

объодинонный институт ядорных исслодований дубна

106/2-81

12/1 - 81 P9-80-624

В.Н.Аносов, В.Н.Денисов, З.Хикман, В.В.Лиинемани, Г.Пич

МИНИМИЗАЦИЯ ТОКОВЫХ ПОТЕРЬ В ТРАКТЕ ИНЖЕКЦИИ ИЗОХРОННОГО ЦИКЛОТРОНА

Направлено в ПТЭ

1. ВВЕДЕНИЕ

Решение задачи автоматизации управления ускорителями заряженных частиц дает большой экономический эффект при одновременном качественном улучшении характеристик ускорителя.

Эффективность использования автоматизированных управляющих систем на ускорителях объясняется высокими требованиями, предъявляемыми к оператору современного ускорителя, превосходящими его физические возможности.

Наиболее частой задачей, решаемой оператором, является задача оптимизации параметров пучка в заданных точках его траектории путем изменения определенных параметров ускорителя. Качество пучка в любой точке его траектории можно охарактеризовать вектором $\vec{P} = \{P_i\}$, где P_i - параметры пучка. Оператор воздействует на пучок, изменяя вектор параметров ускорителя $\vec{p} = \{p_i\}$ до достижения требуемого значения вектора \vec{P} .

Время решения этой задачи существенно зависит от опыта оператора и от сложности функции связи $\dot{P}=f(\vec{p})$.

В работах ^{/1,2/} описаны системы, поддерживающие некоторые параметры пучка на оптимальном уровне в автоматическом режиме с использованием ЭВМ, причем выполняется эта задача быстрее и точнее, чем олератором, который в результате освобождается от рутинной работы.

Важным моментом при решении любой задачи оптимизации является выбор метода оптимизации ^{/3,4/}. В свою очередь, на выбор метода влияют следующие факторы: характеристики используемой ЭВМ, временные и точностные характеристики системы опроса и установки параметров ускорителя, а также стохастический характер изменения оптимизируемых параметров во времени.

2. ОБЪЕКТ ОПТИМИЗАЦИИ, ОПТИМИЗИРУЮЩАЯ СИСТЕМА И АЛГОРИТМ ОПТИМИЗАЦИИ

Предлагаемый в данной работе метод оптимизации был опробован на инжекторе изохронного циклотрона Лаборатории ядерных проблем ОИЯИ ⁷⁵⁷. Инжектор электронов вертикального типа состоит из электронной пушки ⁷⁸⁷, фокусирующего тракта и поворотного устройства ^{71,87}, переводящего пучок в горизонтальную плоскость.

Пучок электронов в инжекторе модулируется с частотой f = = 100 Гц импульсами длительностью 100 мкс и после поворотного устройства индицируется пикап-электродом, выдающим сигнал на интегратор одиночных импульсов ^{Л97}. За величину тока пучка электронов принимается среднее значение из 8 показаний интегратора.

Величина тока пучка на выходе поворотного устройства оптимизировалась с помощью 4-х параметров инжектора:

- тока фокусирующей катушки Iф.
- напряжения электростатического тракта "U_{TD.},
- напряжения поворотного конденсатора U, K,
- напряжения поворотного конденсатора U

В качестве метода оптимизации был выбран метод пошагового приближения к оптимуму искомого параметра ускорителя с постоянной длиной шага в процессе поиска. Данный метод не требует знания математической модели оптимизируемого процесса и по алгоритму сходен с методом, используемым оператором ускорителя при настройке последнего на оптимальный режим.

Блок-схема устройства связи ЭВМ ЕС-1010 с инжектором электронов приведена на <u>рис.1</u>, где R_i - регулируемые элементы, в качестве которых используются источники питания отдельных элементов инжектора; W_i - управляющее воздействие; W_{i0} - заданная величина; W_{iE} - изменение, вносимое ЭВМ в заданную величину; \vec{x}_i - регулируемые параметры инжектора ($I_{d\mu}, U_{Tp}, U_{T,K}^{\oplus}, U_{T,K}^{\oplus}$); I к - ток эмиссии катода источника; I_{θ} - ток пучка на зыходе поворотного устройства /оптимизируемый параметр/.

Индексу i=1 соответствует цепь регулировки $I_{\, \varphi},\ i=2$ - цепь регулировки питания электростатического тракта - $U_{T\rho},$, i=3 - цепь регулировки питания - $U_{\Pi,K}^{\oplus}$, i=4 - цепь регулировки питания - $U_{\Pi,K}^{\oplus}$.

Конструктивное и схемное выполнение устройства связи между ЭВМ и инжектором позволяет легко переходить от ручного режима настройки инжектора к автоматическому и наоборот.

После подачи питания на инжектор оператор предварительно настраивает его до появления тока пучка на выходе поворотного устройства и задает необходимый режим работы электронной пушки /источника/, который в процессе оптимизации не меняется.В этом случае регулируемые параметры инжектора равны заданным величинам:

 $W_i = c_i \mathbf{x}_i = W_{i0} + W_{iE} = W_{i0} + \Sigma \Delta W_{iE}$,

где c_i - коэффициент связи между W_i , W_{i0} и x_i , a $W_{iE} = \Sigma \Delta W_{iE} = 0$.

В процессе оптимизации тока I_{θ} регулируемые параметры изменяются поочередно путем добавки постоянных шагов ΔW_{1E} . Начальный шаг делается всегда в положительном направлении изменения регулируемых параметров **x**₁. Направление последующих

<u>Рис.1.</u> Блок-схема устройства связи ЭВМ ЕС-1010 с инжектором электронов.

шагов совпадает по знаку со знаком разности ($x_{1}^{2}-x_{1}^{1}$), где x_{1}^{1} - значение i -того регулируемого параметра в некоторой промежуточной точке 1, x_{1}^{2} - значение i -того регулируемого параметра в точке, отстоящей на шаг ΔW_{1E} от точки 1. При этом

 $W_{iE} = \Sigma \Delta W_{iE} \neq 0.$

Дальнейший поиск максимума I $_{\theta}$ ведется в коридоре $2\Delta W_{iE}$, находящемся в направлении, обратном направлению последнего шага, обнаружившего прохождение максимума. Шаг поиска в указанном коридоре: $\Delta W'_{iE} = \frac{\Delta W_{iE}}{4}$.

Максимум I $_{\theta}$ в коридоре $2\Delta W_{1E}$ ищется путем простого сканирования с шагом $\Delta W'_{1E}$ и запоминания максимальной величины 1_{θ} , которая при этом будет найдена. Если $\Delta I_{\theta} / \Delta W'_{1E} < G$ /где G - заданная величина, подбираемая экспериментально для каждого тракта оптимизации, а ΔI_{θ} - приращение тока I $_{\theta}$ при увеличении W_{1E} на один шаг $\Delta W'_{1E}$ /, то сканирование заканчивается. Величина \mathbf{x}_{1} , соответствующая найденному максимуму I $_{\theta}$, устанавливается с помощью ЭВМ на i-том источнике питания инжектора.

Рис.2. Блок-схема программы оптимизации тока по 4 параметрам инжектора.

Максимальные величины І д сравниваются до (Г') и после (1") прохождения каждого полного цикла оптимизации. состоящего из циклов оптимизации по каждому из 4-х параметров. Если <u>I''-I'</u> <E, где Е - заданная величина, то процесс заканчивается. В противном случае начинается новый цикл. Блок-схема программы оптимизации Ід по 4-м параметрам инжектора приведена на рис.2.

3. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Экспериментальная проверка описанного выше алгоритма проводилась на системе, изображенной на <u>рис.1</u>. Кокстанты, подобранные для каждого из 4 параметров инжектора в пробных экспериментах, приведены в <u>таб-</u> лице. Из данной работы можно сделать следующие выводы:

Wiemax AWIE | Δti E G Ĺ Wio Wia (cek) 1 0.2 0.019 0.6 0.015 0.1 2 0.1 0.006 0.1 2.4 0.015 3 0.34 0.021 9.6 0.015 0.1 0.26 0.016 0.015 0.1 2.4

А. Величина $W_{iE\ MAX}$ равна удвоенной ширине функции $I_{\theta} = f(x_i)$, измеренной на расстоянии от точки оптимума, равном 1/10 его величина. Диапазон $W_{iE\ MAX}$ разбивается на 2^8 элементарных шагов.Величина элементарного шага, получающегося при этом, позволяет иметь, с одной стороны, достаточно малые шаги поиска ΔW_{iE} , с другой – достаточно широкий коридор $W_{iE\ MAX}$ для того, чтобы взаимно перекрывались диапазоны ручной и автоматической настройки на оптимум.

Б. Длина постоянного шага ΔW_{1E} выбирается в соответствии с крутизной функции $I_{\theta} = f(\mathbf{x}_1)$. При больших шагах ΔW_{1E} время поиска оптимума сокращается, однако ухудшается точность отыс-кания оптимума; при малых шагах из-за стохастических колебаний тока I_{θ} может быть найден ложный оптимум.

В. Аt₁ - временная задержка между выдачей управляющего воздействия от ЭВМ и установлением соответствующей ему вели-

	4	
4		L
-		r

<u>Рис.3</u>.Процесс оптимизации по одному параметру.

чины параметра инжектора - выбирается из соотношения: $\Delta t_i \stackrel{\sim}{=} 3 \tau_1$, где τ_i - постоянная времени для і - того параметра инжектора,

Г. Величина константы Е, так же как и ΔW_{iE} и Δt_i , влияет на эффективность оптимизации, причем, задавая большие значения Е, мы ухудшаем точность поиска оптимума, уменьшая время поиска и наоборот.

Д. Измерения тока пучка I_р показали, что только 5% замеров выходят за <u>+</u>1% чный коридор. Такое влияние стохастичности оказалось допустимым для надежного решения задачи поиска оптимума.

Для проверки эффективности оптимизации /величина и время нахождения оптимума/ производились следующие операции:

- оператор вручную настраивал ток пучка на

выходе инжектора с максимальной тщательностью на оптимальную величину;

- в значения регулируемых параметров инжектора вносились возмущения, случайные по знаку, такой величины, чтобы отход от оптимального значения не превышал 6% при возмущении одного параметра;

- запускался алгоритм автоматической настройки на оптимум с помощью ЭВМ.

В результате перечисленных операций в 50% случаев максимум I_{θ} , найденный с помощью автоматизированной системы, был не более чем на 7% лучше, чем максимум, найденный оператором при ручной настройке; в остальных 50% случаев величины максимумов I_{ρ} были одинаковые. При этом число циклов оптимизации

до достижения максимума колебалось от 2÷5 при средней продолжительности цикла 2 мин.

На <u>рис.3</u> изображено пошаговое течение процесса оптимизации по одному из параметров. Этим рисунком можно проиллюстрировать следующие особенности работы алгоритма:

а/ определение направления движения к оптимуму с помощью выполнения начального шага;

б/ изменение направления движения и длины шага после прохождения оптимума; •

в/ прохождение отрезка $2\Delta \Psi_{1E}$ вблизи оптимума с шагом $\Delta \Psi_{1E}$

³ Важно отметить, что если ожидание Δt_i на установление параметра в процессе выполнения каждого шага больше чем $3r_i$ /<u>рис.3а,6</u>/, то величина оптимума, найденного с использованием шага $\frac{\Delta W_{iE}}{4}$, равна величине оптимума, найденного с начальным шагом, или больше нее. Если же $\Delta t_i < 3r_i$ /<u>рис.3</u>в/, то траектория поиска оптимума принимает петлевидную форму, т.к. очередной шаг начинает выполняться до окончания процесса изменения тока после предыдущего шага. Это приводит к уменьшению величины находимого в таких случаях максимума I₀.

Из рис.4 можно видеть, что с ростом числа циклов оптимизации разница $\frac{I''-I'}{I'}$ уменьшается, однако алгоритм поиска оптимума при этом не меняется. Поэтому время, затрачиваемое на выполнение одного цикла оптимизации, почти не изменяется от цикла к циклу.

На <u>рис.5а</u> приводится график изменения тока пучка I_{θ} в зависимости от номера цикла Z. Видно, что функция I_{θ} = f (Z) монотонно возрастает, чего нельзя сказать о подобной функции, приведенной на <u>рис.56</u>. Причина нарушения монотонности заключается во влиянии стохастических колебаний тока пучка во времени.

Из сказанного следует, что выбранный алгоритм поиска оптимума I_{θ}, являющегося функцией нескольких переменных, достаточно прост, нагляден и устойчиво работает независимо от изменения вида функций I_{θ} = f(I_{\dot{d}}), I_{θ} = f(U_{TP}), I_{θ} = f(U^{\oplus}_{Rk}), I_{θ} = f(U^{\oplus}_{Rk}) во время поиска оптимума.

С уменьшением амплитуды стохастических колебаний оптимизируемого параметра /например, I_{θ} / время поиска оптимума уменьшается, как показывают расчеты с использованием идеализированных функций $I_{\phi} = f(\mathbf{x}_{+})$.

Предложенный в данной работе метод оптимизации может быть улучшен путем учета эффекта от введения в алгорити поиска изменения величины I_A от цикла к циклу.

- процесс поиска оптимума тока $I_{\mathcal{G}}$ заканчивается после того, как величина E становится меньше заданного значения;

- из-за стохастических колебаний тока I₀ определение величины Е в ~5% случаев может быть ошибочнык, при этом алгоритм найдет пожный оптимум;

- в 50% случаев величина оптимума, найденного с помощью ЭВМ, на 7% выше, чем величина оптимума, найденного оператором;

– полный цикл оптимизации величины [$_{ heta}$ состоит в среднем из 2+5 циклов.

Исследования, проведенные в данной работе, показывают, что автоматизированная система тонкой настройки на оптимум эффективнее, чем ручная настройка. Если учесть к тому же изменения эффективности ручной настройки из-за вариации субъективных особенностей различных операторов, а также изменения эффективности настройки одним и тем же оператором в течение рабочего дня, разница между эффективностью автоматической и ручной настройки будет еще больше. Дальнейшее повышение эффективности автоматического метода настройки на оптимум можно обеспечить путем снижения времени, затрачиваемого на поиск решения. Одна из возможностей в этом направлении заключается в применении алгоритма, основанного на симплекс-методах.

. Результаты данной работы будут использоваться при создании автоматизированных систем управления синхроциклотроном Лаборатории ядерных проблем ^{/10/}/установка "Ф"/ и ускорителем ЦИЯИ ^{/11/} /г.Россендорф/.

В заключение авторы благодарят проф. В.П.Дмитриевского за поддержку работы, М.Ф.Шабашова, В.А.Саенко за помошь при работе на циклотроне, А.А.^глазова и Д.Л.Новикова за полезные обсуждения в процессе выполнения данной работы.

ЛИТЕРАТУРА

- Аносов В.Н. и др. В кн.: Труды VII Международной конференции по циклотронам и их применению. Birkhauser, Bassel, 1975, p.565.
- 2. Van Heusden G.C.L. et al. Tam we, c.553.
- Hartmann K. u.a. Statistische Versuchsplannung u.-auswertung in der Stoffwirtschaft, VEB Deutscher Verlag für Grundstoffindistrie, Leipzig, 1974.
- Bialy H., Olbricht M. Optimierung, VEB Fachbuchverlag, Leipzig, 1975.

- 5. Аносов В.Н. и др. ОИЯИ, Р9-3787, Дубна, 1968. 6. Глазов А.А. и др. ПТЭ, 1967, №2. 7. Глазов А.А. и др. ОИЯИ, Р9-3024-1, Дубна, 1966. 8. Глазов А.А. и др. ОИЯИ, 09-3352-1, Дубна, 1967.
- 9. Hoffmann G. Preprint ZfK-385, 1979.
- 10. Глазов А.А. и др. ОИЯИ, 9-3951, Дубна, 1968.
- . 11. Hiekmann S., Fulle R. 10 Symposium Kernelektronik, Dresden, 1980.

Рукопись поступила в издательский отдел 24 сентября 1980 года.

ł