80-410

СООБЩЕНИЯ Объединенного института ядерных исследований дубна

20/2-80 P9-80-410

С.Б.Ворожцов, В.П.Дмитриевский

ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ ФАЗОТРОННОГО ЗАХВАТА ПУЧКА ДЛЯ УСТАНОВКИ "Ф"

Ворожцов С.Б., Дмитриевский В.П.

P9-80-410

Численное моделирование фазотронного захвата пучка для установки "Ф"

Работа посвящена анализу движения частиц в центральной области сильноточного фазотрона ОИЯИ. Ее целью является создание численной модели процесса движения заряженных частиц от источника ионов до момента установления фазотронного режима ускорения. В программе для ЭВМ, при помощи которой исследовалось поведение пучка, учитывалось радиально-фазовое и вертикальное движение частиц, а также эффекты пространственного заряда. В результате была определена интенсивность ускоренного пучка, оказавшаяся равной 40-45 мкА, сделана оценка эффекта пространственного заряда, получены допуски на структуру магнитного поля в зоне первого фазового колебания.

Работа выполнена в Лаборатории ядерных проблем ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубна 1980

Vorozhtsov S.B., Dmitrievsky V.P. P9-80-410 Computer Simulation of the Beam Capture for the JINR Phasotron

The analysis of the particle motion in the center

Анализу движения частиц в центральной области сильноточного фазотрона ОИЯИ /установка "Ф"/^{/1/} посвящен ряд работ. Так, в докладе^{/2/} рассматриваются особенности фазового движения частиц в медианной плоскости установки "Ф". В серии сообщений ОИЯИ ^{/3-5/} обосновывается вариант геометрии центральной области фазотрона при положительном потенциале на разрядной камере источника ионов.

В настоящей работе описывается численная модель процесса движения заряженных частиц от источника ионов до момента установления фазотронного режима ускорения. Расчет движения пучка ведется для основного варианта геометрии ускоряющих электродов /6/ /рис.1/.

OGACIAN MALLA MACTHEVY

SECONDAR S

Рис.1. Геометрия основного варианта центральной области установки "Ф".

При моделировании захвата пучка учитывалось как радиально-фазовое, так и вертикальное движение частиц, а также коллективные взаимодействия в пучке. В качестве исходного варианта численной модели центра "Ф" была принята программа для ЭВМ, написанная D. Thouroude для классического синхроциклотрона ЦЕРНа /7/ Программа была приспособлена для выполнения численного моделирования фазовых колебаний при шиммировании магнитного поля установки "Ф".

ХАРАКТЕРИСТИКИ УСКОРИТЕЛЯ В ЕГО ЦЕНТРЕ

Основные характеристики ускорителя, влияющие на поведение пучка в центральной области, приведены на рис.2,3. Обозначения на этих рисунках следующие:

$$f = -\frac{d \ln f}{d \ln W}, \qquad /1/$$

<u>Рис.2</u>. Характеристики радиально-фазового движения.

<u>Рис.3</u>. Характеристики свободных колебаний.

f - частота ускоряющего поля; f - производная частоты по времени; A $_{\rm b}$ - фазовая площадь сепаратрисы; W - кинетическая энергия равновесной частицы; $\phi_{\rm g}$ - равновесная фаза; B $_4$ - амплитуда основной гармоники магнитного поля; ${\rm \bar{B}}$ - среднее магнитное поле;

$$tg(\gamma_4) = \frac{R}{N} \frac{d\theta_4}{dR}$$
 /2/

при записи поля в виде

$$B = B + B_4 \cos(N\psi + \theta_4), \quad N = 4 ; \qquad /3/$$

$$n = \frac{d \ln B}{d \ln R} ; \qquad /4/$$

 Q_R , Q_Z - частоты свободных колебаний частиц; Q_{ZM}^2 - магнитная фокусировка частиц по оси z; Q_{ZEMAX}^2 - максимальная в зависимости от фазы электрическая фокусировка частиц по $z^{/8/}$. Максимум огибающей Z-движения определяется по формуле

$$\Phi_{\rm Z} = \frac{1}{\sqrt{Q_{\rm ZM}}} \left[1 + \frac{N\epsilon_4}{2} \operatorname{tg}_{\gamma_4} \left(\frac{1}{(Q_{\rm Z} + N)^2 - a} + \frac{1}{(Q_{\rm Z} - N)^2 - a} \right) \right], \qquad /5/$$

<u>Рис.4.</u> Зависимость интенсивности пучка от времени.

Рис.5. Дифференциальная интенсивность пучка в зависимости от момента инжекции.

 $a = -n + \frac{N^2}{N^2 - n - 1} \cdot \frac{\epsilon_4^2}{2} (1 + tg^2 \gamma_4),$ $\epsilon_4 = \frac{B_4}{\overline{B}} \cdot$

Из рис.3 видно, что в статическом приближении с точностью 5% при анализе потерь частиц на стенках дуанта можно считать справедливой оценку $\sqrt{Q_Z} \Phi_Z \approx 1$. Динамический процесс может внести коррекцию в эту зависимость, так как в зоне начальных радиусов изменение жесткости системы нельзя считать медленным процессом. Учет пространственного заряда пучка также приведет к быстрым изменениям /по сравнению с периодом фазовых колебаний/ плотности, что может привести к необходимости численного расчета динамических процессов в течение первого фазового колебания.

ЗАХВАТ ПУЧКА

Основными вопросами, которые встают при исследовании инжекции в ускоритель, являются интенсивность и качество захваченного в режим ускорения пучка. На рис.4 представлены зависимости интенсивности пучка от времени для амплитуды ускоряющего поля $V_m = 50$ кВ и тока отсоса из источника 100 мА. Момент времени t = 0 характеризуется совпадением частоты ускоряющего поля с циклотронной частотой в центре ускорителя. Разрывы кривых в области t ≈ 20 мкс связаны с прекращением инжекции из источника. Время инжекции определялось без учета z -движения частиц и было равно 23 мкс /рис.5/.

2

Рис.6. Характеристики ускоряющего зазора источникпуллер.

Зависимость $(\frac{1}{f} \frac{dI}{dt})$ на рис.5 определялась по величине захваченного в установившийся режим ускорения тока /плато на рис.4/ при инжекции из источника на периоде ВЧ поля в диапазоне фаз, указанном на рис.6. Этот диапазон фаз определялся из условия попадания частиц на входное отверстие пуллера.

На рис.6 (W_{Π}), (ϕ_{Π}) - энергия и фаза частицы на входе пуллера, (ωr), (η) - набег фазы ВЧ и угол поворота частицы при пересечении пространства источичк-пуллер.

Сплошная кривая на <u>рис.4</u> соответствует расчету инжекции пучка при учете дефокусирующего воздействия пространственно-

го заряда на Z-движение частиц. Полученная интенсивность пучка хорошо согласуется с оценками, приведенными в работе /1/. . На рис. 7-9 представлены изображения пучка в различных координатах. Цифрами и буквами латинского алфавита указано количество макрочастиц, соответствующих данной изображающей точке /буквы используются при числе частиц, большем 9/. На рис.7 пучок представлен в координатах начальных значений $(\overline{\phi_0}, \phi_0)$ радиально-фазового движения частиц. Из этого рисунка видно, что все частицы, расположенные ниже границы сепаратрисы, будут потеряны в процессе дальнейшего ускорения пучка. С.другой стороны, частицы с большими начальными значениями $\phi_0>5$ град/мкс теряются на системе пуллер-источник в течение первого фазового колебания. Кроме того, лишь частицы с начальными фазами $\phi_{a}>$ ≻29° получают при пересечении ускоряющего зазора источникпуллер достаточный положительный сдвиг по фазе, при котором обеспечивается электрическая фокусировка по z-движению. Этот эффект приводит к появлению свободного от частиц пространства вблизи сепаратрисы на фазовой плоскости пучка (ϕ , ϕ)/рис.8/. Отсутствие частиц с малыми амплитудами фазовых колебаний /вблизи равновесной фазы нет частиц/ объясняется тем, что частицы с начальными фазами ($\phi_0>-1^\circ$)не могут обогнуть конфигурацию источник-пуллер на 1-ом обороте . При рассмотрении ! рис.8, где пучок показан накануне завершения 1-го фазового колебания, можно наблюдать смещение некоторых частиц в направлении.отрицательных фаз. Вертикальный размер пучка согласно рис.9 составляет ≈1 см.

плоскости в момент окончания инжекции.

При получении данных, приведенных на <u>рис.7-9</u>, из источника инжектировалось 1582 макрочастицы. Распределение. частиц по эффектам потерь дано в следующей таблице:

Эффекты	С учетом простр. заряда	Без учета простр. заряда
Захваченный пучок, %	9	13
Потери по z , %	58	49
Возврат в центр, %	33	38

ВЛИЯНИЕ ВАРИАЦИИ ПАРАМЕТРОВ ЦЕНТРА УСКОРИТЕЛЯ НА ПУЧОК

При моделировании инжекции пучка рассматривалось влияние изменения различных параметров на интенсивность и другие характеристики пучка. В рамках центра возможно варьировать такие параметры, как среднее магнитное поле \overline{B} , частота повторения циклов высокочастотного поля $f_{MOД}$, вертикальная апертура дуанта и рамки D_1 , расстояние между дуантом и рамкой ℓ , амплитуда напряжения ВЧ на дуанте V_m , производная частоты ускоряющего поля по времени f и др.

Поскольку расчет с учетом пространственного заряда требует значительного времени ЭВМ, оценки вариации параметров проводились в пренебрежении коллективным взаимодействием частиц пучка.

Возмущение среднего магнитного поля имеет вид

$$\Delta \overline{B} = \Delta B_{m} \cdot \frac{R_{0}^{2}}{R_{0}^{2} + R^{2}} \cdot \cos\left(\frac{2\pi}{L} \cdot R\right), \qquad (6/$$

где было принято $R_0=20$ см, L=20 см. Это отклонение магнитного поля от требуемого близко по форме и по величине к тому, что было получено на модели магнитной системы установки "ф" /10/. Подобное искажение поля приводит к значительному изменению параметра К / \approx в 25 раз по сравнению с исходным/. В результате этого исчезает мгновенная сепаратриса радиально-фазового движения для некоторых радиусов. Однако, как видно из <u>рис.10</u>, пучок не успевает среагировать на столь быстрые по сравнению с периодом фазовых колебаний изменения параметров и потери составляют при $\Delta B_m = \pm 10$ Гс всего 10% от первоначальной интенсивности. Нужно, однако, отметить, что при расчете без учета **z**-движения потери составили $\approx 30\%$ при тех же значениях ΔB_m .

<u>Рис.10</u>.Вариация параметров центра ускорителя и интенсивность пучка. нием свободной от частиц полосы вблизи сепаратрисы, наблюдаемой при учете Z-движения. При этом изменение размеров площади сепаратрисы меньше сказывается на величине потерь пучка.

На <u>рис.10</u> приведена зависимость интенсивности захваченного пучка от частоты повторения циклов ВЧ. Падение интенсивности при $f_{MOR} < 450$ Гц связано с недостаточной скоростью отхода пучка по радиусу от конфигурации пуллер-источник. При этом имеет место возврат большого числа частиц в центр. Для $f_{MOR} > 800$ Гц размеры фазовой площади сепаратрисы A_{b0} столь малы, что резко падает

число частиц с устойчивым радиально-фазовым движением. Максимум интенсивности в зависимости от $f_{\rm MOД}$ превышает интенсивность $I_{\rm HOM}$ в рабочей точке $f_{\rm MOQ}$ = 543 Гц на 26%.

На <u>рис.10</u> представлены также зависимости интенсивности пучка от вертикальной апертуры дуанта. Как видно из <u>рис.9</u>, апертура дуанта $D_1 = 4$ см при R > 15 см увеличивается до $D_2 = 6$ см. При расчете кривой $I(D_1)$ менялась апертура дуанта и рамки для R < 15 см. Уменьшение интенсивности пучка при $D_1 < 22,5$ см объясняется тем, что увеличение электрической фокусировки за счет уменьшения D_1 уже не может скомпенсировать z-потери на дуанте при малой апертуре. При этом величина D_1 близка к размеру пучка по z, равному 1,8 см, если не учитывать пространственный заряд.

Нужно отметить, что в пределах изменения D_1 считалось, что вертикальная апертура влияет лишь на электрическую фокусировку частиц. Набор энергии частиц определялся исходя из предположения плоскопараллельного электрического поля между дуантом и противодуантной рамкой.

Характер кривой I(f) связан с увеличением доли захваченных частиц при уменьшении |f| и соответствующим возрастанием площади, заключенной внутри сепаратрисы. Однако при некотором значении f преобладающим становится эффект возврата частиц в центр за счет более медленного отхода пучка на большие радиусы. Выбранная рабочая точка находится вблизи оптимума интенсивности.

Резкое падение интенсивности при изменении (ℓ) и (V_m) объясняется существованием порогового набора энергии частицами на 1-ом обороте, при котором они в состоянии обогнуть конфигурацию центральных электродов радиусом ≈ 4 см /радиус кривизны траекторий 1-го оборота $\approx 3,5$ см/. Из кривой I(V_m) следует, что для режимов ускорителя с интенсивностью ниже максимальной /11/ необходимо либо перестраивать конфигурацию центральных электродов на пониженное напряжение V_m , как это делается для синхроциклотрона ЦЕРНа, либо выбирать начальное значение V_m в интервале 40-50 кВ, а затем снижать V_m до получения $A_b = /100,300$ / Мэв.нс.

СВОБОДНЫЕ РАДИАЛЬНЫЕ КОЛЕБАНИЯ

Построенная расчетная модель инжекции позволяет проанализировать очень важный для высокой эффективности вывода пучка из ускорителя^{/12/}вопрос о величине приобретенных в центре ускорителя амплитуд свободных радиальных колебаний. Вычисление мгновенной амплитуды радиальных колебаний A_R показало, что величина ее неодинакова при прохождении ускоряющего зазора вблизи источника и с противоположной относительно центральной области стороны дуанта, что связано с асимметрией геометрии центра /puc.1/. Однако при R > 30 см амплитуда A_R становится одинаковой независимо от положения ускоряющего зазора относительно источника, достигая в пределе величины $A_R \approx 3,5$ мм. Нужно отметить, что в программе THOUR электрическое поле между ускоряющими электродами считается плоскопараллельным и сущест-

1-ой гармоники поля.

вующим лишь между кромками электродов. Кроме того, возмущение поля, вносимое источником ионов, считалось пренебрежимо малым. Этими особенностями программы, по-видимому, и объясняется заниженное значение установившейся амплитуды A_R.

В центре ускорителя свободные радиальные колебания подвергаются воздействию резонансной раскачки при возбуждении простого ($Q_R = 1$), параметрического ($2Q_R = 2$) и нелинейного ($NQ_R = N$) резонансов. Наиболее опасным является простой резонанс, возбуждаемый 1-ой гармоникой магнитного поля B_1 . Анализ поведения пучка в этом случае можно произвести интегрированием укороченных уравнений ^{/13/}для амплитуды A_R и фазы θ_R радиальных колебаний:

$$\frac{\Pi P \mu - a^2 \neq 1}{dA_R} = \frac{R \epsilon_1}{2\pi Q_R} \left\{ \frac{1}{a - 1} \cos \left[(a - 1)\pi + \beta \right] \cdot \sin (a - 1)\pi - \frac{1}{a + 1} \cos \left[(a + 1)\pi + \beta \right] \cdot \sin (a + 1)\pi \right\}, \\ \frac{d\theta_R}{d\psi} = \frac{R \epsilon_1}{2\pi Q_R A_R} \left\{ \frac{1}{a - 1} \sin \left[(a - 1)\pi + \beta \right] \sin (a - 1)\pi + \frac{1}{a + 1} \sin \left[(a + 1)\pi + \beta \right] \cdot \sin (a + 1)\pi \right\},$$

$$\frac{\Pi \rho \mu \ a = -1}{\frac{dA_R}{d\psi} = -\frac{R\epsilon_1}{2}\cos\beta},$$

$$\frac{d\theta_R}{d\psi} = \frac{R\epsilon_1}{2A_R}\sin\beta,$$
/8/

где $\epsilon_1 = \frac{B_1}{B}$, $a = -\frac{1}{Q_R}$, $\beta = \psi_1 + \frac{\pi}{2} + \frac{\theta_R}{Q_R}$, $\psi_1 - \phi$ аза максимума 1-ой гармоники поля. По аналогии с z -движением считалось, что огибающая $\sqrt{Q_R} \Phi_R \approx 1$. Зависимость амплитуды 1-ой гармоники B_1 от радиуса выбиралась в виде

$$B_{1} = a R^{b} \exp(c \cdot R), \qquad (9)$$

где $\mathbf{a} = \frac{\mathbf{B}_{m1}}{\mathbf{R}_{m}^{b} \exp(\mathbf{c}, \mathbf{R}_{m})}$, $\mathbf{b} = \frac{\mathbf{R}_{m}^{2}}{(\mathbf{R}_{c} - \mathbf{R}_{m})^{2}}$, $\mathbf{c} = -\frac{\mathbf{R}_{m}}{(\mathbf{R}_{c} - \mathbf{R}_{m})^{2}}$, \mathbf{B}_{m1} - максимум 1-ой гармоники, \mathbf{R}_{m} - точка максимума, \mathbf{R}_{c} - точка перегиба.

 β расчетах были приняты параметры $R_m = 3$ см, $R_c = 10$ см, $\psi_1 \equiv 10^\circ$, $B_{m1} = 10$ Гс, при которых получаемая зависимость $B_1(R)$ /см. рис.11/ была близка к измеренной на модели магнитной системы. На рис.11 показано развитие резонанса Q_R = 1 для различных значений B_{m1} и ΔB_m . Несмотря на то, что максимум 1-ой гармоники достигается в интервале R < 10 см, амплитуда А в почти не изменяется в этом районе. Этот эффект объясняется малым числом оборотов (≈49), которые частица совершает в этой области. Линейный рост А в зависимости от радиуса наблюдается в зоне 15 см < R < 30 см /≈140 оборотов/. Затем имеют место биения радиальных колебаний и выход частицы в зону установившейся амплитуды. Анализ распределений частиц по установившимся А _{R VCT} /рис.12/ показал, что несмотря на то, что большая часть частиц имеет амплитуду 1,0 < A $_{
m R}$ < 1,5 см, верхняя граница спектра частиц достигает А_{вмах} ≈ 3,5 см. Для того, чтобы не допустить дальнейшего увеличения А, необходимо ограничить величину 1-ой гармоники поля в зоне развития резонанса 20 см < R < 30 см допуском B, < 4 Гс.

Рис.12. Распределения частиц пучка по амплитудам свободных радиальных колебаний.

Увеличение дисперсии спектра частиц по A_R при наличии $B_1 \neq 0$ по сравнению с исходной объясняется различным числом оборотов, совершаемым частицами в зоне развития резонанса вследствие радиально-фазового движения ионов.

ЗАКЛЮЧЕНИЕ

В результате численного моделирования на основе созданной программы THOUR процесса инжекции пучка в установке "Ф" установлено:

а/ При токе отсоса из ионного источника 100 мА и выбранной геометрии центральной области /для полученной при макетировании частотной программы дуанта/ интенсивность пучка после первого фазового колебания может достигнуть значений 40-45 мкА /амплитуда ускоряющего напряжения - 45-50 кВ/. Указанная интенсивность может быть получена на предельном радиусе ускорения /270 см/ при отсутствии потерь из-за нарушения пространственной устойчивости или отклонения центра пучка /медианная плоскость/ в зоне радиусов /60-270 см/.

б/ Собственное электрическое поле пучка /даже при наличии пуллера/ начинает сказываться на величине заряда, захватываемого внутрь области, заключенной внутри сепаратрисы первого фазового колебания /масштаб эффекта - 30-35%/, однако основные потери пучка связаны с недостаточностью аксиальной фокусировки пучка в интервале радиусов /5÷15/ см. Увеличение жесткости фокусировки в этой зоне может дать увеличение интенсивности в 2÷3 раза.

в/ Получены допуски на структуру магнитного поля в зоне первого фазового колебания как по величине первой гармоники, так и по величине отклонения среднего поля от расчетного. Численные величины допусков могут изменяться в зависимости от характера отклонения среднего поля от расчетного, а также от изменения амплитуды гармоники в интервале радиусов первого фазового колебания. Разработанная программа позволит эффективно решать вопрос о допусках в центральной зоне на стадии шиммирования магнитного поля.

Авторы благодарят А.А.Глазова и Н.Г.Шакуна за многочисленные обсуждения результатов работы.

ЛИТЕРАТУРА

- 1. Глазов А.А. и др. ОИЯИ, 9-3211, Дубна, 1967.
- Dmitrievsky V.P. et al. V-th Int. Cycl. Conference, Oxford, 1969, p.717.
- 3. Замолодчиков Б.И. ОИЯИ, 9-6084, Дубна, 1971.
- 4. Замолодчиков Б.И., Новиков Д.Л., Шакун Н.Г. ОИЯИ, Р9-9284, Дубна, 1975.
- 5. Новиков Д.Л., Шакун Н.Г. ОИЯИ, 9-80-31, Дубна, 1980.
- 6. Глазов А.А., Шакун Н.Г. ОИЯИ, 9-11224, Дубна, 1978.
- 7. Thouroude D. MSC/PR/3995, 1975.
- 8. Замолодчиков Б.И. ОИЯИ, 9-6084, Дубна, 1971.
- Дмитриевский В.П., Прилипко Т.М., Рыбалко В.С. ОИЯИ, Р9-3434-1, Дубна, 1967.
- 10. Аленицкий Ю.Г., Ворожцов С.Б., Заплатин Н.Л. ОИЯИ, Р9-5590, Дубна, 1971.
- 11. Ворожцов С.Б., Дмитриевский В.П., Заплатин Н.Л. «ОИЯИ, Р9-12882, Дубна, 1979.

12. Ворожцов С.Б. и др. ОИЯИ, Р9-7954, Дубна, 1974.

 Боголюбов Н.Н., Митропольский Ю.А. Асимптотические методы в теории нелинейных колебаний. "Наука", М., 1974.

> Рукопись поступила в издательский отдел 11 июня 1980 года.