C 3 450 JUC-696 СООБЩЕНИЯ объединенного ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ Дубна 2698

И И И И И И

числительн

PPN9

PAT

1972

Е.П.Жидков, Е.М.Кулакова, Р.В.Полякова,

- 6430

9

Л.А.Смирнова, Б.В.Василишин

ПРИМЕНЕНИЕ НЕПРЕРЫВНОГО АНАЛОГА МЕТОДА НЬЮТОНА ДЛЯ РАСЧЕТА ПОВОРОТНО-ФОКУСИРУЮЩИХ СИСТЕМ ТРАНСПОРТИРОВКИ Е.П.Жидков, Е.М.Кулакова, Р.В.Полякова,

Л.А.Смирнова, Б.В.Василишин

ПРИМЕНЕНИЕ НЕПРЕРЫВНОГО АНАЛОГА МЕТОДА НЬЮТОНА ДЛЯ РАСЧЕТА ПОВОРОТНО-ФОКУСИРУЮЩИХ СИСТЕМ ТРАНСТЮРТИРОВКИ

9 - 6430

1. Введение

При транспортировке пучков заряженных частиц в некоторых случаях необходимо использовать поворотные магниты с градиентной фокусировкой, как это сделано, например, в системе транспортировки протонов при быстром выводе первичного пучка на синхрофазотроне ЛВЭ.

Поскольку градиент поля таких магнитов достаточно велик ($n = \frac{dB}{dR} \frac{R}{B} = -140$), направление пучка на выходе системы существенно зависит не только от индукции в магнитах, но и от их положения в пространстве. Выбор параметров и положения элементов такой системы в пространстве может быть выполнен только на ЭВМ с учётом реальных характеристик используемых магнитов. В связи с этим был составлен ряд программ решения задачи Коши методом Рунге-Кутта для расчёта траекторий отдельных частиц^{/1,8/}. После расчёта совокупности траекторий результаты визуально анализировались, изменялись параметры системы, и вычисления повторялись до получения требуемых характеристик пучка. Из-за трудоемкости подобных расчётов возник вопрос о выборе нового решения задачи.

В настоящей работе описано применение непрерывного аналога метода Ньютона для выбора индукций в магнитах и расстановки их на трассе вывода.

2. Описание задачи

Ниже дано краткое описание первой ступени системы транспортировки быстрого вывода, приведены характеристики полей магнитов, полученные на основании магнитных измерений, физическая, математическая постановка задачи и метод расчёта, а также обоснован выбор системы координат.

2.1. Система транспортировки

В первую ступень внешней транспортировки при быстром выводе входят два пов оротных магнита, фокусирующих пучок в горизонтальной плоскости. Магниты расположены в прямолинейном промежутке в конце *III* квадранта ускорителя (рис. 1). Первый магнит отстоит на 100см от конца *III* квадранта. Увеличивать это расстояние нежелательно, поскольку выходящий пучок имеет большую угловую расходимость в горизонтальной плоскости. Расстояние между поворотными магнитами может меняться (минимальный предел – 17 см). Магниты имеют юстировочные приспособления, которые позволяют менять их положение и наклон в пространстве. Индукция в магнитах зависит от изменения величин токов в их обмотках; при этом показатель поля "*n*" остается неизменным.

2.2. Система координат

Основная прямоугольная система координат (X, Y, Z) привязана к четвертому прямолинейному промежутку ускорителя (рис. 2). Ось "Х"направлена параллельно продольной оси промежутка и находится от нее на расстоянии 100 см. Кроме основной системы координат, используются две прямоугольные системы координат (X_1, Y_1, Z_1) и (X_2, Y_2, Z_2) , связанные с 1-м и 2-м магнитами соответственно, с центрами координат в точках O_1 и O_2 . Точка O_1 имеет координаты d_1 , ℓ_1 , z_1 . Точка O_2 - соответственно d_2 , ℓ_2 , z_2 . Системы координат магнитов развернуты на углы γ_1 , γ_2 относительно оси "Z", $\gamma_1 \downarrow \gamma_2 \downarrow$ - относительно оси "Y", β_1 , β_2 - относительно оси "X".

2.3. Описание магнитного поля

Поле в магнитах описано двумерными таблицами, составленными на основании магнитных измерений. Были измерены компоненты поля B_z(X,Y,Z) в магнитных медианных плоскостях обоих магнитов в относительных единицах.

На рис. З для иллюстрации приведено распределение вертикальной компоненты поля в прямоугольной системе координат магнита при X =36, 46 и 52 см. Распределение горизонтальной компоненты поля для

Y =4,18 см и Y =32 см показано на рис. 4. Из этих графиков видно, что магнитное поле по "X" от X =52 см до X =180,4 см постоянно. Несмотря на это, табличное описание полей магнитов необходимо вследствие сложности закона их распределения на концах магнитов. Для получения магнитного поля в гауссах необходимо заданное распределение полей умножать на напряженности B_1 для первого магнита и B_2 для второго магнита.

Компоненты магнитного поля в пространстве определяются по формулам

$$B_{z}(x, y, z) = B_{z}(x, y, 0) - \frac{z^{2}}{2} \left(\frac{\partial^{2} B_{z}(x, y, 0)}{\partial x^{2}} + \frac{\partial^{2} B_{z}(x, y, 0)}{\partial y^{2}} \right)$$

- (1)

$$B_{x}(x,y,z) = \frac{\partial B_{z}(x,y,0)}{\partial x} z ,$$

$$B_{y}(x, y, z) = - \frac{\partial B_{z}(x, y, 0)}{\partial y} z$$

Эти формулы получены на основании разложения $B_z(x, y, z)$ в окрестности точки (X,Y,0) в ряд Тейлора с учётом

$$\frac{\partial^2 B_z}{\partial x^2} + \frac{\partial^2 B_z}{\partial v^2} + \frac{\partial^2 B_z}{\partial z^2} = 0 \quad \text{M} \quad r \text{ ot } \overline{B} = 0$$

с точностью до членов второго порядка.

2.4. Физическая постановка задачи

Физическая задача ставится следующим образом.

Задаются направление и координаты пучка заряженных частиц на входе системы $(a_0, a_{01}, X_0, Y_0, Z_0)$.

 $\begin{pmatrix} X_0 \\ Y_0 \\ Z_0 \end{pmatrix}$ - координаты начальной точки траектории в прямоугольной системе координат ускорителя. a_0 - угол в радианах между касательной к проекции траектории в точке X_0 , Y_0 , Z_0 на плоскость "ХУ"и осью "Х". a_0_1 - угол в радианах между касательной к проекции траектории на плоскость "ХZ" в точке X_0 , Y_0 , Z_0 и осью "Х". Требуется выбрать напряженности магнитных полей B_1 , B_2 и положение магнитов в пространстве так, чтобы по заданному начальному положению и направлению пучка получить его заданное конечное положение и направление,

X_k Y_k Z_k - в прямоугольной системе координат ускорителя

а_k - угол в радианах между касательной к проекции траектории в точке
 X_k, Y_k , Z_k на плоскость "ХҮ"и осью "Х".
 а_k - угол в радианах между касательной к проекции траектории в точке

 X_k, Y_k, Z_k на плоскость "XZ" и осью "X".

Положение магнитов в пространстве определяется следующими величинами:

 $\begin{pmatrix} d_1 \\ d_2 \end{pmatrix}$ - смещение магнитов от оси "X". $\begin{pmatrix} l_1 \\ l_2 \end{pmatrix}$ - расстояние центров систем координат магнитов 0_1 , 0_2 от оси" Y".

^γ₁ ^γ₂ (рис. 2). $\begin{pmatrix} y_{1} \\ y_{2} \\ z \end{pmatrix}$ вертикальные углы разворота магнитов относительно оси "Y" (рис. 2).

 $\begin{pmatrix} \beta_1 \\ \beta_2 \\ \end{pmatrix}$ - вертикальные углы разворота магнитов относительно оси "X" (рис. 2).

2.5. Математическая постановка задачи

Движение заряженных частиц в магнитном поле описано полными уравнениями в прямоугольной системе координат ускорителя^{/9/}:

$$\frac{d^2 y}{dx^2} = \frac{A}{B_0 R_0} \left[\frac{dz}{dx} \frac{dB_z}{dx} z - \left(\frac{dy}{dx}\right)^2 B_z + \frac{dy}{dx} \frac{dz}{dx} \frac{dB_z}{dy} z - B_z \right],$$

$$\frac{d^2 z}{dx^2} = \frac{A}{B_0 R_0} \left[\frac{dB_z}{dy} z - \frac{dy}{dx} \frac{dB_z}{dx} z + \left(\frac{dz}{dx}\right)^2 \frac{dB_z}{dy} z - \frac{dy}{dx} \frac{dz}{dy} Bz \right],$$
(2)

где B₀ R₀ - магнитная жесткость протона. Запишем уравнение (2) в виде

$$y_{xx}'' = \frac{A}{C} \left(z_{x}' \frac{dB_{z}}{dx} z - B_{z} - y_{x}'^{2} B_{z} + y_{x}' z_{x}' z \frac{dB_{z}}{dy} \right) ,$$
(3)

$$z_{xx}'' = \frac{A}{C} \left(z \frac{dB_z}{dy} - z y_x' \frac{dB_z}{dx} + z \frac{dB_z}{dy} z_x'^2 y_x' z_x' B_z \right)$$

где $A = \sqrt{1 + y'_{x}^{2} + z'_{x}^{2}}$, С - константа. Запишем краевые условия:

> $y(x_0) = y_0$, $y'_x(x_0) = tga_0$, $z(x_0) = z_0$, $z'_x(x_0) = tga_0 \downarrow$,

 $y(x_k) = y_k = a , \qquad y'_x(x_k) = tga_k = c ,$ $z(x_k) = z_k = b , \qquad z'_x(x_k) = tga_k \perp = d ,$

Здесь x_0 , y_0 , z_0 , a_0 , $a_{0\perp}$, x_k , y_k , z_k , a_k , $a_{k\perp}$ - заданные величины (см. п. 2.4).

Необходимо подобрать параметры d_1 , ℓ_1 , γ_1 , $\gamma_1 \perp$, $\beta_1 \perp$, $\beta_1 \perp$, d_2 , ℓ_2 , γ_2 , $\gamma_2 \downarrow$, β_1 , $\beta_1 \downarrow$ (см. п. 2.4) так, чтобы траектория движения заряженных частиц удовлетворяла уравнениям (3) и заданным краевым условиям. Заданных краевых условий недостаточно для определения всех искомых параметров, поэтому из всех названных параметров будем варьировать только четыре параметра, которые существенно влияют на поведение траектории движения заряженных частиц. Из физических соображений ясно, что горизонтальная ось пучка существенно реагирует на изменение B_1 , B_2 , d_1 , d_2 , γ_1 , γ_2 . Можно выбирать любые сочетания по четыре параметра. Желательно, чтобы в эти сочетания входили В 1 и В2, поскольку их легче всего изменить на практике. На положение вертикальной оси пучка в основном влияют углы наклона магнитов β_1 , β_2 , $\beta_1 \downarrow$, $\beta_2 \downarrow$. Ввиду того, что таблицы магнитного поля заданы в прямоугольной системе координат соответствующего магнита, а интегрирование движения частиц ведется в прямоугольной системе координат ускорителя, то для нахождения В. (Х, У, 0) в соответствующих точках необходимо координаты данной точки Х, У, 2 пересчитать по формулам преобразования из прямоугольной системы координат ускорителя в прямоугольную систему координат соответствующего магнита:

$$\begin{aligned} x_{i} &= (x - \ell_{i}) \left(\cos \gamma_{i} \cos \gamma_{i\perp} - \sin \gamma_{i} \sin \beta_{i} \sin \gamma_{i\perp} \right) + \\ (y - d_{i}) \left(\sin \gamma_{i} \cos \gamma_{i\perp} + \sin \gamma_{i\perp} \sin \beta_{i} \cos \gamma_{i} \right) - \\ (z - d_{i\perp}) \sin \gamma_{i\perp} \cos \beta_{i} , \\ y_{i} &= - (x - \ell_{i}) \sin \gamma_{i} \cos \beta_{i} + (y - d_{i}) \cos \beta_{i} \cos \gamma_{i} + \\ (z - d_{i\perp}) \sin \beta_{i} , \\ z_{i} &= (x - \ell_{i}) (\cos \gamma_{i} \sin \gamma_{i\perp} + \sin \gamma_{i} \sin \beta_{i} \cos \gamma_{i\perp}) + \\ (y - d_{i}) (\sin \gamma_{i} \sin \gamma_{i\perp} - \sin \beta_{i} \cos \gamma_{i\perp}) + \\ (z - d_{i\perp}) \cos \beta_{i} \cos \gamma_{i\perp} . \end{aligned}$$

$$(4)$$

٦

2.6. Описание метода решения задачи

Систему уравнений (3) 2-го порядка сведем к системе уравнений 1-го порядка заменой

$$y'_{x} = y_{1} ,$$

$$z'_{x} = z_{1} ,$$

$$y'_{1x} = \frac{\sqrt{1 + y_{1}^{2} + z_{1}^{2}}}{C} \left(z_{1} \frac{dB_{z}}{dx} z - B_{z} - y_{1}^{2} B_{z} + y_{1} z_{1} z \frac{dB_{z}}{dy} \right) ,$$

$$z'_{1x} = \frac{\sqrt{1 + y_{1}^{2} + z_{1}^{2}}}{C} \left(z \frac{dB_{z}}{dy} - z y_{1} \frac{dB_{z}}{dx} + z \frac{dB_{z}}{dy} z_{1}^{2} - y_{1} z_{1} B_{z} \right) ,$$

$$y'_{x} = y_{1} ,$$

$$z'_{x} = z_{1} .$$

$$y(x_{0}) = y_{0} , \qquad y_{1}(x_{0}) = y'_{x}(x_{0}) = tga_{0} ,$$

$$z(x_{0}) = z_{0} , \qquad z_{1}(x_{0}) = z'_{x}(x_{0}) = tga_{0} + ,$$

$$y(x_{k}) = a , \qquad y_{1}(x_{k}) = c ,$$

$$z(x_{k}) = b , \qquad z_{1}(x_{k}) = d .$$
(5)

Необходимо подобрать параметры магнитов так, чтобы

Таким образом,

$$y_{k} - a = f_{1} = 0 ,$$

$$y_{k} - b = f_{2} = 0 ,$$

$$z_{k} - c = f_{3} = 0 ,$$

$$z_{k}' - d = f_{4} = 0 .$$

(6)

Эту систему будем решать методом введения параметра t /5,6/, считая, что величины B_1 , d_1 , γ_1 и т.д. есть функции от t, т.е.

(7)

$$B_{1} = B_{1}(t)$$
, $d_{1} = d_{1}(t)$ и т.д.

На основании данного метода имеем:

$$\frac{\partial}{\partial t} f_1 = -f_1 ,$$

$$\frac{\partial}{\partial t} f_2 = -f_2 ,$$

$$\frac{\partial}{\partial t} f_3 = -f_3 ,$$

$$\frac{\partial}{\partial t} f_4 = -f_4 .$$

Обозначим искомые параметры через

$$p_{1}(t), p_{2}(t), p_{3}(t), p_{4}(t).$$

Тогда система уравнений (7) для этих параметров будет:

$$y_{k p_{1}'} p_{1t}' + y_{k p_{2}'} p_{2t}' + y_{k p_{3}'} p_{3t}' + y_{k p_{4}'} p_{4t}' = -(y_{k} - a),$$

$$y_{k}' p_{1}' p_{1t}' + y_{k p_{2}'}' p_{2t}' + y_{k p_{3}'}' p_{3t}' + y_{k}' p_{4}' p_{4t}' = -(y_{k}' - b),$$

$$z_{k p_{1}'} p_{1t}' + z_{k p_{2}'} p_{2t}' + z_{k p_{3}'}' p_{3t}' + z_{k p_{4}'}' p_{4t}' = -(z_{k} - c),$$

$$z_{k p_{1}'}' p_{1t}' + z_{k p_{2}'}' p_{2t}' + z_{k p_{3}'}' p_{3t}' + z_{k p_{4}'}' p_{4t}' = -(z_{k}' - c).$$

$$(8)$$

Из этой системы определяем производные

$$p_{1t}$$
, p_{2t} , p_{3t} , p_{4t}
Затем по формуле

$$p'_{it} = \frac{p_i(t + \Delta t) - p_i(t)}{\Delta t}$$

где Δt - шаг по переменной t , получаем значение параметров p_i на следующем шаге по t :

$$p_{1}(t + \Delta t) = p_{1}(t) + p_{1t}' \Delta t ,$$

$$p_{2}(t + \Delta t) = p_{2}(t) + p_{2t}' \Delta t ,$$

$$p_{3}(t + \Delta t) = p_{3}(t) + p_{3t}' \Delta t ,$$

$$p_{4}(t + \Delta t) = p_{4}(t) + p_{4t}' \Delta t .$$

Значения $p_1(t_0)$, $p_2(t_0)$, $p_3(t_0)$, $p_4(t_0)$ – заданы (начальное приближение).

Чтобы построить систему уравнений (8), необходимо определить

(9)

(11)

$$y_{kp_i}$$
, y'_{kp_i} , z_{kp_i} , z'_{kp_i}

Для этого решаем следующие задачи Коши для системы уравнений (5).

1. Задача Коши для набора параметров p_1 , p_2 , p_3 , p_4 . Решив эту задачу, получаем

$$y_{k}(p_{1},p_{2},p_{3},p_{4}), \quad y_{k}'(p_{1},p_{2},p_{3},p_{4}),$$

$$z_{k}(p_{1},p_{2},p_{3},p_{4}), \quad z_{k}'(p_{1},p_{2},p_{3},p_{4}).$$
(10)

2. Задача Коши для набора параметров $p_1 + \Delta p_1$, p_2 , p_3 , p_4 , где Δp_1 — шаг приращения по соответствующему параметру.

Получаем:

$$\begin{aligned} \mathbf{y}_{k} & \left(p_{1} + \Delta p_{1} , p_{2} , p_{3} , p_{4} \right) , \\ \mathbf{z}_{k} & \left(p_{1} + \Delta p_{1} , p_{3} , p_{3} , p_{4} \right) , \\ \mathbf{y}_{k}^{\prime} & \left(p_{1} + \Delta p_{1} , p_{2} , p_{3} , p_{4} \right) , \\ \mathbf{z}_{k}^{\prime} & \left(p_{1} + \Delta p_{1} , p_{2} , p_{3} , p_{4} \right) . \end{aligned}$$

Из (10) и (11) можно определить

$$y'_{kp'_{1}} = \frac{y_{k}(p_{1} + \Delta p_{1}, p_{2}, p_{3}, p_{4}) - y_{k}(p_{1}, p_{2}, p_{3}, p_{4})}{\Delta p_{1}},$$

$$y'_{kp'_{1}} = \frac{y'_{k}(p_{1} + \Delta p_{1}, p_{2}, p_{3}, p_{4}) - y'_{k}(p_{1}, p_{2}, p_{3}, p_{4})}{\Delta p_{1}}$$

Аналогично определяем z_{kp_1} , z'_{kp_1} . Давая прирашения по остальным параметрам и решив задачи Коши для соответствующих наборов параметров, определим значения производных от y_k , y'_k , z_k , z'_k по всем параметрам. Так выполняется один шаг интегрирования по переменной t. Следующий шаг выполняется с новыми значениями искомых параметров, найденных по формуле (9).

Таким образом, нахождение искомых параметров производится методом итераций и может быть осуществлено с заданной точностью.

3. Результаты счёта

Чтобы проиллюстрировать возможности данного метода, был рассчитан набор параметров системы транспортировки, который удовлетворял заданным краевым условиям.

Основное внимание уделялось оценке характеристик системы, которые влияют на положение горизонтальной оси пучка. Были взяты следующие краевые условия:

y ₀ = 52,2867 см;	$y_k = 143,332781;$
z ₀ = 1 см;	$z_k = 1,651821;$
а ₀ = 0,140193942 (рад);	$a_{k} = 0,259687;$
$a_{0\perp} = 0$	$a_{k\perp} = 0,00350186;$

В качестве варьируемых параметров взяты B_1 , B_2 , d_1 , d_2 . Фиксируемые параметры ℓ_1 , γ_1 , β_1 , $\gamma_1 \perp$, ℓ_2 , γ_2 , $\gamma_2 \perp$, β_2 равны:

х/При такой точности подбора угла ось пучка на расстоянии 10 см смещается на 1 см. 12

Углы у₁ и у₂ выбраны таким образом, чтобы максимально использовать апертуру магнитов.

Начальные значения варьируемых параметров были равны:

 $B_{10} = -90$ rc, $B_{20} = -90$ rc, $a_{10} = 55$ cm, $a_{20} = 77$ cm.

При дифференцировании f_1 , f_2 , f_3 , f_4 шаги по независимым переменным B_1 , B_2 , d_1 , d_2 были взяты равными $\Delta B_1 = -1$ гс, $\Delta B_2 = -1$ гс, $\Delta d_1 = -2$ см, $\Delta d_2 = 2$ см.

Шаг Δ t по независимой переменной t был равен 1.

В результате расчётов получены следующие параметры системы:

 $B_1 = -96,25$ rc; $B_2 = -101,75$ rc; $d_1 = 53,18$ cm; $d_2 = 83,52$ cm.

Для проверки правильности полученных результатов для найденных значений B_1 , B_2 , d_1 , d_2 была решена задача Коши. Сравнение результатов показало их совпадение с требуемой точностью. Таким образом, рассчитанная система обеспечивает выход пучка на данную ось В случае необходимости другой набор этих же параметров может быть получен при изменении их начальных значений и величины ϵ . Рассчитывая величины B_1 , B_2 , d_1 , d_2 , ограничиваются заданием их верхних и нижних преде-

лов, определяемых на основании практических соображений.

В процессе решения настоящей задачи непрерывным аналог-методом можно сразу оценить необходимую точность установки магнитов. В табл. 1 приведены координаты и углы пучка на выходе системы в зависимости от изменения выбранных переменных B_1 , B_2 , d_1 , d_2 . Результаты даны при X = 408 см.

Как видно из этих данных, изменение *В*₁ и *В*₂ на 1% изменяет горизонтальное направление пучка на 0,0004 рад и практически не меняет вертикальное. Изменение d_1 и d_2 на 2 см изменяет угол а на 0,004 мрад и a_1 на 0,0001 мрад, что на расстоянии 20 м сдвинет пучок на 8 см. Таким образом, точность установки магнитов для данного ϵ должна быть ~ 0,25 см. Аналогичная таблица была получена при вариации B_1 , B_2 , y_1 , y_2 . Результаты даны при X =468 см.

Изменение γ_1 и γ_2 на 0,005 рад вызывает изменение горизонтального угла на ~ 0,0008 рад и вертикального угла на ~ 0,0002 рад, что не оказывает существенного влияния на ось пучка, т.е. при установке магнитов точность $\Delta \gamma = 0,005$ для величин γ_1 и γ_2 достаточна.

4. Выводы

1. Развитый метод оказался эффективным для решения описанной задачи и позволяет подобрать параметры и произвести расстановку элементов системы по заданным начальному и конечному положениям и направлениям пучка в пространстве и одновременно с этим оценить влияние допусков на установку магнитов в прямолинейном промежутке синхрофазотрона.

2. Решена конкретная задача, относящаяся к синхрофазотрону ОИЯИ. Найдены параметры системы и произведена оценка допусков на точность установки элементов.

3. Дальнейшим развитием данной методики применительно к расчёту описываемых систем транспортировки может быть:

а. Включение в систему транспортировки магнитных квадрупольных линз, которые позволят сфокусировать пучок в горизонтальной и вертикальной плоскостях; в этом случае будет производиться оптимальный выбор характеристик системы с учётом не только направления, но и размеров "пятна" пучка;

б. Введение контроля за размером пучка внутри магнитов во избежание его потерь на обмотке и магнитопроводе.

Литература

- 1. Е.М. Кулакова, К.П. Мызников, Л.А. Смирнова, Б.В. Фесктистов. Препринт ОИЯИ, Р-2880, Дубна, 1966.
- Б.В. Василишин, И.Б. Иссинский, Е.М. Кулакова. Сообщение ОИЯИ, 9-4385, Дубна, 1969.

- П. Либл, Л.М. Панченко, Л.А. Смирнова. Препринт ОИЯИ, 2911, Дубна, 1966.
- Б.В. Василишин, Л.П. Зиновьев, И.Б. Иссинский, Е.М. Кулакова, В.А. Михайлов, Н.И. Павлов. Депонированное сообщение ОИЯИ, Б1-9-5411, Дубна, 1970.
- 5. Е.П. Жидков, Т.В. Рыльцева, Б.В. Феоктистов. ЖВМ и МФ АН СССР, 10, №5, 1199 (1970).
- 6. Е.П. Жидков, И.В. Пузынин. ЖВМ и МФ АН СССР, 7. №5, 1086 (1967).
- И.Б. Иссинский, Т.П. Кочкина, Е.М. Кулакова, Л.А. Смирнова. Депонированное сообщение ОИЯИ, Б2-9-6077, Дубна, 1971.
- Е.М. Кулакова, Л.А. Смирнова. Депонированное сообщение ОИЯИ, Б2-1836, Дубна, 1963.

Рукопись поступила в издательский отдел 29 апреля 1972 года.

таолида т.	Tac	лица	Ί.
------------	-----	------	----

d,	dz	B,	B2	y	tgd
55	77	-100	- 99	I43 , 4899	0,2573
55	77	- 99	- 99	I43 , 3I4	0,2569
55	77	- 99	-100	143,364	0,2573
77 .	77	- 99	- 99	I44 , 373	0,2610
77	79	- 99	- 99	I43 , 653	0,260

Таблица П.

X.	Je.	·B1	B2	Z	tgds	y	tgd
0 , I69	0,129	-100	-100	I , 6764	0,003616	143,866	0,258 58
0, 159	0,209	-100	-100	I , 715	0 , 003809	143 , 192	0 , 25513
0, 164	0,209	-100	-100	I , 69704	0 , 00373	143 , 437	0,2558
0 , I59	0 , 2I4	-100	-100	I , 7I4	0 , 00379	143 , 287	0,266

Рис. 1. Расположение системы транспортировки относительно синхрофазотрона: *I*, *II*, *III*, *IV* - квадранты ускорителя; 1, 2, 3, 4 - прямолинейные секции.

Рис. 2. Системы координат, принятые при расчётах: XY – основная прямоугольиая система координат; X_1 , Y_1 и X_2 , Y_2 – системы координат 1-го и 2-го магнитов.

Рис. 3. Распределение вертикальной компоненты поля магнитов B_z по оси Y для X =36; 46 и 52 - кривые 1, 2 и 3 соответственно.

Рис. 4. Распределение вертикальной компоненты поля магнитов B_z по оси X для y = 4; 18 и 32 см - кривые 1, 2 и 3 соответственно.