

СООБЩЕНИЯ Объединенного института ядерных исследований дубна

4563/2-80

22/9-80 P9-80-432

М.А.Воеводин, А.Д.Коваленко

ИССЛЕДОВАНИЕ

ДВУМЕРНЫХ МАГНИТНЫХ ПОЛЕЙ МЕТОДОМ ГАРМОНИЧЕСКОГО АНАЛИЗА. 3. ОПРЕДЕЛЕНИЕ ЧУВСТВИТЕЛЬНОСТИ К МАГНИТНОМУ ПОЛЮ ИЗМЕРИТЕЛЬНЫХ КАТУШЕК

Воеводин М.А., Коваленко А.Д.

P9-80-432

Исследование двумерных магнитных полей методом гармонического анализа. 3.0пределение чувствительности к магнитному полю измерительных катушек

Рассматриваются вопросы, связанные с определением коэффициентов чувствительности к гармоникам магнитного поля измерительных индукционных катушек. Описана методика, позволяющая повысить точность определения коэффициентов чувствительности, основанная на использовании данных калибровки в дипольном и квадрупольном полях для уточнения геометрических параметров катушек. Приведены результаты практического использования данной методики на примере индукционных измерительных катушек, предназначенных для исследования характеристик магнитного поля в дипольных магнитах.

Работа выполнена в Лаборатории высоких энергий ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубна 1980

Voevodin M.A., Kovalenko A.D.

P9-80-432

Study of Two-Dimensional Magnetic Fields Using a Harmonic Analysis Method. 3. Determination Определение с высокой точностью величин коэффициентов чувствительности реальных измерительных индукционных катушек /ИК/ к требуемому набору гармоник магнитного поля /МП/ является важной задачей в организации магнитных измерений, от успешного решения которой зависит в итоге точность измерений.

В данной работе рассматриваются некоторые методические возможности повышения точности при определении коэффициентов чувствительности ИК, возбуждаемых азимутальной составляющей поля, на примере реальной аппаратуры и устройств, разработанных для экспериментального исследования МП в сверхпроводящих магнитах типа "оконная рама" /1/.

Амплитуда n-й гармоники МП при измерениях с интегратором может быть выражена /в системе единиц СИ/ следующим образом*:

$$B_n(r) = r U_n k_n \left(\frac{r}{\bar{R}_1}\right)^{n-1} \cdot n,$$
 /1/

где

$$x_{n} = \frac{1}{\ell w \bar{R}_{1} f(\kappa, n)}$$
 /2/

/ k _n - коэффициент чувствительности ИК к n-й гармонике МП/, U_n - амплитуда n-й гармоники выходного напряжения интегратора, ℓ , w - продольная длина и число витков ИК, R₁ -радиальная координата центра сечения внешней обмотки ИК, τ - постоянная времени интегратора, $f(\kappa, n)$ - функция, конкретный вид и величина которой определяются типом катушки и ее геометрическими параметрами ^{/2,3/}.

Таким образом, зная геометрические параметры ИК, можно рассчитать коэффициенты k_n и тем самым определить величины B_n .

Если осуществляется предварительная калибровка ИК в устройстве, генерирующем отдельные гармоники МП с заранее известными амплитудами, например, в мультипольной магнитной мере /МММ/ ^{/4/},

$$k_n = \frac{1}{\tau \cdot n} \frac{B_{0n}}{U_{0n}} \left(\frac{R_1}{a}\right)^{n-1}$$
, /3/

* Если продольная длина ИК больше длины магнита, то $B_n = B_n \cdot \ell/\ell_e$ / ℓ_e – эффективная длина магнита/.

Объеданенный институт адерных песяедований БИБЛИЮТЕНА где B_{0n} - амплитуда основной гармоники поля МММ на радиусе ее магнитной апертуры a , U_{0n} - выходное напряжение интегратора при калибровке.

Величины гармоник МП в случае использования одной и той же электронной аппаратуры при калибровке ИК и измерениях определятся как

$$B_n(r) = B_{0n} \frac{U_n}{U_{0n'}(r)} (r)^{n-1}$$
 . (4/

Сравнивая /1/,/2/ и /3/,/4/, видим, что определение коэффициентов чувствительности ИК к гармоникам /и самих гармоник в конечном итоге/ с использованием калибровки в МММ является наиболее точным, поскольку из рассмотрения исключается ряд геометрических параметров ИК, неопределенность величины которых вносит основную погрешность.

Однако, если $R_1/a\,$ существенно меньше единицы, то величина сигнала $U_{0n}\,$ может, начиная с некоторого $n\geq n_c$, оказаться ниже уровня шумов электронной аппаратуры, и тем самым возможности калибровки будут ограничены.

Рис.1. Зависимость величины гармоник магнитного поля МММ от радиуса.

1

На рис.1 представлено изменение амплитуды поля первых четырнадцати гармоник в зависимости от радиальной координаты. В качестве максимального поля взята величина 0,033 Т, примерно соответствующая амплитудам этих гармоник при г = а и токе питания I =110 А для МММ, описанной в работе /4/Зная возможности электронной аппаратуры и примерные параметры измерительной катушки, можно, пользуясь рис.1, заранее оценить n.

Стремление сделать универсальной МММ приводит к тому, что ее апертура делается достаточной для помещения ИК наибольшего диаметра в соответствии с подлежащими исследованию магнитными элементами, поэтому на практике возникает ситуация,

когда $\bar{R}_1/a\equiv\rho$ гораздо меньше единицы. В частности, в нашем случае имела место необходимость калибровки катушек, для кото-

рых ρ ≈ 0,30 , что с учетом остальных факторов ограничивало возможность их калибровки с точностью не хуже 10% шестой гармоникой.

Катушки предназначались для измерения нелинейности магнитного поля и эффективной длины дипольных магнитов и представляли собой две пары обмоток, первая длиной $\ell_g =/595,0\pm0,2/$ мм, а вторая – $\ell_k = /181,6\pm0,2/$ мм, конструктивно закрепленных на одном каркасе /<u>puc.2</u>/. Количество витков в катушках первой пары $w_g = 2 \times 250$, а второй $w_k = 2 \times 300$. Катушки, расположенные на меньшем радиусе, служат для компенсации чувствительности к первой гармонике. Измеренные с помощью механических измерительных приспособлений геометрические параметры катушек, указанные на рис.3, оказались следующими:

короткие катушки: $\overline{R}_{1k} = /22, 3\pm 0, 4/$ мм, $\overline{R}_{2k} = /12, 6\pm 0, 4/$ мм, $\overline{R}_{3k} = /10, 2\pm 0, 4/$ мм, $\overline{R}_{4k} = /1, 75\pm 0, 4/$ мм, $2B_k = 1, 9$ мм, $2A_k = 4, 1$ мм;

длинные катушки: $\overline{R}_{1g} = /23,6\pm0,4/$ мм, $\overline{R}_{2g} = /13,9\pm0,4/$ мм, $\overline{R}_{3g} = /12,0\pm0,4/$ мм, $\overline{R}_{4g} = /4,4\pm0,4/$ мм, $2B_g = 1,9$ мм, $2A_g = 3,8$ мм.

Рис.2. Общий вид индукционных катушек.

Рис.3. Схематичный поперечный разрез измерительной ИК.

Для больших n относительная погрешность расчетных значений kn будет примерно равна ± 1,5%, а погрешность в величине В,, определяемая как

$$\frac{\delta B_n}{B_n} \approx n \frac{\delta \overline{R}_1}{\overline{R}_1} , \qquad /5/$$

в нашем примере составит ~20% для n =13. Обеспечение суммарной погрешности измерения нелинейности < 10-4 на радиусе 0,9 R _ при этом уже невозможно.

Для более точного определения геометрических параметров катушек были использованы данные калибровки в дипольном и квадрупольном полях МММ. Эффективная радиальная ширина каждой катушки находилась как

$$\overline{d}_{i} = \left(\frac{r U_{01}}{w \ell}\right)_{i} \frac{1}{B_{01}},$$
 /6/

а радиальные координаты \overline{R}_{1k} , \overline{R}_{3k} , \overline{R}_{1g} , \overline{R}_{3g} , условно обозначенные через (R), как

$$(\vec{R})_{i} = \frac{1}{2}d_{i} + \frac{B_{01}}{B_{02}} \cdot (\frac{U_{02}}{U_{01}})_{i} \cdot a^{*}$$
 (7/

Полученные таким образом значения геометрических параметров катушек можно дополнительно уточнить, если сравнить рассчитанные величины коэффициентов k_n с измеренными при 1 < n < 6 в МММ. Отметим также, что если амплитуды дипольного и квадрупольного полей контролировать образцовыми катушками, то погрешности в определении d_i и R_i можно уменьшить. Учет основных источников погрешностей приводит в нашем случае к относительным ошибкам $\delta d_i/d_i \approx \pm 0,15\%$ и $\pm 0,22\%$ для длинной и короткой катушек соответственно.

Значения радиальных координат, определенные в соответствии с изложенной методикой, оказались следующими: длинные катушки:

 $\bar{R}_{1g} = /23,45\pm0,15/$ MM, $\bar{R}_{2g} = /13,6\pm0,15/$ MM, $\bar{R}_{3g} = /11,8\pm$ $\pm 0,2/$ мм, $\vec{R}_{4g} = /2,0\pm 0,2/$ мм; короткие катушки: $\vec{R}_{1k} =$ = /22,6±0,15/ мм, \bar{R}_{2k} = /12,7±0,15/ мм, \bar{R}_{3k} =/10,8±0,3/ мм, $R_{4b} = /1,0\pm0,3/$ MM.

Рассчитанные по этим данным величины k , а также полученные экспёриментально при калибровке в МММ значения (k "), представлены на рис.4.

Рис.4. Сравнение расчетных и экспериментальных результатов: 1,3 - расчетные величины k_n для короткой и длинной катушек с учетом величины сечения обмоток, 2 - короткая катушка при $F_{m} = 0$.

При расчете коэффициентов чувствительности функция f(к, n) бралась в виде

$$f(\kappa, n) = (1 - \kappa_1^n) G_1 - \kappa_8^n (1 - \kappa_2^n) G_2, \qquad /8/$$

где

4.8

$$\begin{split} &(\mathbf{G})_{1,2} = \mathbf{1} + \sum_{m=1}^{3} \left(\mathbf{F}_{m}\right)_{1,2} ,\\ &(\mathbf{F}_{m})_{1,2} = \frac{\mathbf{C}_{n}^{2m+1}}{n-2m} \frac{\mathbf{1} - \left(\kappa^{n-2m}\right)_{1,2}}{\mathbf{1} - \left(\kappa^{n}\right)_{1,2}} \sum_{\mathbf{k}=0}^{m} \frac{\left(-1\right)^{\mathbf{k}} \mathbf{C} \frac{2\mathbf{k}+1}{2m+1}}{\left[2\left(\mathbf{m}-\mathbf{k}\right)+1\right]} \left(\xi_{0}\right)_{1,2}^{2\left(\mathbf{m}-\mathbf{k}\right)} \left(\eta_{0}\right)_{1,2}^{2\mathbf{k}} ,\\ &(\xi_{0})_{1,2} = \left(\frac{\mathbf{B}}{\mathbf{\bar{R}}_{1}}\right)_{1,2} , \quad \left(\eta_{0}\right)_{1,2} = \left(\frac{\mathbf{A}}{\mathbf{\bar{R}}_{1}}\right)_{1,2} ,\\ &\kappa_{1} = \frac{\mathbf{\bar{R}}_{2}}{\mathbf{\bar{R}}_{1}} , \quad \kappa_{2} = \frac{\mathbf{\bar{R}}_{4}}{\mathbf{\bar{R}}_{3}} , \quad \kappa_{3} = \frac{\mathbf{\bar{R}}_{3}}{\mathbf{\bar{R}}_{1}} . \end{split}$$

^{*}Выражение /7/ справедливо, если используется одна и та же электронная аппаратура.

Коэффициенты F_m учитывают влияние на чувствительность величины сечения обмотки катушек. Результаты расчета k_n в случае $F_m=0$ для короткой катушки показаны на рис.4[°] Пунктиром.

Таким образом, изложенная методика позволяет достаточно точно определить коэффициенты чувствительности, даже не проводя калибровку катушек по всем гармоникам в МММ. Кроме того, этим способом мы определяем /и наиболее точно/ усредненные по длине значения радиальных координат и эффективную ширину катушек, что при неравномерной намотке катушек практически невозможно сделать другими способами.

В заключение отметим, что результаты данной работы могут быть наиболее полезны в случае определения чувствительности "толстых" катушек с небольшими радиальными размерами.

ЛИТЕРАТУРА

- 1. Аверичев С.А. и др. ОИЯИ, Р8-11700, Дубна, 1978.
- 2. Воеводин М.А., Коваленко А.Д. ОИЯИ, Р9-12378, Дубна, 1979.
- 3. Воеводин М.А., Коваленко А.Д. ОИЯИ, Р9-80-393, Дубна, 1980.
- 4. Воеводин М.А. и др. ОИЯИ, Р9-12687, Дубна, 1979.

Рукопись поступила в издательский отдел 23 июня 1980 года.

Нет ли пробелов в Вашей библиотеке?

Вы можете получить по почте перечисленные ниже книги,

если они не были заказаны ранее.

Д1,2-84 0	О5 Труды IV Международного симпозиу- ма по физике высоких энергий и эле- ментарных частиц. Варна, 1974.	2 p. O5 ĸ.
P1,2-852	9 Труды Международной школы-семи- кара молодых ученых. Актуальные проблемы физики элементарных час- тии. Сочи 1974	2 5 40 5
Π(00.4)		2 p. 00 k.
до-8840	XIV совещание по ядерной спектро- скопни и теории ядра. Дубна, 1975.	łр. 90 к.
Д13-9164	Международное совещание по мето- дике проволочных камер.Дубна,1975.	4 р. 20 к.
Д1,2-922	4 IV Международный семянар по про- блемам физики высоких энергий. Дуб- иа, 1975.	3 р. 60 к.
Д-9920	Труды Международной конференции по избранным вопросам структуры ядра. Дубна, 1976.	3 n. 50 r.
Д9-1050	О Трулы II Симпознума по колектир-	0 p. 00 k.
	ным методам ускорения. Дубна, 1976.	2 р. 50 к.
Д2-10533	3 Труды Х Международной школы молодых ученых по физике высоких энергий. Баку, 1976.	3 р. 50 к.
Д13-1118	2 Труды IX Международного симпо- звума по ядерной электронике. Вар- на, 1977.	5 р. ОО к.
Д17-1149	О Труды Международного симпознума по избранным проблемам статисти- ческой механики. Дубна, 1977.	6 р. ОО к.
Д6-11574	Сборник аннотаций XV совещания по ядерной спектроскопии и теории яд- ра. Дубна, 1978.	2 p. 50 ĸ.
Д3-1178 7	Труды III Международной школы по нейтронной фязыке. Алушта. 1978.	3 p. 00 r.
Д13-1180	7 Труды III Международного сове- щаная по пропорциональным и дрей- фоным камерам Лубие 1079	(00 k.
	формя кажерия. Дуона, 1970.	6 р. ОО к.
	Труды УІ Всесоюзного совеща-	
	ния по ускорнтелям заряженных частии. Лубна 1978 // тома/	-
_	Ayona 1990. 72 Iumay	/р. 40 к.
Д1,2-1203	36 Труды V Международного семи-	
	нара цо проолемам физики высо- ких энергий. Дубна 1978.	5 p. OO ĸ.
P18-12147	Труды III совещания по исполь-	
	зованию ядерно-физических ме-	
	ТОДОВ ДЛЯ РЕШСНИЯ НАУЧНО-ТСХ-	
	ных задач.	2020 -
		2 p. 20 k.

Д1,2-12450	Труды XII Международной шко- лы молодых ученых по физике высоких энергий. Приморско, НРБ, 1978.	3 р. ОО к.
P2-12462	Труды V Международного сове- щания по нелокальным теориям поля. Алушта, 1979.	2 р. 25 к.
Д-12831	Труды Международного симпозиума по фундаментальным проблемам тео- ретической и математической физи- ки. Дубиа, 1979.	4 p. ΟΟ κ.
Д-12965	Труды Международной школы моло- дых ученых по проблемам ускори- телей заряженных частиц. Минск, 1979.	3 р. ОО к.
Д11-80-13	Труды рабочего совещания по сис- темам и методам аналитических вы- числений на ЭВМ и их применению в теоретической физикс. Дубна, 1979.	3 р. 50 к.
Д4-80-271	Труды Международной конференции по проблемам нескольких тел вядер- ной физике. Дубна, 1979.	3 р. ОО к.
Д4-80-385	Труды Международной школы по структуре ядра. Алушта, 1980.	5 p. OO ĸ.

Заказы на упомянутые книги могут быть направлены по адресу:

101000 Москва, Главпочтамт, п/я 79,

издательский отдел Объединенного института ядерных исследований

1