<u>С 345 к</u> Ш- 42,

26/v.70

P9-5033

И.А. Шелаев, С.И. Козлов, Б.А. Кленин,

£

ПАРАМЕТРЫ ОРБИТ ДВУХМЕТРОВОГО ИЗОХРОННОГО ЦИКЛОТРОНА ОИЯИ

P9-5033

ţ

ПАРАМЕТРЫ ОРБИТ ДВУХМЕТРОВОГО ИЗОХРОННОГО ЦИКЛОТРОНА ОИЯИ

11 d and ল**্**যান্য । **MAC**PEN GHS

Устойчивое изохронное ускорение ионов в секторно- фокусирующем циклотроне обеспечивается при выполнении определенных требований к форме магнитного поля. Формирование поля двухметрового изохронного циклотрона /1,2/ осуществлялось с помощью железных шимм и потребовало значительного объема магнитных измерений. Для создания магнитного поля, отличающегося от изохронного в пределах ± 30 э в основном диапазоне радиусов, потребовалось вести измерения в 400.000 точек. Для этого необходимо было быстро и точно измерять поле в данной точке и иметь достаточно эффективную программу математической обработки результатов измерения.

В настоящей работе приводятся результаты расчетов движения ионов в двухметровом изохронном циклотроне.

Обработка данных магнитных измерений

Разработанная в Лаборатории методика измерения магнитного поля^{/3/} позволяла измерять топографию поля с высокой точностью (±1 э); время измерения одной точки составляло в среднем 2,5 сек. Данные измерений значений э.д.с. Холла выводились на перфоленту с помощью телеграфного аппарата СТА-2М.

Датчик Холла, используемый для измерений поля, калибровался на стенде с помощью датчика ядерного магнитного резонанса. Экспериментальная зависимость H = f(E_x) представлялась в виде полинома степени п

$$H_{j} = \sum_{i=0}^{n} a_{i} E_{x_{j}}^{i}, \qquad (1)$$

коэффициенты которого а определялись методом наименьших квадратов из условий:

$$\sigma^{2} = \frac{\sum_{j=1}^{m} (\mathbf{H}_{j} - \sum_{i=0}^{n} \mathbf{a}_{i} \mathbf{E}_{x_{j}}^{i})^{2}}{\mathbf{m}} = \min, \qquad (2)$$

$$\frac{\partial}{\partial \mathbf{a}_{i}} \sum_{j=1}^{m} (\mathbf{H}_{j} - \sum_{i=0}^{n} \mathbf{a}_{i} \mathbf{E}_{\mathbf{x}_{j}}^{i})^{2} = 0.$$
(3)

Оптимальная степень полинома п , при которой средняя квадратичная ошибка σ^2 минимальна и составляет 2,7.10⁻⁵ кэ², равна 6 (см. таблицу 1, представляющую результат численного решения системы (3)).

				Taor	ица І			
n	2	3	4	5	6	7	8	
² ·10 ⁻⁵	8,588	3,352	3,032	3,001	2,722	2,751	2,766	

Значения э.д.с. Холла с перфоленты вводились в ЭВМ "Минск-22", где по формуле (1) вычислялось эначение магнитного поля $H(r, \theta)$ и определялось среднее магнитное поле H(r) и флаттер F(r):

$$H(\mathbf{r}) = \frac{1}{\pi/2} \int_{0}^{\pi/2} H(\mathbf{r}, \theta) d\theta, \qquad (4)$$

$$F(r) = \frac{1}{\pi/2} \int_{0}^{\pi/2} \frac{[H(r, \theta) - H(r)]^{2}}{H^{2}(r)} d\theta.$$
 (5)

Информация с перфоленты накапливалась на магнитной ленте "Минск-22" и передавалась для последующей обработки на ЭВМ "БЭСМ-4", где она также записывалась на МЛ. Дальнейшие расчеты по данным измерений проводились на машине "БЭСМ-4" по программе, блок-схема которой приведена на рис. 1. Эта программа переписывает информацию с МЛ в оперативную память машины, вычисляет H(r, θ), H(r) и F(r) и определяет гармоники A _{Nn}(r) и их фазы Ψ_{Nn} (r) фурье-разложения магнитного поля H(r, θ) по азимуту θ :

$$H(\mathbf{r},\theta) = H(\mathbf{r})\{1 + \sum_{n=1}^{\infty} \lfloor a (\mathbf{r}) \cos \operatorname{Nn} \theta + b (\mathbf{r}) \sin \operatorname{Nn} \theta \rfloor\}, \qquad (6)$$

ΓДе $A_{Nn} = \sqrt{a_{Nn}^2 + b_{Nn}^2}$; tg (NnΨ_{Nn}) = b_{Nn} / a_{Nn} ;

$$a_{Nn} = A_{Nn} \cos Nn \Psi_{Nn} ; b = A_{Nn} \sin Nn \Psi_{Nn},$$

N - число элементов периодичности магнитной структуры циклотрона.

Фазовое движение

Затем для иона с заданным отношением A/Z вычислялось изохронное поле:

$$H_{H3}(\mathbf{r}) = H_0 \frac{1 + \sigma(\mathbf{r})}{\sqrt{1 - \left\{\frac{\omega_0}{c} \mathbf{r} \left[1 + \sigma(\mathbf{r})\right]\right\}^2}}$$
(7)

Здесь H₀ - магнитное поле в центре циклотрона, ω₀ - угловая частота обращения иона,

$$\omega_{0} = \frac{Z e H_{0}}{Am a}, \qquad (8)$$

где с - скорость света, а

$$\sigma(\mathbf{r}) \stackrel{\approx}{=} \frac{1}{(1-K)(N^2-1)} \left(\mathbf{F}(\mathbf{r}) + \frac{\mathbf{r}}{2} \cdot \frac{\mathbf{dF}}{\mathbf{dr}} \right),$$

$$\mathbf{K}(\mathbf{r}) = \frac{\mathbf{r}}{\mathbf{H}(\mathbf{r})} \cdot \frac{\mathbf{dH}(\mathbf{r})}{\mathbf{dr}}.$$
(9)

Рис.1. Блок-схема программы обработки данных магнитных измерений.

Отклонение реального среднего магнитного поля от изохронного $\Delta H(r) = H(r) - H_{N3}(r)$ приводит к смещению начальной фазы иона, определяемому выражением /4/:

 $\Delta \sin \phi (\mathbf{r}) = \sin [\mathbf{n} \phi (\mathbf{r})] - \sin [\mathbf{n} \phi (\mathbf{0})] =$

$$= -\frac{2\pi n}{\epsilon_0} \int_0^r \Delta \mathbf{b}(\rho) [1 + \sigma + \rho \quad \sigma'] \rho \, d\rho, \qquad (10)$$

где $\epsilon_0 = \frac{\Delta E}{A m_0 c}$, ϕ_0 - начальная фаза.

Если при расчете фазового движения выполнялось условие $|\Delta \sin\phi(\mathbf{r})|_{+a}>1$, где a – заранее выбранное число меньшее 1, то значение уровня поля в центре изменялось на некоторую величину $\delta \mathbf{H}$ и снова вычислялись \mathbf{H} (r), $\Delta \mathbf{H}(\mathbf{r})$, $\Delta \sin\phi(\mathbf{r})$ и т.д.

После ряда подобных итераций определялись поле в центре H_0 и частота ω_0 , удовлетворяющие указанным выше условиям (a =0.5; $\delta H = 5$ э), а также разность между реальным и изохронным полями $\Delta H(r)$

Расчеты фазового движения ионов в двухметровом изохронном циклотроне показали $^{/2/}$, что магнитная структура циклотрона обеспечивает изохронное ускорение ионов в диапазоне отношений A/Z = 2,8+4.

Далее в ЭВМ вводится массив экспериментально определенных распределений среднего магнитного поля $\phi_i(\mathbf{r})$ в ($\widehat{\mathfrak{g}/\mathfrak{a}}$) от каждой і -ой кольцевой корректирующей катушки. Значения токов в катушках \mathbf{I}_i , при которых $\Delta \mathbf{H}(\mathbf{r})$ компенсируется до минимальной величины, определялись м.н.к. в предположении, что $\phi_i(\mathbf{r})$ не зависит от величин \mathbf{I}_i и $\mathbf{H}(\mathbf{r})$ и вновь вычислялся $\Delta \sin \phi(\mathbf{r})$.

Расчет частот бетатронных колебаний

Частоты радиальных ν_{r} и вертикальных ν_{z} колебаний вычислялись по аналитическим выражениям ^{/5,6/}. Ввиду громоздкости этих выражений здесь приводятся только их функциональные зависимости:

6

Габлица 2

1 V V	01 <i>Гы</i> х	קח	30]	DC	Po	<u>P</u> .	8	3
A41	jkəJ 4,932	6,633	6,709	6,640	6,474	6,293	6 , I22	5,930	5.674
Аŝ	I,256	I'87I	I,806	I,478	I,093	0,743	0,590	0,723	0,406
Aız	0,227	0,896	I,342	I,688	I,950	2,109	2,188	2,189	2,230
A16	0,033	0,858	I,II5	1,094	0,943	0,708	0,628	0,766	0,423
A20	0,080	60 + *0	0,224	0,520	0,796	ددّ0 , I	I,I52	I,I75	I , 288
A24	0,042	0,327	0,590	0,686	0,705	0,558	0,540	0,687	0.381
A28	0,038	0,124	760,0	0,II9	0,500	0,588	0,667	0.679	0.821
A32	0,040	060,0	0~0°0	0,095	0,109	0,444	0,432	0,418	0,323

$$\nu_{r}^{2} = f_{1}(\mathbf{K}, \mathbf{K}', \mathbf{K}'', \mathbf{A}_{Nn}, \mathbf{A}'_{Nn}, \mathbf{A}''_{Nn});$$

$$\nu_{z}^{2} = f_{2}(\mathbf{K}, \mathbf{K}', \mathbf{K}'', \mathbf{A}_{Nn}, \mathbf{A}'_{Nn}, \mathbf{A}''_{Nn});$$
(11)

где

 $K' = \frac{R^2}{H(r)} \cdot \frac{d^2 H(r)}{dr^2} \Big|_{r=R} ; K'' = \frac{R^3}{H(r)} \frac{d^3 H(r)}{dr^3} \Big|_{r=R} ;$

$$A'_{Nn} = R \frac{dA_{Nn}}{dr}; A''_{Nn} = R^2 \frac{d^2A_{Nn}}{dr^2}.$$

Точность определения эначений ν_r и ν_z существенно зависит от числа используемых гармоник фурье-разложения и производных среднего магнитного поля по радиусу.

В таблице 2 приведены величины амплитуд гармоник А _{Nn}(R) для одного из вариантов магнитного поля. Из таблицы видно, что эначения А _{Nn}(R) относительно медленно уменьшаются с увеличением их номера. Расчет эначений ν_r и ν_z проводился по формулам:

1)
$$\nu_r^2 = 1 + K ; \nu_z^2 = -K + F ;$$
 (12)

(так называемое "гладкое" приближение);

2) (11) с учетом трех гармоник и первой производной среднего магнитного поля;

3) (11) с учетом трех гармоник и первых трех производных среднего магнитного поля и двух производных гармоник;

4) (11) с использованием пяти гармоник и тех же производных. Результаты расчетов ν и ν приведены в таблице 3.

Интегрирование уравнений движения

Полученные по аналитическим выражениям ^{/5,6/} параметры равновесной орбиты (p.o.) и частоты бетатронных колебаний сравнивались затем с результатами численного интегрирования ^{/7,8/}.

Радиус $r(\theta)$ траектории иона и угол $a(\theta)$ между касательными к траектории и окружности гого же радиуса находились интегрированием уравнений движений /7/ методом Рунге-Кутта с шагом по θ , равным 1,875°. В первом приближении начальное значение r(0) вычислялось по аналитической формуле /6/, а a(0) принималось равным нулю. Если после интегрирования на элементе периодичности магнитной структуры удовлетворялись условия:

 $|\mathbf{r}(\frac{\pi}{2})-\mathbf{r}(0)| \leq \delta_{\mathbf{r}}$, $|a(\frac{\pi}{2})-a(0)| \leq \delta_{a}$,

二日本の

где значение $\delta = \delta_r = \delta_a$ принималось равным 10^{-8} , то р.о. считалось найденной. В противном случае начальные значения r(0) и a(0) корректировались по алгоритму /8/ и процесс интегрирования повторялся.

Результаты этих расчетов в зависимости от номера приближения N для $\mathbf{R} = 54,84$ см приведены в таблице 4. На рисунке 2 представлена р.о. (для $\mathbf{R} = 68$ см), полученная численным интегрированием и по аналитической формуле (для 3 гармоник Фурье-разложения).

Частоты ν_{r} и ν_{z} определялись интегрированием уравнений /7/, содержащих радиус $r(\theta)$ и угол $a(\theta)$ р.о. в качестве параметров.

Численные значения частот, полученные интегрированием и по аналитическим формулам (З гармоники разложения), приводятся в таблице 5. Из таблицы видно, что аналитические формулы дают достаточно точные значения частот при сравнительно небольшом числе гармоник.

Исследование устойчивости движения ионов с помощью фазовых графиков

Для расчета фазовых графиков ^{/9/} использовались те же самые уравнения и процесс интегрирования, что и для р.о. Положение частицы

	1				1
06	0,98637 0,27505	0 ,725 18 0 ,72 418	0 , 85158 0 ,726 76	0,85141 0,72830	
80	1,00993 0,17919	I,0I624 0,17942	1,01623 0,18230	I,0I630 0,I886I	
20	I,00698 0,20248	I,0I299 0,20668	1,01978 0 ,22420	I,0I975 0 ,229 I4	
60	I,00449 0,22056	I,0 I 095 0,22466	I,0I080 0,22483	I,0I067 0,22543	
50	I,00500 0,2254I	I,0T220 0,22873	1,01190 0,23119	1,01195 0,23537	
0#	I,00025 0,24859	I,00747 0,25206	I,00860 0,25583	I,00863 0,25965	
R	I,000 00 0,25390	I,00767 0,25803	I,00740 0 ,2 598 0	I,00738 0,26304	
20	0,99949 0,25008	I,00857 0,25554	1,00830 0,2565I	I,0083I 0,25828	
IO	I,00453 0,15978	1,00770 0,17377	I,00740 0,17580	1,00738 0,17610	
(m)	ጟ፟ጟ	ルド	**	ずれ	
8	П	S	ŝ	4	

10

11

Таблица 3

Таблица 4

							4	
2		(o) [cm]	$L(\frac{T}{2})[cm]$	§r [cm]	[eod] (0))O	$\mathcal{L}eod](\frac{1}{2})$	dz [pað]	Вреия счета с /сек,
1	പ	4,960038	54,929372	3,07•10 ⁻²	د 0	-17359172·10 ⁻²	1,7.10 ⁻³	I0
2	u 1	4, 894193	54,88674I	_0I.0+ 1	- 60522613 10 ⁻	-82962338 IO	2,2.IO	40
<u>ی</u>	ഹ	4,883950	54,883825	2,50 10 ⁻²	- ,65501645 10 ⁻³	-01.141.10-7	I,5.I0 ⁻⁰	40
4		34,883844	54,883844	/_0I ≯	-,65472639 IO ⁻³	-01. 6947469	2,0 • IO -9	04
<u>د</u>		54,883844	54,883844	× 10-5	-,65472543*10 ⁻³	-,65472538°I0 ⁻³	5,0 •10 ⁻¹¹	04
	ø							

6 6 6 6

10-10 10-9-01 10-8-01

× 20.00

H N M +

8

Рис.2. Равновесная орбита иона 0_{16}^{+5} результаты численного интегрирования, с энергней Е = 138 Мэв. - - - -- результаты расчета по аналитической формуле.

06	0,7143 0,63929	0,81 3637 0,63018
80	1,0162 0,1823	1,0186 0,2150
70	1,0210 0 ,2804 5	I,0 I8I8 0,18643
09	I,0I08 0,22483	I,0096 0,23923
50	1,0109 0,23119	I,0075 0,2549I
0#	I,0I0I 0,24997	I,0096 0,2507
30	I,0062 0,26453	1,007I 0,2665
20	I,0083 0,25198	1,0102 0,2523
IO	I,0069 0,I8025	1,01203 0,18542
Ø	1,00344 0,13635	1,00494 0,17205
ę	0 ,99766 0,11735	0,996I7 0,14393
R [cm]	1 بح ه	0 77 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Таблица 5

Рис.4. Фазовый график для E = 222 Мэв. Величина предельной стабильной амплитуды радиальных колебаний для E = 2+220 Мэв составляет 4+5 см.

определяется в фазовой плоскости, где по осям абсцисс и ординат откладываются соответственно отклонения от р.о. $\Delta \mathbf{r}$ и R- $\Delta \alpha$, а р.о. изображается точкой в начале координат. Начальные отклонения $\Delta \mathbf{r}(\mathbf{0})$ задавались произвольно при $\Delta \alpha(\mathbf{0})$, равном нулю.

На рисунках 3,4 представлен ряд фазовых графиков для различных радиусов R ; скорость счета графиков на ЭВМ БЭСМ-4 составляла 10 об/мин.

Характерным свойством фазовых графиков является их разделение на две области. Имеется центральная область стабильности, в которой орбиты частиц находятся вблизи р.о. Кроме того существуют внешние области нестабильности, где частицы смещаются относительно р.о. в направлении одного из четырех секторов. Из графиков для $\mathbf{R} = 6$ и 8 см видно, что при переходе через резонанс ($\nu_r = 1$) изменяется направление движения частиц. Это свидетельствует о том, что орбиты меняют направление своего смещения относительно центра циклотрона. Из этих графиков можно оценить максимальную амплитуду стабильных радиальных колебаний при различных энергиях.

Проведенный численный анализ параметров равновесных орбит и фазового движения показывает, что сформированное магнитное поле циклотрона У-200 обеспечивает устойчивое и изохронное ускорение заданного набора ионов.

Литература

- 1. И.А. Шелаев и др. Препринт ОИЯИ 9-3988, Дубна, 1968.
- 2. И.А. Шелаев и др. Препринт ОИЯИ 9-4233, Дубна 1968.
- 3. Э.Г. Имаев и др. Препринт ОИЯИ 9-3713. Дубна 1968.
- 4. A.A.Garren. Nucl. Instr. and Meth. 18, 19, 309 (1962).
- 5. O. Smith, A.A. Garren. Report UCRL-8598, 1959.
- 6. Ю.Г. Басаргин, В.П. Белов. Сб. "Электрофизическая аппаратура", вып. 3, М., Атомиздат, 1965, стр. 3.
- 7. Ю.Г. Басаргин, Р.Н. Литуновский. Сб. "Электрофизическая аппаратура", вып. 5, М., Атомиздат, 1966, стр. 135.

8. T.A.Welton. Sector-Focused cyclotron. Proceeding of Conference at Sea Istand, 1959, p. 48.

9. D.J.Clark et al. Nucl. Instr. and Meth., 18, 19, 1 (1962).

Рукопись поступила в издательский отдел 11 апреля 1970 года,