5-817 объединенный институт ЯДЕРНЫХ ИССЛЕДОВАНИЙ Дубна. 2633

2/1-71

P9 - 5857

А.Г. Бонч-Осмоловский, Ю.С. Суровцев

О СТАЦИОНАРНОМ СОСТОЯНИИ Заряженного самофокусирующегося пучка с большим током

1971

ОТДЕЛ НОВЫХ МЕТОДОВ УСКОРЕНИЯ

P9 - 5857

А.Г. Бонч-Осмоловский, Ю.С. Суровцев

О СТАЦИОНАРНОМ СОСТОЯНИИ Заряженного самофокусирующегося пучка с большим током

Направлено в ЖТФ

1. Со времени опубликования работы Беннета^{/1/} много внимания уделялось проблеме так называемого линейного пинча, т.е. самофокусирующегося релятивистского электронно-ионного пучка с весьма большим током. Упомянем здесь лишь наиболее важные работы. Альвфена^{/2/}, Будкера^{/3/}, Линхарта^{/4/} и более поздние Яркового^{/5/}, Хаммера и Ростокера

Интерес к этим образованиям особенно возрос в последнее время в связи с экспериментами с сильноточными электронно-ионными пучками.

В перечисленных выше работах были предложены или обсуждались различные модели стационарных состояний самофокусирующихся пучков, причем общей чертой для них (за исключением $^{/5/}$) является несамосогласованное рассмотрение ионного компонента в виде некоторого компенсирующего неподвижного фона. Это приводит фактически к ограничению самосогласованных решений классом "подобных" распределений, когда $n_i = fn_{\bullet}$, где f – некоторая постоянная, не зависящая от координат, n_i и n_{\bullet} – плотности соответственно ионного и электронного компонентов пучка.

Такой подход представляется оправданным, если речь идет о характерных временах существования стационарных состояний, меньших периода ионных колебаний в образующейся в пучке потенциальной яме для ионов, или о квазинейтральных состояниях. Между тем, период колебаний ионов

$$T_{i} \approx \frac{a}{c} \sqrt{\frac{m_{i}}{m_{o}\nu_{o}(1-f)}},$$

где **а**-поперечный размер пучка, $\nu_o = \frac{e^2}{m_0 e^2} n_o$ – погонный электрон, при $\nu_o \ge 1$ и f < 1 T_i составляет 10^{-8} – 10^{-9} сек, что значительно меньше времен существования, представляющих практический интерес. Поэтому, следуя модели, предложенной Ярковым^{/5/} (рассмотренной им подробно при $\nu_o \ll 1$), мы изучим ниже некоторые свойства заряженных пучков при учёте колебаний ионов в рамках задачи с самосогласованным полем.

2. Пусть в системе координат r, θ, z , существует электронноионный пучок, однородный по z и θ с произвольным пока числом частиц на единицу длины. Найдем самосогласованные поля, т.е. будем искать совместные решения уравнений Максвелла и кинетического бесстолкновительного уравнения. Решение последнего является произвольной интегрируемой по импульсам функцией от интегралов движения: гамильтониана H, момента обобщенного азимутального импульса M_{θ} и обобщенного импульса P_{z} . Эту функцию мы выберем в виде⁽⁵⁾ (для простоты положим $m_{z} = c = e = 1$):

$$f_{o,i} = \frac{\kappa_{o,i}^2}{8\pi^2} \,\delta(\boldsymbol{H}^{(o,i)} - \boldsymbol{H}_{o,i}) \delta(\boldsymbol{P}_x^{(o,i)} - \boldsymbol{P}_{xo,i}). \tag{1}$$

Будем рассматривать лишь поля, создаваемые пучком { \vec{A} } = (0,0, A ,). Гамильтониан частицы в самосогласованном поле имеет вид

$$H^{(o,1)} = \sqrt{m_{o,1}^{2} + P_{r}^{2} + \frac{1}{r^{2}}} M_{\theta}^{2} + (P_{z}^{(o,1)} \pm A_{z})^{2} + \phi, \qquad (2)$$

здесь значки "• " и "і " относятся соответственно к электрону и иону:

$$P_r = P_r$$
, $\frac{1}{r} M_{\theta} = P_{\theta}$, $P_x^{(o,r)} = P_x + A_x$,
где P_r , P_{θ} , P_x - компоненты импульса частицы

Самосогласованные потенциалы ϕ и **A**_z удовлетворяют уравне-

$$\Delta \phi = -4\pi (\rho_{\bullet} + \rho_{i}), \qquad (3)$$

$$\Delta A_{x} = -4\pi (i_{x\bullet} + i_{xi}),$$

где плотности заряда и тока определяются формулами

$$\begin{split} \rho_{\bullet,l} &= \frac{1}{r} \int f_{\bullet,l} \frac{1}{r} dM_{\theta} dP_{r} dP_{z}^{(\bullet,l)} , \\ i_{z\bullet,l} &= \frac{1}{r} \int v_{z}^{(\bullet,l)} f_{\bullet,l} \frac{1}{r} dM_{\theta} dP_{r} dP_{z}^{(\bullet,l)} , \\ v_{z} - z &= \kappa \text{ компонента скорости частицы. После интегрирования имеем:} \\ \rho_{\bullet,l} &= \frac{\kappa_{\bullet,l}^{2}}{4\pi} \left(H_{\bullet,l} + \phi\right) \sigma \left[\left(H_{\bullet,l} + \phi\right)^{2} - \left(P_{z\bullet,l} + A_{z}\right)^{2} - m_{\bullet,l}^{2}\right], \end{split}$$

$$i_{\bullet,i} = -\frac{\kappa_{\bullet,i}^2}{4\pi} \left(P_{z\bullet,i} \pm A_z \right) \sigma \left[\left(H_{\bullet,i} \pm \phi \right)^2 - \left(P_{z\bullet,i} \pm A_z \right)^2 - m_{\bullet,i}^2 \right].$$
(4)

В дальнейшем будем исследовать частное решение (3)-(4) с совпадающими границами электронного и ионного компонентов пучка.

Введем среднеквадратичный разброс поперечного импульса электронов $p_{\perp}^2 = p_r^2 + p_{\theta}^2$ ($x = \frac{r}{a}$): $\epsilon_{\bullet}^2(x) = \langle (p_{\perp} - \langle p_{\perp} \rangle)^2 \rangle = \langle p_{\perp}^2 \rangle = [H_{\bullet} + \phi(x)]^2 - [P_{x\bullet} + A_x(x)]^2 - 1.$ (5)

Аналогичное выражение можно написать для ионов.

На границе пучка (см. (4)) разброс поперечного импульса равен нулю; это обстоятельство связывает величины интегралов движения H, H, P_x, P_x, Octaвляя произвольными два из них, например, H, и H, .Таким образом, состояние пучка определяется набором параметров ν_{\bullet} , f, H, .H, .

Кроме этого, в дальнейшем будем рассматривать и другой набор параметров ν_{\bullet} , f , γ_{max} , H_I, где $\gamma_{max} = (H_{\bullet} + \phi)_{max}$ определяет максимальную кинетическую энергию электронов в пучке, равную работе поля, затраченной при создании пучка.

Пределы изменения степени нейтрализации **f** установим из условия существования стационарного состояния, которое определяется требованием, чтобы сила Лоренца, действующая на частицы на границе пучка, была направлена внутрь последнего:

$$F_{x}^{\bullet,i}(x)|_{x=1} = \frac{1}{2[H_{\bullet,i} \pm \phi(x)]} \frac{d}{dx} \epsilon_{\bullet,i}^{2}(x)|_{x=1} \leq 0.$$
(6)

3. Анализ уравнений Максвелла совместно с выражениями для плотностей заряда и тока (4) показывает, что существует 2 класса возможчых решений для потенциалов и, соответственно, два типа стационарного состояния пучка в зависимости от того, обращается (²(x) (см. (5)) в нуль во внутренней области пучка или нет. Эти две возможности мы рассмотрим отдельно.

Сплошной пучок

Будем предполагать, что $\epsilon^2(x) \neq 0$ при x < 1. Тогда решения для потенциалов поля имеют вид:

$$\phi(x) = \frac{\kappa_{\bullet}^{2} H_{\bullet} - \kappa_{i}^{2} H_{i}}{\kappa_{\bullet}^{2} + \kappa_{i}^{2}} [I_{0}(\lambda x) - 1], \qquad (8)$$

$$A_{x}(x) = \frac{\kappa_{\bullet}^{2} P_{x\bullet} - \kappa_{I}^{2} P_{xI}}{\kappa_{\bullet}^{2} + \kappa_{I}^{2}} [I_{0}(\lambda x) - 1], \qquad (9)$$

где $\lambda^2 = a^2 (\kappa_0^2 + \kappa_1^2)$, $x = \frac{r}{a}$. Считая заданными линейные плотности, получаем уравнения для определения $\kappa_0^2 = \kappa_1^2$;

$$\nu_{\bullet} \kappa_{i}^{2} + \nu_{i} \kappa_{\bullet}^{2} = a^{2} \kappa_{\bullet}^{2} \kappa_{i}^{2} \frac{H_{\bullet} + H_{i}}{4}, \qquad (10)$$

$$\nu_{\bullet} - \nu_{I} = \frac{a^{2}}{2} \left(\kappa_{\bullet}^{2} H_{\bullet} - \kappa_{I}^{2} H_{I}\right) \frac{I_{I}(\lambda)}{\lambda} \qquad (11)$$

Дальнейший анализ проведем при следующих предположениях:

a) $H_{i} \gg H_{\bullet}, H_{i} \gg \phi$. (12)

Тогда нетрудно показать, что $\kappa_{\bullet}^2 \gg \kappa_{I}^2$, $f \gg \frac{\kappa_{I}^2}{\kappa_{\bullet}^2}$.

$$6) \quad P_{x*} \gg \frac{\kappa_1^2}{\kappa_2^2} P_{x!}.$$

Это предположение при учёте а) означает, что ионный ток пренебрежимо мал по сравнению с электронным. Тогда для полного тока пучка, пользуясь формулами (4) и (9), получаем:

$$J = \frac{1}{2} P_{x*} \lambda I_1(\lambda) .$$
 (13)

(Здесь единица измерения тока равна $\frac{mc^3}{e} = 17000 a$). Уравнения (10) и (11) упрощаются:

$$\nu_{i} \approx a^{2} \kappa_{i}^{2} \frac{H_{i}}{4} , \qquad (14)$$

$$\lambda^{2} = \frac{2\nu_{\bullet}}{H_{\bullet}} \left[2f + (1-f) \frac{\lambda}{I_{i}(\lambda)} \right].$$

Верхний предел нейтрализации определяется условием обращения в нуль силы, действующей на ионы на границе пучка. Оказывается, что для нерелятивистских ионов (*H*₁-*m*₁<<*m*₁) и ν₂>>1:

$$f_{max} \approx 1 + 0 \left(\frac{H_{\bullet}}{H_{I}} \sqrt{\frac{H_{\bullet}}{\nu_{\bullet}}} \right).$$
 (15)

Вблизи $f \approx f_{max}$ свойства пучка весьма близки к описанным в работе^{/6/}. В частности, при $f \leq f_{max} \lambda = \sqrt{\frac{4\nu}{\gamma_0}} f$ и свойства пучка таковы:

$$\frac{\gamma_{max}}{\gamma_0} \approx 1 + \sqrt{\frac{\nu_e}{\gamma_0}} \frac{1-f}{\sqrt{f}}, \qquad (16)$$

$$i_x(x) \approx i_x(0) I_0(\sqrt{\frac{4\nu_e}{\gamma_0}} f_x), \qquad (16)$$

$$< v_x(x) > \approx v_x(0) I_0(\sqrt{\frac{4\nu_e}{\gamma_0}} f_x), \qquad (16)$$

$$J \approx \beta_0 \sqrt{\gamma_0 \nu_e f}.$$

Поперечный разброс $\epsilon_{\bullet}^{2}(x)$ при $f = f_{max}$ максимален в центре пучка и плавно уменьшается к границе.

При $f \leq 1$ максимум $\epsilon_{\bullet}^{2}(x)$ смещается в область x > 0 и соответственно в центре пучка образуется минимум ϵ_{\bullet}^{2} ; по мере уменьшения f точка максимума ϵ_{\bullet}^{2} приближается к границе пучка с одновременным уменьшением ϵ_{\bullet}^{2} в центре пучка. При некоторой нейтрализации $f = f_{1}^{*}$ $\epsilon_{\bullet}^{2}|_{x=0} = 0$. Это значение f_{1}^{*} нетрудно найти, используя полученные решения (8), (9) и (14):

$$f_{1}^{*} = \frac{\lambda}{I_{1}(\lambda)} \cdot \frac{I_{0}(\lambda) + 1}{2H_{\bullet}[H_{\bullet}I_{0}(\lambda) + \sqrt{(H_{\bullet}^{2} - 1)I_{0}^{2}(\lambda) + 1]} - [2 - \frac{\lambda}{I_{1}(\lambda)}][I_{0}(\lambda) + 1]} \cdot (16)$$

При λ<<1 (ν,<<1) формула (16) дает обычный результат

$$f_1^* \approx f_{\min} \approx \frac{1}{H_{\bullet}^2} = \frac{1}{\gamma_0^2} \, .$$

Другой предельный случай соответствует достаточно большим λ , так что $l_0(\lambda) \approx l_1(\lambda) >> \lambda \quad \left(\frac{\nu_{\bullet}}{\gamma_0} >> 1\right)$; при этом $\lambda \approx \ln \frac{2\nu_{\bullet}}{\gamma_0 \beta_0}$, $\beta = \sqrt{1 - \frac{1}{H_{\bullet}^2}} > 0$ и $f_1^* \approx \frac{\ln^2 \frac{2\nu_{\bullet}}{\gamma_0 \beta_0}}{4\nu_{\bullet} \gamma_0(1 + \beta_0)}$. (17)

Для второго набора параметров (у_{тах} вместо **H**) f* определяется формулой:

$$f_{2}^{*} = \frac{\lambda}{I_{1}(\lambda)} \cdot \frac{I_{0}(\lambda) [I_{0}(\lambda) + 1]}{2 \gamma_{max} [\gamma_{max} + \sqrt{\gamma_{max}^{2} - 1 + I_{0}^{2}(\lambda)]} + [\lambda \frac{I_{0}(\lambda)}{I_{1}(\lambda)} - 2][I_{0}(\lambda) + 1]} \cdot (18)$$

При малых ν_{\bullet} снова получаем $f_2^* \approx f_{min} \approx \frac{1}{\gamma_{max}^2}$, при

 $I_0(\lambda) \approx I_1(\lambda) \gg \gamma_{max}(\nu \gg 1)$:

$$\lambda \approx \sqrt{(\gamma_{max} - 1)^2 + 4\nu_{\bullet}} - (\gamma_{max} - 1).$$

Тогда

$$f_{2}^{*} \approx \frac{1}{4\nu_{\bullet}} \left[\sqrt{(\gamma_{max} - 1)^{2} + 4\nu_{\bullet}} - (\gamma_{max} - 1) \right]^{2}.$$
(18)

,

Если задается **H**_•, то при больших ν_• для первого набора параметров получается сильно релятивистский пучок (γ|_{x=1} ≈ 2ν_•), поэтому минимальная нейтрализация (17) значительно меньше значения для второго набора параметров (см. (18)). Например, для $\nu_{\bullet} = 30$, $H_{\bullet} = 2$ формула (17) дает $f_1^* \approx 0,024$, а при $\gamma_{mox} \approx 2$ и $\nu_{\bullet} = 30$ из (18) следует $f_2^* \approx 0,83$. Свойства сильно релятивистских пучков вблизи f^* резко отличаются от почти нейтральных пучков при $\nu_{\bullet} \gg 1$: кинетическая энергия электронов, плотности заряда и тока существенно меняются по сечению пучка. Например, для $H_{\bullet} = const$ эти величины пропорциональны $I_0(\lambda_x)$, а продольная скорость электронов $\langle v_x(x) \rangle =$ $= \frac{j_{x\bullet}(x)}{\rho_{\bullet}(x)} \approx const$. Полный ток в пучке в этом случае равен $J = \beta_{\bullet} \nu_{\bullet}$.

Отметим, что принятые ранее условия а) в рассмотренных предельных случаях означают:

$$\gamma \mid_{x=1} \ll \frac{m_1}{m_{\bullet}} . \tag{19}$$

Если вычислить силу на поверхности пучка в условиях минимальной нейтрализации, то оказывается, что она конечна и отрицательна. Это обстоятельство, а также то, что при $f = f^*$ $\epsilon_{\bullet}^2(0) = 0$, ставит вопрос о возможности существования, в рассматриваемой модели, трубчатого состояния пучка при отсутствии зарядов в центральной области.

Трубчатый пучок

В используемой модели с функцией распределения (1) трубчатое состояние может существовать только с совпадающими внутренними границами обоих компонентов, так как нетрудно показать, что в случае несовпадения границ на одной из них (с бо́льшим радиусом) не могут выполняться необходимые условия равновесия.

Пусть радиус внутренней, свободной от зарядов, области пучка равен d, $0 \le d \le 1$, тогда решения уравнений (3), (4) при граничных условиях равенства нулю потенциалов и их нормальных производных при x = d таковы:

$$\phi(\mathbf{x}) = \frac{2\nu_{\bullet}(1-f)}{\lambda \, d\,\Delta'(1,d)} - [\lambda \, d\,\Delta(\mathbf{x},d) - 1],$$

$$A_{\mathbf{x}}(\mathbf{x}) = P_{\mathbf{x} \bullet} [\lambda \, d\,\Delta(\mathbf{x},d) - 1],$$
(20)

$$rge \qquad \Delta(x,d) = K_0(\lambda x) I_1(\lambda d) + I_0(\lambda x) K_1(\lambda d),$$

$$\Delta'(1,d) = \frac{d}{dx} \Delta(x,d) |_{x=1}.$$

При получении (20) использованы условия а) и б), при этом

$$\nu_{i} \approx \frac{a^{2} \kappa_{i}^{2}}{4} (1 - d^{2}) H_{i} ,$$

$$\lambda^{2} = \frac{2\nu_{e}}{H_{e}} \left[\frac{2f}{1 - d^{2}} + \frac{\lambda(1 - f)}{d\Delta'(1, d)} \right].$$
(21)

Для второго набора параметров в полученных формулах

$$H_{e} + \phi ||_{x=1} = \gamma_{max} = \text{const}$$

Условиями существования стационарного состояния пучка являются, как и прежде, обращение в нуль разбросов поперечного импульса электронов и ионов на обеих границах и неположительность нормальной составляющей силы Лоренца на внешней границе. Для обсуждаемой модели пучка с резкими границами нормальная составляющая силы Лоренца на внутренней границе всегда равна нулю.

Совместное решение уравнений $\epsilon_{\bullet}^2|_{x=d} = \epsilon_{\bullet}^2|_{x=1} = 0$ и $\epsilon_{i}^2|_{x=d} = \epsilon_{\bullet}^2|_{x=1} = 0$, при этом $P_{x\bullet,i}^2 = H_{\bullet,i}^2 - m_{\bullet,i}^2$, показывает, что релятивистский (по элект-ронам) пучок существует только при

$$\lambda d \Delta (1, d) = 1,$$

что означает d = 1 и $\lambda (1-d) = \frac{2\nu_0}{H_0}$. Таким образом, пучок существует в виде бесконечно тонкой трубки с сингулярными плотностями на границе. Полный ток пучка тогда равен $J = \beta \nu_0$. Конечная толщина трубки в рассматриваемом случае возможна лишь для нерелятивистского пучка.

Пределы нейтрализации определяются из обращения в нуль на границе силы, действующей на электроны, - нижний предел и обращения в нуль силы, действующей на ионы - верхний предел. Для H_e = const и у_{mex} = const результаты соответственно таковы:

$$\frac{1}{H_{\bullet}^{2}} \leq f \leq 1 + \frac{P_{x\bullet} P_{xi}}{H_{\bullet} H_{i}}, \qquad (22)$$

$$\frac{1}{\gamma_{max}^2} \leq f \leq 1 + \frac{1}{H_1 \gamma_{max}}$$

Сравнение формул (18) и (23) указывает на то, что трубчатый пучок может существовать при меньших нейтрализациях, чем сплошной пучок, и в этом смысле состояние трубчатого пучка при $f < f_2^*$ (см. (18)) является продолжением заряженного состояния сплошного пучка. Поэтому можно ожидать, что найденный нижний предел степени нейтрализации (23) правильно характеризует состояние самофокусирующегося релятивистского пучка с максимальным зарядом на единицу длины.

Для случая **H**_e= const нижний предел нейтрализации для трубчатого состояния (22) лежит выше f^{*}₁ (см. (17)). Как будто бы возникает парадокс, связанный с тем, что уменьшением нейтрализации нельзя достигнуть предельного стационарного состояния, когда сила, действующая на электроны на внешней границе, равна нулю. На самом деле,

нижний предел нейтрализации (22) не зависит от ν_{\bullet} и определяется для тонкого трубчатого пучка, когда потенциалы ϕ и A_{\pm} практически равны нулю, значением максимальной кинетической энергии электронов γ_{max} . Естественно, что поскольку в предельном состоянии сплошного пучка (17) $\gamma |_{x=1} \approx 2\nu_{\bullet}$, то продолжением состояния пучка в область f_{\bullet} меньших (17), является трубчатый пучок с $H_{\bullet} > 2\nu_{\bullet}$.

Существование двух различных классов состояний заряженного самофокусирующего пучка – сплошного и трубчатого – связано с использованием модели идеально монохроматического ручка при выборе функции распределения частиц в виде (1). Такие функции распределения всегда дают резкие границы пучка (см. (4)) со скачкообразным обращением в нуль на них плотностей заряда и тока. Это приводит, в частности, также к скачкообразному переходу решения сплошного пучка в трубчатое, т.к. при d=0 существует только решение в форме (8)-(9). При f>f* оба типа решений существуют независимо.

Процесс вытеснения электронов из внутренней области при $\nu_{\bullet} \gg 1$, наблюдающийся в решении сплошного пучка при уменьшении нейтрализации, ниже f* может быть описан лишь при использовании трубчатого состояния. Это связано с тем, что при f=f* плотность электронов обращается в нуль только к одной точке (x=0) и в любой малой окрестности принимает конечное значение.

Следует ожидать, что при построении моделей сильноточных релятивистских пучков с функциями распределения, размытыми по интегралам движения, должно существовать единственное решение для стационарного состояния, свойства которого вблизи минимальной нейтрализации близки тем, которые описываются решением для трубчатого пучка, а при увеличении †-решением для сплошного пучка.

Авторы приносят искреннюю благодарность А.А.Коломенскому, А.Н. Лебедеву и Я.Б. Файнбергу за ценные замечания, В.П. Саранцеву и К.В. Ходатаеву за интерес к работе и обсуждение.

Литература

1. W. Bennett, Phys.Rev., <u>45</u>, 890 (1934); Phys.Rev., <u>98</u>,1584(1955). 2. H. Alfven, Phys.Rev., 55, 425 (1939).

3. Г.И. Будкер. АЭ. №5, 9 (1956).

4. J.G. Linhart, "Plasma physics", Amsterdam, 1960.

5. О.И. Ярковой. Препринт ОИЯИ 2180, Дубна, 1965.

6. D. Hammer, N. Rostoker, Phys. of Fluids, <u>13</u>, 1831 (1970).

Рукопись поступила в издательский отдел

9 июня 1971 года.