 2,56:1U ⁻³ 1,35:1U ⁻³ -1,35:1U ⁻⁵ 1,35:10 ⁻³ 3,37:1U ⁻⁴ 2,19:1U ⁻⁴ -3,30:1U ⁻⁶ 2,56:1U ⁻³ 1,35:1U ⁻³ 4,75:1U ⁻⁵ 2,65:1U ⁻³ 4,24:1U ⁻⁴ 2,19:1U ⁻³ 1,91:1U ⁻³ 1,91:1U ⁻³ -1,69:1U ⁻⁶ 7,93:1U ⁻⁴ 1,91:1U ⁻³ -1,69:1U ⁻⁶ 1,91:1U ⁻³ 1,91:1U ⁻³ -1,69:1U ⁻⁶ 7,93:1U ⁻⁴ 1,91:1U ⁻³ -1,69:1U ⁻⁶ 1,91:1U ⁻³ 1,91:1U ⁻³ -1,69:1U ⁻⁶ 0,54836 U,54836 U,54838 U,54836 U,54838 3,64:1U ⁻⁵ -1,61:1U ⁻⁴ -7,17:1U ⁻⁵ -2,37:1U ⁻⁴ -2,24:1U ⁻⁶ 2,33:1U ⁻⁴ -1,92:1U ⁻⁵ 1,43:1U ⁻⁴ 9,17:1U ⁻⁴ 2,37:1U ⁻⁴ -3,51:1U ⁻⁶ 2,33:1U ⁻⁴ -1,92:1U ⁻⁵ 1,44:1U ⁻³ 3,34:1U ⁻⁴ 2,37:1U ⁻⁴ -2,54:1U ⁻³ 1,33:1U ⁻³ -1,92:1U ⁻⁵ 1,34:1U ⁻³ 3,34:1U ⁻⁴ 2,37:1U ⁻⁴ 2,56:1U ⁻³ 2,66:1U ⁻³ -1,92:1U ⁻⁵ 2,66:1U ⁻³ 4,26:1U ⁻⁴ 2,20:1U ⁻³ 1,90:1U ⁻³ 2,66:1U ⁻³ 2,66:1U ⁻³ -1,76:1U ⁻⁶ 2,66:1U ⁻³ 4,26:1U ⁻⁴ 2,20:1U ⁻³ 1,90:1U ⁻⁶ 2,66:1U ⁻³ 2,66:1U ⁻³
Ha pastiax patiax particular c. n.max a Cn r_0^=1,8 cm r_0^=2 cm r_72,5 cm Cn,min C. n.max a Cn 0,54814 0,54815 0,54815 1,42010 ⁵ 1,59010 ⁵ 1,59010 ⁵ -2,21:0 ⁻⁶ 1,73:10 ⁻⁶ 3,37:10 ⁻⁶ 2,34:10 ⁻⁴ 2,37:10 ⁻⁵ 3,59:10 ⁻⁵ -1,57:10 ⁻⁴ 0,54815 0,54815 1,42010 ⁻⁵ 2,51:10 ⁻⁶ 3,59:10 ⁻⁶ -1,57:10 ⁻⁴ -7,00:10 ⁻⁵ -2,34:10 ⁻⁴ 2,37:10 ⁻⁴ 2,35:10 ⁻³ 1,35:10 ⁻³ 1,35:10 ⁻³ 3,37:10 ⁻⁴ 1,00:10 ⁻⁴ 2,13:10 ⁻⁴ 3,35:10 ⁻³ 1,35:10 ⁻³ 2,65:10 ⁻³ 4,24:10 ⁻⁴ 1,91:10 ⁻³ 2,65:10 ⁻³ 2,65:10 ⁻³ 2,65:10 ⁻³ 2,65:10 ⁻³ 4,24:10 ⁻⁴ 1,91:10 ⁻³ 1,91:10 ⁻³ 1,91:10 ⁻³ 1,33:10 ⁻⁴ 1,34:10 ⁻⁴ 1,91:10 ⁻³ 1,91:10 ⁻³ 2,65:10 ⁻³ 1,43:10 ⁻⁴ 0,54838 0,54838 3,64:10 ⁻⁵ 1,43:10 ⁻⁴ 1,43:10 ⁻⁴ -7,17:10 ⁻⁵ 2,9
x_nunycax r_o x_nuntonth II, FOLSSON In=48°500 A. x_n=2 cM x_n=2,5 cM c_n,max A C_n 0,54815 0,54815 1,48°10 ⁻⁵ -1,73010 ⁻⁶ 3,37010 ⁻⁵ 2,21010 ⁻⁵ 3,5900 ⁻⁵ -7,00010 ⁻⁵ 2,34010 ⁻⁶ -3,3000 ⁻⁶ 3,5900 ⁻⁵ -7,00010 ⁻⁵ 2,2400 ⁻⁶ -3,3000 ⁻⁶ 3,5900 ⁻⁵ -7,00010 ⁻⁵ -2,2400 ⁻⁶ -3,3000 ⁻⁶ 3,5900 ⁻⁶ 3,3700 ⁻⁶ 1,000 ^{-10⁻⁵} -2,2400 ⁻⁶ 2,5900 ⁻⁶ 3,3700 ⁻⁶ 1,9000 ⁻⁶ 1,3500 ⁻³ 1,3500 ⁻³ 1,3400 ⁻⁴ 2,1900 ^{-10⁻³} 2,0000 ⁻³ 1,9100 ⁻³ 1,3400 ⁻⁴ 2,1900 ^{-10⁻³} 1,9100 ⁻³ 2,6500 ⁻³ 0,54836 0,54836 0,54838 3,6400 ⁻³ 0,54836 0,54836 0,54838 3,6400 ⁻³ -7,1700 ⁻⁵ -1,070 ⁻⁴ -2,2400 ⁻⁵ 4,2400 ⁻⁴ -7,1700 ⁻⁵ -2,3700 ⁻⁴ -3,5100 ⁻⁴ 4,2400 ⁻⁴ -3,3400 ⁻⁴ 2,900 ^{-10⁻⁶} 1,3400 ⁻⁶ 3,5400 ⁻⁴ -7,1700 ⁻⁵ 2,900 ^{-10⁻⁶} 1,900 ^{-10⁻³}
r.d. theory of the second theory of the second theory of the second theory of the second t
Cn,min · Cn,max A Cn Cn,min · Cn,max A Cn 2.221:10~6 3.337:10~5 3.559:10~5 2.221:10~6 3.337:10~5 3.559:10~5 2.334:10~4 -3.30:10~5 3.559:10~5 2.334:10~6 1.355:10~3 1.355:10~3 2.00:10~6 1.355:10~3 1.91:10~3 1.59:10~6 2.655:10~3 2.655:10~3 2.00:10~6 2.955:10~3 2.64:10~5 1.59:10~4 -2.24:10~5 1.91:10~4 -2,37:10~4 -2,51:10~6 2,33:10~4 -2,37:10~6 1.34:10~3 1.34:10~5 1.99:10~6 1.34:10~3 1.33:10~3 1.99:10~6 1.34:10~3 2,66:10~3 1.99:10~6 1.90:10~6 2,66:10~3 1.99:10~6 1.90:10~3 2,90:10~3
<pre>. n1=40.000 A. . C.n.max</pre>
Δ C _D J,59-IU ⁻⁵ J,59-IU ⁻⁵ 2,31-IU ⁻⁴ 1,91-IU ⁻³ 1,91-IU ⁻³ 2,44-IU ⁻⁵ 1,19-IU ⁻⁴ 2,46-IU ⁻³ 1,90-IU ⁻

B 38BUCHMOCTH OT

CM

2.5

11 н

с_п[пересчитанных на радиус

М

Таблица 4. Разброс величин в,

8

9

<u>Таблица 5.</u> Величины B_1 и C_n (%) [на радиусе r = 2,5 см] в Зависимости от тока I в витке СП обмотки. POISSON, r_= 1,8 CM.

		500A	1000A	1500A	2000A	2500A
СП диполь І	B _I ,T	0,54917	I,0984	I,6445	2,1498	2,5870
	C3,%	0,731	0,728	0,833	I,882	3,527
	C5,%	0,324	0,328	0,342	0,4II	0,656
	C7.% .	-0,039	-0,041	-0,044	-0,063	-0,133
	C9,% .	-0,057	-0,056	-0,062	-0,122	-0,219
	CII,%	0,063	0,061	0,071	0,175	0,328
	C13,%	0,165	0,174	0,182	0,191	0,401
CII диполь II CII CII CII CII EI	B _I ,T	0,54814	I,0963	1,6412	2,1443	2,5796
	C3,% .	-0,000	-0,003	0,102	I,164	2,768
	C5,% .	-0,016	-0,012	0,007	0,099	0,369
	C7,%	0,135	0,134	0,128	0,084	-0,0II
	C9,%	0,265	0,266	0,264	0,277	0,244
	C11,%	0,079	0,078	0,081	0,056	0,125
	C13,%	-0,406	-0,401	-0,375	-0,176	0,273

Для полученных (POISSON) при 1>1,8кА результатов было проведено исследование точности. В табл. 5 для СП диполя 11 представлены результаты, полученные при расчетах с мелкой сеткой (число элементов разбиения равно II35). В дополнение к этому для I=2,5 кА величины В, и С, вычислялись на крупной сетке (число элементов разбиения равно 323). При этом B1 = 2,5940 Т, C3 = 2,359%, C5 = 0,730%, $C_7 = -0, I38\%, C_0 = 0, I56\%, C_1 = 0, 0I34\%.$

Таким образом, приведенные выше результаты численных экспериментов позволяют сделать следующее заключение.

I) Для СП синхротронного диполя с прямоугольной апертурой возможно для B=0,5 ÷ 1,8 T создание высокооднородного (АН/Н~1.10⁻⁴) маг-

нитного поля в 70% размеров апертуры. При этом допуски на параметры δ и δ_{o} , ответственные за однородность поля $I0^{-4}$, таковы: $\Delta\delta$ и Δδ = ±0,0I MM.

2) Расчеты нелинейностей поля с помощью системы программ розson можно проводить с точностью 10⁻⁴ для индукций в < 1,8 т. Эта же точность характерна и для расчетов по методу отраженных токов. При В≈2,6Т точность вычислений снижается до 10-3.

3) При индукциях в ≈ 2,6 Т нелинейные эффекты проявляют себя заметным образом. В частности, относительные амплитуды третьей и пятой гармоник составляют соответственно 2.8% и 0.4 % от первой.

Измеренное поле изготовленного диполя П показывает, что действительно, при в ≈0,5 Т в 70 % размеров апертуры создается однородность ПОЛЯ 4 В/В=1.10-4 A STATE IN THE REPORT OF A DESCRIPTION O

Литература

I. POISSON Group Programs. User's Guide, CERN, 1975.

2. Ворожцов С.Б., Дударева Т.Н., Полякова Р.В., Сергеева Н.В. POISSON - СИСТЕМА ПРОГРАММ ПО РАСЧЕТУ, АНАЛИЗУ И ОПТИМИЗАЦИИ магнитостатических и электростатических полей. БІ-II-I2070. ОИЯИ, Дубна, 1978.

3. Шелаев И.А., Юдин И.П. ОИЯИ, Р9-80-333, Дубна, 1980.

- 4. Шелаев И.А., Юдин И.П. ОИЯИ, 9-12346, Дубна, 1979 г.
- 5. Mc Inturff A. and Clauss J. , Proc. of 3rd Int. Conf. Magnet Technol., Hamburg, 1970, p. 45.
- 6. Жидков Е.П., Полякова Р.В., Шелаев И.А. ОИЯИ, PII-12324, Дубна, I979.

Рукопись поступила в издательский отдел 8 января 1981 года.