

В.Г. Маханьков, Б.Г. Щинов

ВЛИЯНИЕ ИОН-ИОННЫХ СТОЛКНОВЕНИЙ НА НЕЛИНЕЙНОЕ ВЗАИМОДЕЙСТВИЕ ЛЕНГМЮРОВСКИХ ВОЛН В ПЛАЗМЕ

1968

P9 - 3689

В.Г. Маханьков, Б.Г. Щинов

ВЛИЯНИЕ ИОН-ИОННЫХ СТОЛКНОВЕНИЙ НА НЕЛИНЕЙНОЕ ВЗАИМОДЕЙСТВИЕ ЛЕНГМЮРОВСКИХ ВОЛН В ПЛАЗМЕ

Направлено в ЖТФ

1. В работах ^{/1,2/} было показано, что ион-ионные соударения частиц могут заметно изменить картину нелинейного взаимодействия ленгмюровских волн в плазме, если разность частот взаимодействующих волн много меньше частоты соударения ионов

$$|\omega_{1} | \omega | \omega_{1} - \omega_{2}| \ll \nu_{1}, \qquad (1.1)$$

 v_{1} – частота соударений ионов со всеми частицами. Однако при этом рассматривалось взаимодействие достаточно быстрых ленгмюровских волн таких, что $|\vec{k}_{-}| v_{T1} \approx k v_{T1} \ll v_{1}$ или $v_{\phi} \gg v_{T0} N_{D} (\frac{T_{1}}{T_{0}})^{2}$. Здесь $|\vec{k}_{-}| = |\vec{k}_{1} - \vec{k}_{2}|$ – разность волновых векторов взаимодействующих волн, $v_{T0,1} = \sqrt{\frac{T_{0,1}}{m_{0,1}}}$ – соответственно, тепловые скорости электронов и ионов.

Тем не менее, результаты, полученные в $^{/2/}$, позволяют также оценить влияние ион-ионных соударений на взаимодействие медленных ленгмюровских волн. При этом перекачка осуществляется эстафетным образом (см., например, $^{/2,3/}$), т.е. взаимодействуют достаточно близкие волны, с Δk , $|\vec{k}_{-}| \ll k$ и

$$|\mathbf{k}_{\perp}|, \ \Delta \mathbf{k} \ \mathbf{v}_{\tau i} \ll \nu_{i} \quad , \tag{1.2}$$

в то время как

$$k v_{Ti} > \nu_i$$
(1.3)

$$\vec{k} = | v \gg \nu$$
(1.4)

Если эффективность такой перекачки достаточно велика, то в результате большого количества = $\frac{k}{\Delta k}$ - последовательных передач энергии может оказаться, что эстафетная перекачка превзойдет однократную бесстолкновительную перекачку на Δk = k. Именно в этой ситуации учет столкновений становится принципиальным.

В зависимости от угла между взаимодействующими волнами для простоты будем рассматривать две области. В первой в основном происходит передача энергии по спектру, во второй трансформация энергии не существенна, и нелинейное взаимодействие волн приводит к их изотронизации. Действительно, из выражения для \vec{k}_{-} имеем $|\vec{k}_{-}| = \sqrt{k_{1}^{2} + k_{2}^{2}} - 2k_{1}k_{2}\cos\theta$. Так как угол θ предполагается малым, то $\cos\theta \approx 1 - \frac{\theta^{2}}{2}$, и $|\vec{k}_{-}| \approx \sqrt{\Delta k^{2} + k_{1}^{2}}\theta$. Из этого непосредственно следует вышеупомянутое разделение областей: 1) 1) $\Delta k \gg k_{1}\theta = k_{-} \approx \Delta k_{+}$, 2) $\Delta k \ll k_{1}\theta$, при этом $k_{-} \approx k_{1}\theta$.

В дальнейшем мы подробно исследуем первую область, соответствующие оценки для второй области нетрудно получить, имея в виду следующее обстоятельство: так как всегда $\omega \approx \Delta k$, то отношение $\frac{\omega_{-}}{k_{-}} \approx \frac{\Delta k}{k\theta} = \frac{1}{a}$; во второй области a > 1, следовательно, (ω_{-}/k_{-}) в этой области в a разменьше, чем в первой.

Учитывая вышеизложенное, достаточно при исследовании явления нелинейной эстафетой изотропизации вводить соответствующим образом коэффициент а . При этом инкремент изотропизации увеличивается или уменьшается по сравнению с инкрементом перекачки в зависимости от того, как входит величина ω_ в знаменателе или числителе соответственно.

Ниже мы будем пользоваться соотношениями, полученными в работе ^{/2/}. Поэтому выписывать здесь общие выражения для нелинейных токов плазмы с учетом соударений, а также нелинейное дисперсионное уравнение представляется нецелесообразным. По мере необходимости будут приводиться выражения для инкрементов, полученные в ^{/2/}.

2. Оценим величину области, в которой возможна, наряду с бесстолкновительной, также эстафетная перекачка. Эта область определяется неравенствами (1.1) – (1.4). Из (1.1), (1.2) и (1.4) получим область изменения относительной величины $\Delta = \frac{\Delta k}{k}$;

4

$$\frac{1}{N_{\rm D}} V \ll \Delta \ll \frac{1}{N_{\rm D}} V T^2 \min\left(1, \frac{1}{a}\right).$$
(2.1)

Здесь введены следующие обозначения:

 $N_{D} = \frac{\omega_{0}}{\nu_{0}}$ число частиц в дебаевской сферо, $\omega_{0} = -$ ленгмюровская частота электронов,

– электронная частота соудареший,

$$V = \frac{\omega_{ce}}{k v_{Te}} = \frac{v}{T_{te}}$$
, $T = \frac{T_{e}}{T_{1}}$ - отношение температур электронов и конов,

$$a = \frac{\omega_{-}}{k_{-} v_{Te}} = V^{-1} T^{1/2} \mu^{-1/2}, \qquad (2.2)$$

 $\mu = \frac{m_{\bullet}}{m_{i}} - \text{отношение масс электронов и ис.:ов.}$

Неравенство (1.3) дает ограничение на величину относительной фазовой скорости V сверху

$$\mathbf{V} \ll \mathbf{N}_{\mathrm{D}} \mathbf{T}^{-2} \,. \tag{2.3}$$

Солоставляя (2.1) и (2.2), получим $V >> T^{-3/2} \, \mu^{-1/2}$, что вместе с (2.3) длет область изменения V

$$N_{D} T^{-2} \gg V \gg T^{-3/2} \mu^{-1/2} .$$
 (2.4)

Из (2.1) следует, что рассматриваемая картина нелилейного взаимодействия возможна в неизотермической плазме Т ≫1. а (2.4) приводит к следующему условию для нарэметров плазмы

$$N_{\rm p} \gg \mu^{-1/2} \, {\rm r}^{-1/2} \, .$$
 (2.5)

Если имеет место соотношение $\mu^{-1/2} < T^3$, что обычно выполняется для неизотермической плазмы, то

$$N_{\rm D} \gg \tau^2 \,. \tag{2.6}$$

Для дальнейшего удобно разделить рассматриваемую область не четыре подобласти, определяемые следующими соотношениями:

(1)
$$\omega_{-} \gg |\vec{k}_{-}| = v_{T1} T^{1/2}$$
, (2.7)

$$(\mathbf{II}) \qquad | \vec{\mathbf{k}}_{-} | \mathbf{v}_{Ti} \ll \omega_{-} \ll | \vec{\mathbf{k}}_{-} | \mathbf{v}_{Ti} T^{1/2} , \qquad (2.8)$$

(III)
$$\frac{|\mathbf{k}_{-}| \mathbf{v}_{Ti}}{\mathbf{v}_{+}} \ll \omega_{-} \ll |\mathbf{k}_{-}| \mathbf{v}_{Ti}$$
, (2.9)

(IV)
$$\omega_{-} \ll \frac{|\mathbf{k}_{-}|^2 \mathbf{v}_{T1}^2}{v_{i}}$$
. (2.10)

Поскольку эти неравенства накладывают дополнительные ограничения на параметры плазмы (см.ниже), целесообразно выписать их в иной форме:

(I)
$$\frac{1}{N_{\rm D}} V \ll \Delta \ll \frac{1}{N_{\rm D}} V^2 T^{3/2} \mu^{1/2}$$
, (2.11)

в левой части неравенства (2.4) должно теперь стоять min { N_DT⁻²; $\mu^{-1/2}$ }; это означает, что для плазмы, у которой N_D > $\mu^{-1/2}$ T², область изменения V сверху сокращается.

В области (Щ) неравенство (2.11) сохраняется. Вместо (2.4) получим

$$\mu^{-1/2} \ll V \ll \min \{ N_D T^{-2}; \mu^{-1/2} T^{1/2} \}.$$
 (2.12)

Отсюда видно, что подобласть (II) существует в плазме, у которой

$$N_{\rm D} \gg \mu^{-1/2} T^2 .$$
 (2.13)

В следующей области (III) имеем

$$\frac{1}{N_{D}} V \ll \Delta \ll \frac{1}{N_{D}} V T^{2}$$
(2.14)

$$\mu^{-1/2} T^{1/2} \ll V \ll N_{\rm D} T^{-2} .$$
 (2.15)

и

Из (2.15) следует, что подобласть (ПІ) существует в плазме, у которой

$$N_{\rm D} \gg \mu^{-1/2} \, \mathrm{T}^{5/2} \, . \tag{2.16}$$

Наконец, в подобласти (IV) ссотношение (2.14) сохраняется, в то же время вместо (2.15) получим

$$\mu^{-1/2} T^{1/2} \left(\frac{\nu_{1}}{|\vec{k}_{\perp}| | v_{T_{1}}} \right) \ll V \ll N_{D} T^{-2}, \qquad (2.17)$$

отсюда

x)

$$N_{1.} > \mu^{-1/2} T^{-9/2}$$
. (2.18)

Проведенное выше исследование показывает, что лишь в очень разреженной и высокотемпературной плазме (см. (2.18)) основная область изменения по V, огределяемая (2.4), может быть разбита на четыре указанные подобласти. В случае достаточно плотной и низкотемпературной плазмы существуют лишь одна или две первые подобласти.

Слелует сразу отметить, чтс в критерий разбиения на подобласти входит величина ω_{-} . Как известно, она может определяться при достаточно большой энергии ленгмюровских колебаний (2.11) - (2.18) нелинейным взаимодействием ²⁴⁷. Поэтому соотношения, определяющие указанные выше приведенств подобласти, справедливы лишь в случае, когда ω_{-} определяется линейвой дисперсией (критерий этого будет выписан ниже).

З Призедем выражения для инкрементов нелинейной спектральной перес дкн ^{/D/} в областях (I) - (IV)^{x)}.

(1)
$$\gamma_{\vec{k}_{1}} = -\frac{1,28 \omega_{0.0}}{16 \pi n_{0} T_{e}} \int \left(\frac{\vec{k}_{1} \vec{k}_{2}}{k_{1} k_{2}}\right)^{2} |E_{\vec{k}_{2}}|^{2} \frac{|\vec{k}_{e}|^{3} v_{T_{1}}^{3}}{\omega_{-}^{3}} \frac{|\vec{k}_{e}| v_{T_{1}}}{v_{1}} d\vec{k}_{2},$$
 (3.1)
(11) $\gamma_{\vec{k}_{1}} = -\frac{1,28 \omega_{0.0}}{16 \pi n_{0} T_{e}} \int \left(\frac{k_{1} k_{2}}{k_{1} k_{2}}\right)^{2} |E_{\vec{k}_{2}}|^{2} \frac{T_{1} \omega_{-}}{T_{e} v_{1}} d\vec{k}_{2},$ (3.2)

³лесь и далее римские цифры относятся к соответствующим областям разбловия (см. (3.1) - (3.4)).

$$(\mathbf{III}) \ \gamma_{\vec{k}_{1}} = -\frac{1,73 \ \omega_{0}}{16 \ \pi \ n_{0} \ T_{0}} \int \left(\frac{\vec{k}_{1} \ \vec{k}_{2}}{k_{1} \ k_{2}}\right)^{2} \left| \mathbf{E}_{\vec{k}_{2}} \right|^{2} \frac{\left|\vec{k}_{1}\right|^{2} \ \mathbf{v}_{T1}^{2}}{\omega_{-} \ \nu_{1}} \frac{T_{1}}{T_{0}} \ d\vec{k}_{2} \ .$$
(3.4)

(IV)
$$\gamma_{\vec{k}_{1}} = -\frac{0,06 \omega_{00}}{4\pi n_{0}T_{0}} \int (\frac{\vec{k}_{1}\vec{k}_{2}}{k_{1}k_{2}})^{2} |E_{\vec{k}_{2}}|^{2} \frac{\nu_{1}\omega_{-}}{|k_{-}| v_{T1}} \frac{T_{1}}{T_{0}} \frac{dk_{2}}{dk_{2}}$$
 (3.4)

Кроме выписанных соотношений (3.1) - (3.4) нам потребуются выражения для нелинейных поправок к действительной части ω_{-} взаимодействующих волн.

(I)
$$\delta \omega_{\vec{k}_{1}} = \frac{\omega_{00}}{16 \pi n_{0} T_{0}} \frac{m_{0}}{m_{1}} \int \left(\frac{\vec{k}_{1} \vec{k}_{2}}{k_{1} k_{2}}\right)^{2} |E_{\vec{k}_{2}}|^{2} \frac{|\vec{k}_{-}|^{2} v_{T_{0}}^{2}}{\omega_{-}^{2}} d\vec{k}_{2}$$
 (3.5)

(II)
$$\delta \omega_{\vec{k}_1} = \frac{\omega_{00}}{16 \pi n_0 T_0} \int (\frac{\vec{k}_1 \vec{k}_2}{k_1 k_2})^2 |E_{\vec{k}_2}|^2 \frac{\omega^2}{|\vec{k}_2|^2 v_{T_0}^2} d\vec{k}_2$$
 (3.6)

(III)
$$\delta \omega_{k_1}^{\dagger} = -\frac{2}{3} \frac{(2,6)^2 \omega_{00}}{16 \pi n_0 T_0} \int (\frac{\vec{k}_1 \vec{k}_2}{k_1 k_2})^2 |E_{k_2}|^2 - \frac{|\vec{k}_2|^2}{\nu_1^2 \omega_2^2} (\frac{T_1}{T_0}) d\vec{k}_2^2(3.7)$$

(IV)
$$\delta \omega_{\vec{k}_1} = \frac{2}{3} \frac{\omega_{ee}}{(2,6)^2 n_0 T_e} \int (\frac{k_1 k_2}{k_1 k_2})^2 |E_{\vec{k}_2}|^2 \frac{m_1 \omega_{-\nu}^2}{m_e |k_-|^4 v_{Te}^4} (\frac{T_e}{T_1})^3 d\vec{k}_2.$$
 (3.8)

Здесь и ниже будем называть дисперсию линейной, когда $\omega_{-} = \frac{\Delta k k v_{T_0}^2}{\omega_{00}} > \delta \omega_{-}$ и нелинейной в обратном пределе. Ясно, что подобное разделение будет накладывать определенные условия на уровень шумов ленгмюровских колебаний в плазме $W = \int \frac{|E_t|^2}{8 \pi n_0 T_0}$.

Ограничимся пока случаем линейной дисперсии. При этом формулы (3.4) -(3.7) определяют несущественные поправки к действительной части ω_{-} . Исходя из этого обстоятельства, получим следующие ограничения на уровень шумов в подобластях I-IV.

(I)
$$W \ll \{ \mu^{-1} V^{-4} ; 1 \}$$

$$(\Pi) \qquad \mu \ll \Psi \ll 1$$

(III)
$$W < \mu^{-1} V^{-4} (T^{6} V^{-1} N_{D}^{-2}).$$

Используя (2.15) и (2.16), выражение в скобках можно переписать в виде Т ^{1/2} ^{3/2}, т.е. область для W по сравнению с (1) ограничена сверху более жестко.

$$(IV) 1 \gg W > \mu T^{5}$$

или **Т** << µ^{-1/3}, что не может быть выполнено для сильно неизотермической плазмы. В этой области может быть существенным изменение дисперсии из-за нелинейных взаимодействий с учетом электронных соударений (см.^{/2,4/}). Этоизменение определяется порядковой формулой

$$\delta \omega_{\bullet} \simeq \omega_{\bullet} W \frac{\nu_{\bullet}}{|\vec{k}_{\bullet}| v_{T \bullet}}, \qquad (3.9)$$

используя которую, получим из ω² >δω₂ W<N₅ V⁻³ Δ², что в соответствии с (2.17), (2.18) приводит к W<μT⁻⁷. Таким образом, дисперсия в области (IV), как правило, определяется нелинейными взаимодействиями ленгмюровских волн.

Посмотрим теперь, какие ограничения на Δ , V и N_D в зависимости от параметров получаются при сравнении столкновительных инкрементов эстафетной перекачки (на $\Delta \mathbf{k} = \mathbf{k}$) \tilde{y}_{ν} и бесстолкновительных у в условиях, когда $\tilde{y}_{\nu} > \gamma$,

I. Сравнивая (3.1) и инкремент нелинейного рассеяния ленгмюровских волн на электронах, который имеет вид

$$\gamma_{\vec{k}_{1}} = -\frac{\sqrt{2\pi} \,\omega_{0}}{4\pi \,n_{0} \,T_{e}} \int (\frac{\vec{k}_{1} \,\vec{k}_{2}}{\vec{k}_{1} \,\vec{k}_{2}}) \frac{[\vec{k}_{1} \,\vec{k}_{2}] \,v_{T}^{2} \,\omega_{-}}{|\vec{k}_{-}|^{2} \,\omega_{0}^{2} \,|\vec{k}_{-}| \,v_{T}^{2}} |E_{\vec{k}_{2}} |d\vec{k}_{2}$$
(3.10)

при

$$\mathbf{v}_{\phi} \ll \mathbf{v}_{\mathrm{Te}} \left(\frac{\mathbf{m}_{1}}{\mathbf{m}_{e}}\right)^{1/3} \qquad \mathbf{H}$$

$$Y_{\vec{k}} = -\frac{\sqrt{2 \pi} \omega_{0e}}{16 \pi n_0 T_e} \int (\frac{\vec{k}_1 \vec{k}_2}{k_1 k_2})^2 |E_{\vec{k}}|^2 \frac{|\vec{k}_1|^3 v_{Te}^3}{\omega_1^3} (\frac{m_e}{m_1})^2 dk$$
(3.11)

при

$$v_{Te} \left(\frac{m_{i}}{m_{e}}\right)^{1/3} \ll v \ll v_{Te} \left(\frac{m_{i}}{m_{e}}\right)^{1/2}$$

получим в первом пределе

$$\Delta > T \frac{1/4}{D} N \frac{-1/2}{D} \mu \frac{-3/4}{V} V \frac{-5/2}{V}$$

Вместе с (2.11) это дает

$$\mu^{-1/3} > V > T^{1/10} \mu^{-5/18} N^{1/9}$$

Отсюда следует, что область, где соударения доминируют, существует при N $_{\rm D} \ll T^{-1/2} \mu^{-1/2}$, с другой стороны, из (2.5), имеем:

$$N_{\rm D} \gg \mu^{-1/2} T^{1/2}$$

что несовместимо.

Сравнивая (3.1) и (3.11), имеем:

$$\Delta > N_{D}^{-1/2} T^{1/4} \mu^{1/4} V^{1/2}$$

что вместе с (2.11) дает

$$\mu^{-1/2} > V > N_{D}^{1/3} T^{1/6} \mu^{-1/6}$$

Это неравенство совместно с (2.5) приводит к следующему результату:

$$\mu^{-1/2} > V > N_D^{1/3} T^{1/6} \mu^{-1/6}$$

откуда видно, что существует узкая область параметров плазмы, где инкремент эстафетной перекачки (3.1) больше (3.11).

II. Условие доминирования (3.2) над инкрементом рассеяния на электронах

$$\gamma_{\vec{k}_{1}} = \frac{\sqrt{2\pi\omega}_{00}}{16\pi n_{0}T_{0}} \int \left(\frac{\vec{k}_{1}\vec{k}_{2}}{\vec{k}_{1}\vec{k}_{2}}\right)^{2} |\vec{E}_{\vec{k}_{2}}|^{2} \frac{\omega_{-}}{|\vec{k}_{1}||\vec{v}_{T_{0}}} d\vec{k}_{2}$$
(3.12)

имеет вид

$$N > N_{D}^{-1/2} T^{7/4} \mu^{-1/4} V^{-1/4}.$$

Используя (2.11) и (2.12), получим

1

$$\mu^{-1/2} T^{1/2} > V > N_D^{2/3} \mu^{-1/3} T^{1/9}$$

отсюда

 $N_{D} < T^{7/4} \mu^{-3/4}$,

что согласуется с (2.13).

III . Превалирование инкремента (3.4) над бессоударительным инкрементом спектральной перекачки при рассеянии на ионах, равным

$$\gamma_{\vec{k}_{1}} = -\frac{\sqrt{2 \pi \omega_{0}}}{16 \pi n_{0} T_{e}} \int \left(\frac{\vec{k}_{1} \vec{k}_{2}}{\vec{k}_{1} \vec{k}_{2}}\right)^{2} |\vec{E}_{\vec{k}_{2}}|^{2} - \frac{\omega_{..} T_{1}}{|\vec{k}_{.}| v_{T_{1}} T_{e}} d\vec{k}_{2}, \qquad (3.13)$$

невозможно, ибо для этого необходимо, чтобы выполнялось условие

$$\Delta > N_{D}^{-1/2} \mu^{-1/2} V^{-1/2} T^{3/2}$$

или условие

 $N_{\rm D} < \mu^{3/4} T^{1/4}$,

которое получим, используя (2.14) и (2.15).

$$\mu^{-1/2} T^{1/2} < V < N_{D}^{-1/2} \mu^{1/4} T^{1/4}$$

что противоречит (2.16).

Наконец, в области IV, сравнивая (3.4) и (3.13), мы придем к аналогичному выводу об относительной малости эстафетной столкновительной перекачки.

Таким образом, даже в случае линейной дисперсии в подобластях I и II существуют области параметров плазмы, где интенсивность многократной эстафетной перекачки при учете соударений (и обязанной своим происхождением нелинейному взаимодействию ленгмюровских волн) превосходит интенсивность одновратной бессоударительной спектральной перекачки. При этом, однако, нужно отметить, что изменяется лишь ее интенсивность, но не направление. 4. Перейдем теперь к случаю нелинейной дисперсии, т.е. когда δω_>ω_. Величина δω_, характеризующая изменение дисперсионных свойств из-за нелинейного взаимодействия ленгмюровских волн, определяется в соответствующих областях выражениями (3.5) - (3.8).

Неравенства (1.2) и (1.3) приводят в данном случае к следующим условиям существования совместной области эстафетной и бессоударительной перекачек:

$$N_{D}^{-1} V \ll \Delta \ll N_{D}^{-1} V T^{2}$$
(4.1)

И

$$1 \ll V \ll N_D T^{-2}$$
. (4.2)

Рассмотрим сначала области I и III . Из уравнений (3.5) и (3.7) следует (см. также ^{/1,2/}), что в этих областях имеет место нелинейная диссипативная неустойчивость, которая может приводить к спектральной перекачке в направлении дробления масштаба турбулентности, в противопожность бессоударительному пределу.

I . Из (1.1) и (2.7) имеем неравенство

$$\nu_{i} \gg |\vec{k}| |v_{Ti} (T_{e}/T_{i})^{1/2}$$

или

$$\Delta \ll N_{\rm D}^{-1} V T^{3/2}.$$

Объединяя это условие с (4.1), получим:

$$N_{D}^{-1} V \ll \Delta \ll N_{D}^{-1} V (T)^{3/2}$$
, (4.3)

т.е. область изменения по Δ сузилась сверху. Условие $\delta \omega_{\perp} > \omega_{\perp}$ означает, что

$$W > \mu^{-1} V^{-4}$$
. (4.4)

Удовлетворяя неравенству (2.7), получим также

$$W > \mu^{1/2} V^{-1}$$
, (4.5)

с другой стороны, из (1.1) имеем:

$$W < \mu^{1/2} T^{9/2} V^2 N_D^{-3} \Delta^{-3} .$$
 (4.6)

Неравенства (4.4) и (4.5) определяют возможную область изменения относительной энергии шумов W .

Инкремент эстафетной перекачки на ∆k ≈ k в области гидродинамической нелинейной неустойчивости целесообразно сравнить с бессоударительными инкрементами (3.10) и (3.11), в которых теперь ω_ определяется выражением (3.5) ^{X)}.

Условие доминирования первого над (3.10) получается при

$$\Delta > V^{-1/2} W^{1/2}$$

Используя (4.3) и (4.4), имеем

$$\max \{ \mu^{-1} V^{-4}; \mu^{1/2} V^{-1} \} < W < V^{3} N_{D}^{-2} T^{3}$$

Вместе с (4.2) это дает

$$\max \{ \mu^{-1/7} N^{9/7} T^{-3/7} ; N^{1/2} \mu^{-3/4} T^{-3/4} \} < V < N_{\rm D} T^{-2},$$

откуда

x)

$$N_{D} > max \{ \mu^{1/4} T^{5/2} ; T^{11/5} \mu^{-1/5} \}.$$

Сравнивая (3.5) с (3.11) получим, что инкремент эстафетной перекачки больше бесстолкновительного при

$$W > \max \{ \Delta^{-6} V^{-1} \mu^2 ; \mu^{-1} V^{-4} \},$$

где учтено также (4.4).

^{*/} Подчеркнем, что только в случае изотропной или одномерной турбулентности ω_ определяется соотношением (3.5). Подробнее см.^{/4/}.

Совместно с (4.5) и (4.3) это приводит к следующему неравенству min { N $_{D}^{-1} \mu^{\frac{1}{2}}$ T $^{\frac{5}{2}}$ V²; T $^{\frac{3}{2}}$ N $_{D}^{-1}$ V } > Δ > max { N $_{D} \mu^{\frac{1}{2}}$ T $^{-3/2}$ V $^{-1}$; N $_{D}^{-1}$ V }.

Отсюда получим, используя (4.2),

$$N_{D}T^{-2} > V > max \{ N_{D}T^{3/2} \mu; \mu^{-1/2}T^{-3/2} \}$$

Поэтому

$$N_{\rm D} > \mu^{-1/2} T^{1/2}$$

Перейдем к исследованию нелинейного взаимодействия в области III. Из неравенства (2.9) получим следующее условие на относительную энергию шумов

$$\Delta^{3} N_{D} T^{-3/2} \mu^{1/2} V^{-5} < W < T^{9/2} \mu^{1/2} V^{-2} N_{D}^{-2} .$$
(4.7)

Инкремент, получаемый из (3.7), больше (3.13) при выполнении неравенства

$$W < \Delta^2 V^{-1} T^{1/2} \mu^{1/2}$$
.

Совместно с (4.7) получим,

$$\Delta < N_{D}^{-1} T^{2} V^{4}.$$

Используя (4.1) и (4.2):

или

$$\begin{array}{c} T^{2} > V > T^{-2/3} \\ N > T^{4/3} \end{array}$$

Аналогично, сравнивая (3.7) и (3.13) и используя неравенства (4.1), (4.2), можно получить

$$N_{\rm D} > \mu^{-1/4} T^{3/4}$$

Таким образом, мы видим, что существуют довольно широкие области параметров плазмы, где нелинейная гидродинамическая неустойчивость доминирует над соответствующей бесстолкновительной перекачкой.

Рассмотрим теперь области II и IV.

N

II. Из условия (2.8) и неравенства
$$\delta \omega_{-} > \omega_{-}^{2}$$
 имеем
 $V^{-1} \mu^{1/2} < W < \max \{ V^{-1} \mu^{1/2} T^{1/2}; \mu \}.$ (4.8)

Кроме того, из (1.1) и (4.1) получим

$$N_{D}^{-1} V < \Delta < \max \{ N_{D}^{-1} V T^{2}, N_{D}^{-1} V^{2} T^{3/2} \mu^{1/2} W \}.$$
(4.9)

Подставляя (3.6) в (3.2) и (3.12) и сравнивая их между собой, имеем

$$\Delta > V^{1/2} T^{5/4} \mu^{1/4} N^{-1/2}$$

Используя (4.8) и (4.9), приходим к условию

$$\min \{ \mu ; V^{-1} \mu^{1/2} T^{1/2} \} > W > V^{-3/2} \mu^{-1/4} N^{1/2} T^{-1/4},$$

откуда, вместе с (2.3) получим

$$N_{D}T^{-2} > V > max \{ \mu^{-3/2} N_{D}T^{-3/2}; \mu^{-5/6}N_{0}^{1/3}T^{-1/6} \}.$$

Таким образом, необходимо, чтобы

или

$$N_{D} > \mu^{-15/12} T^{11/4}$$

 $\mu^{3/2} > T^{1/2}.$

Так как последнее не выполнимо, то в рассматриваемой подобласти II нелинейные взаимодействия ленгмюровских волн, описываются бесстолкновительной теорией.

IV. В этой области выполняется неравенство (2.10). При этом изменение дисперсии определяется электронными соударениями (см. $^{/2,4/}$). Порядок величины $\delta \omega_{\perp}$ есть

$$\delta \omega_{-} \approx \omega_{0} \cdot \mathbf{W} \mathbf{N}_{\mathrm{D}}^{-1} \mathbf{V} \Delta^{-1} \cdot . \tag{4.10}$$

Используя (4.10) и (2.10), получим

$$W < N_D^2 V^{-3} \Delta^3 T^{-5/2} \mu^{1/2}$$

С другой стороны, из условия δ ω_ > ω_ следует

$$W > \Delta^2 N_{\rm D} V^{-3}.$$

Из двух последних условий имеем, используя (4.1),

$$N_{D}^{-1}VT^{2} > \Delta > \max \{ N_{D}^{-1}T^{5/2} \mu^{-1/2}; N_{D}^{-1}V \},$$

отсюда вместе с (4.2)

N

$$_{\rm D}$$
 T⁻² > V > T^{1/2} μ ^{-1/2}

или

$$N_D > T \frac{5/2}{\mu} - \frac{1/2}{2}$$
 (4.11)

Сравнивая (3.4) и (3.13), в которых ω_{-} определяется выражением (4.10), получим, что столкновительный инкремент больше бессоударительного при

$$V > N_D^{-1} T^2 .$$

Совместно с (4.2) это приводит к следующему условию

$$N_{p} > T^{2}$$
,

что находится в согласии с (4.11).

V. Вышеприведенный анализ показывает, что уже учет лишь ион-ионных соударений в плазме может коренным образом изменить нелинейное взаимодействие ленгмюровских волн в плазме. Действительно, даже в области достаточно малых фазовых скоростей $\mathbf{v}_{\phi} < \mathbf{v}_{T \cdot \mathbf{0}} N_D \left(\frac{T_1}{T_e}\right)^2$ влияние парных соударений в плазме на спектральную перекачку может быть определяющим. Это является следствием повышения интенсивности нелинейных взаимодействий ленгмюровских волн с учетом ион-ионных соударений, что приводит к возникновению эстафетной перекачки.

Следует, кроме того, обратить внимание на тот факт, что за исключением областей, где возможно возникновение гидродинамических нелинейных неустойчивостей, эстафетная перекачка приводит лишь к изменению интенсивности спектральной перекачки, оставляя неизменным ее направление. Это обстоятельство может оказать влияние на нелинейную стабилизацию пучковой неустойчивости в плазме ^{/5/}.

В областях, где возможно возникновение гидродинамических нелинейных неустойчивостей, картина взаимодействия очень сложна. Поэтому для качественного понимания нелинейных процессов в этом случае можно прибегнуть к рассмотрению взаимодействия бесконечно узких и близких пакетов ленгмюровских волн между собой х).

Следует отметить, что рассмотренное нелинейное дисперсионное уравнение (2.1) работы /2/ в случае взаимодействия бесконечно узких пакетов справедливо, лишь если интенсивность одного из них значительно больше другого. Это обстоятельство, однако, не противоречит рассматриваемой качественной картине.

Здесь мы опустим подробности подобного исследования (см.^{/6/}). Отметим, что в гидродинамически неустойчивой области возможно появление нелинейных неустойчивостей <u>гидродинамического и диссипативного</u> типа ^{/1/}, приводящих к разным физическим эффектам перекачки энергии по спектру в сторону больших **k** и расплыванию волнового пакета соответственно.

Здесь мы ограничились подробным качественным анализом ряда предельных случаев. Полный анализ всех эффектов численными методами практически оказывается затруднительным ввиду разнообразия взаимодействий, трехмерности процессов спектральной перекачки и т.п. Тем не менее без численных методов также трудно анализировать достаточно подробно рассмотренный эффект эстафетной перекачки. Поэтому следует сочетать качественные оценки и численные методы. В этом смысле в настоящей работе проделана лишь первая ее половина.

В заключение авторы считают своим приятным долгом выразить благодарность В.И.Цытовичу за полезные дискуссии.

Литература

1. В.Г.Маханьков, В.Н.Цытович. ЖЭТФ 53, №5 (1967).

2. В.Г.Маханьков, В.Н.Цытович. Препринт ОИЯИ Р-9-3373-2, г.Дубна, 1967 г.

3. В.Н.Цытович. Нелинейные эффекты в плазме, изд. "Наука", Москва, 1967г.

4. В.Г. Маханьков, В.Н.Цытович. ЖТФ, XXXVII, 1381 (1967).

5. В.Н.Цытович, В.Д.Шапиро. Ядерный синтез, 5, 228 (1965).

6. В.Г. Маханьков, В.Н.Цытович, Б.Г.Щинов. Препринт ОИЯИ Р-9-3394-2, Дубна 1967.

> Рукопись поступила в издательский отдел 31 января 1968 года.