ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Solid States of the

Дубна

P9 - 3448

С.Б. Ворожцов, Н.Л. Заплатин, Л.А. Саркисян

РАЗРАБОТКА МАГНИТНОЙ СИСТЕМЫ ЭЛЕКТРОННОЙ МОДЕЛИ ЦИКЛОТРОНА С ЖЕСТКОЙ ФОКУСИРОВКОЙ

Беритерия яденных пребаел

1967.

P9 - 3448

РАЗРАБОТКА МАГНИТНОЙ СИСТЕМЫ ЭЛЕКТРОННОЙ МОДЕЛИ ЦИКЛОТРОНА С ЖЕСТКОЙ ФОКУСИРОВКОЙ

В релятивистских сильноточных циклотронах электромагнитное поле цучка может вызвать изменение частот свободных колебаний, а также периода обрашения частиц, что особенно существенно, ввиду отсутствия фазовой устойчивости. В Лаборатории ядерных проблем Объединенного института ядерных исследований для экспериментального изучения влияния пространственного заряда на движение частиц создается электронная модель циклотрона с жесткой фокусировкой ^{/1/}. Модель представляет собой изохронный пиклотрон с внешней инжекцией и значениями частот бетатронных колебаний Q₁(t) = 1,1; 1,04 ≤ Q₁ < 2. Предельная энергия выбрана равной W₁ = 408,8 кэв, что позволит использовать резонансный метод вывода ускоренного пучка при Q₁ = 2.

В работе изложены результаты расчетного и экспериментального изучения магнитного поля токовых обмоток и найдены необходимые параметры всех элементов магнитной системы сооружаемого ускорителя.

Требования к магнитному полю электронной модели циклотрона

Магнитное поле электронной модели в медианной плоскости (z = 0) зада-

$$H_{x}(r,\Phi) = H(r) \left[1 + \epsilon_{N}(r) \cos\left(\frac{r}{\lambda} - N\Phi\right) \right], \qquad (1)$$

Среднее магнитное поле H(t) и амплитуда гармоники H_N(t) = ε_N(t) H(t) для параметров электронной модели, приведенных в таблице 1, изображены на

рис. 1. Эти зависимости получены путем анализа уравнений движения для заряженных частиц в поле вида (1) на основе численных расчетов, проведенных на электронно-вычислительной машине (ЭВМ). С достаточной степенью точности эти зависимости могут быть получены из следующих приближенных выражений /2/

$$H(r) = \frac{H_{0}r}{\sqrt{1 - (\frac{r}{r})^{2}}}, \qquad (2)$$

$$e(r) \approx \frac{N\frac{1}{N}}{r} \left\{ \left(Q_{\pi}^{2} + n\right) \frac{1 - \frac{1 + n}{N^{2}}}{1 - \frac{1 + n}{2N^{2}} + \frac{1}{2} \left(\frac{N\frac{1}{N}}{r}\right)^{2}} \right\}^{1/2},$$
 (3)

$$r(r) \approx 1 - \frac{\epsilon^2}{2(N^2 - 1 - n)(1 + n)} \left[2 - \frac{N^2}{2(N^2 - 1 - n)} + n + r\frac{\epsilon'}{\epsilon}\right] + \frac{\epsilon^2 N^2}{4(N^2 - 1 - n)^2}$$
(4)

где $t_{\infty} = \frac{E_0}{eH_0}$, а п и ϵ' рассчитываются из (2) и (3) при r = 1 согласно(5).

Таблица І

Энергия ускоренных электронов	₩ = 408,8 кэв
Энергия инжекции	₩ ₀ ≈ 5,7 кэв
Радиус конечной орбиты	r <mark>= 100,7</mark> см
Радиус, соответствующий бесконечной энергии	r _∞ = 121,23 cM
Напряженность магнитного поля в центре (r =0)	Н_≐ 14,06 э
Напряженность магнитного поля на радиусе инжекци	н Н(т _н)= 14,01 э
Напряженность магнитного поля на конечном радиус	е H(r _k) =24,45 э
Периодичность структуры магнитного поля	N = 8
Радиальный шаг структуры магнитного поля	$\frac{1}{1}$ = 8 cm
Вариация поля на конечном радиусе	r(r) = 1.062

Частота аксиальных колебаний

Частота радиальных колебаний

$$Q_{r}(r) = 1, 1, \frac{1}{-0,05}$$

 $1,04 \le Q_{r} \le 2,0$
 $2eV_{r} = 1,5$ KBB.

$$n = \frac{(r/r_{\infty})^2}{1 - (r/r_{\infty})^2}, \quad \epsilon' = \frac{\epsilon}{2(Q_z^2 + n)} [n' - \frac{2r}{N^2 \lambda^2} \epsilon^2], \quad n' = \frac{2r_{\infty}^2}{r^3} n^2.(5)$$

При допустимом изменении частоты аксиальных колебаний $\Delta Q_x = {}^{+0,20}_{-0,05}$ допуск на величину 8-ой гармоники поля на конечном радиусе равен $\Delta H_g = {}^{-0,49}_{-0,49}$. Допуск на величину среднего поля при максимальном наборе энергии за оборот $2eV_0=1,5$ кэв составляет $\frac{\Delta H}{H}=+2,5\cdot10^{-3}$. При допустимом увеличения амплитуды свободных радиальных колебаний до 1 см первая и вторая гармоника вертикальной компоненты с ростом радиуса не должна превышать $H_x^{(1)}=(0,06-0,25)$ э и $H_z^{(2)}=(2,1-0,15)$ э. Третья гармоника при увеличении амплитуды радиальных колебаний на 20% не должна превышать $H_x^{(3)}=0,06$ э на $r = (86,5\pm0,1)$ см. Среднее значение и первая гармоника радиальной компоненты поля для смещения по вертикали $\Delta z = \pm0,3$ см должны находиться в пределах от $H_x^{(0)}=\pm2,5$ э и $H_x^{(1)}=0,06$ э при r = 18 см до $H_x^{(0)}=\pm0,8$ э и $H_x^{(1)}=0,02$ э при r = 100 см.

Для ускорения электронов в интервале радиусов Аг =(18-101) см заданное магнитное поле модели с требуемыми допусками должно быть сформировано в интервале радиусов Аг =(17,5 - 104) см. Это связано с конфигурацией равновесной орбиты и наличием амплитуды свободных радиальных колебаний.

Разработка магнитной системы электронной модели циклотрона Определение параметров гармонической и концентрических обмоток

Создание требуемой конфигурации магнитного поля электронной модели циклотрона осуществляется двумя независимыми системами обмоток - гармонической и концентрических.

Для формирования необходимого закона варнации гармоническая обмотка может быть выполнена в виде плоской токовой системы с переменной величиной

угловой протяженности между витками элемента периодичности и переменным числом витков ^{/3/}. Однако это приводит к появлению в структуре магнитного поля высших гармоник с достаточно большими амплитудами, которые заметно влияют на частоту аксиальных колебаний. Кроме того, соотношение амплитуд гармоник не остается постоянным вдоль радиуса, и фазы различных гармоник не совпадают друг с другом. Это приводит к некоторым затруднениям при формулировании требований к магнитному полю и значительно усложняет расчетные программы для определения параметров магнитной системы.

В электронной модели циклотрона требуемая зависимость амплитуды основной гармоники вдоль радиуса создается за счет изменения вертикального зазора 2 h между витками гармонической обмотки²². Это позволяет выбрать угол между прямым и обратным витком элемента периодичности постоянным и равным $\frac{\pi}{N}$, при котором амплитуды высших гармоник оказываются незиачительными. Гармоническая обмотка представляет собой систему двух симметрично расположенных относительно средней плоскости ускорителя одиночных проводников, уложенных по линиям спиралей Архимеда $t = N \lambda \Phi$ и дугам окружностей R_{μ} и R_{μ} (рис. 2).

Магнитное поле вариационной обмотки в предположении, что ток протекает по осевой линии проводника для плоскости z = 0 может быть записано в виде /2/

$$H(r, \Phi) = N H(r) + N \sum_{m=1}^{\infty} H_{mN} \cos \left(\beta_{mN} - m N \Phi\right),$$

$$H_{mN} = \sqrt{\left(A_{mN}^{(1)} + A_{mN}^{(2)}\right)^{2} + \left(B_{mM}^{(1)} + B_{mN}^{(2)}\right)^{2}},$$

$$\beta_{mN} = \arctan \left(\frac{B_{mN}^{(1)} + B_{mN}^{(2)}}{A_{mN}^{(1)} + A_{mN}^{(2)}},$$
(6)

где mN – номер гармоники, $A_{m,N}^{(1)}$, $B_{m,N}^{(1)}$ и $A_{m,N}^{(2)}$, $B_{m,N}^{(2)}$ – компоненты Фурье поля концентрических и свиральных участков элемонта периодичное ти.

$$\begin{pmatrix} A_{m}^{(1)} \\ B_{m}^{(1)} \end{pmatrix} = (-1) \frac{0.4 J}{m \pi \sqrt{r}} \sum_{i=1}^{2} \sin \left(m \frac{a_{i}}{2} \right) \frac{2_{1}}{\sqrt{R_{i}}} \left\{ \frac{2R_{i}}{r} \left(x_{i}^{2} + x_{i} \frac{dx_{i}}{dr} r - 1 \right) \right\}$$

$$\cdot \frac{d}{dx_{i}} Q_{m-1/2}(x_{i}) + Q_{m-1/2}(x_{i}) \left\{ \begin{bmatrix} \cos m \beta (r'_{i}) \\ \sin m \beta (r'_{i}) \end{bmatrix} \right\},$$

$$\left(\begin{pmatrix} A_{m}^{(2)} \\ B_{m}^{(2)} \\ m \end{pmatrix} \right) = (-1) \frac{0.4 J}{\pi \sqrt{r}} \sin \left(m \frac{a_{2}}{2} \right) \int_{R_{H}}^{R_{k}} \left\{ \frac{2m}{r'} Q_{m-1/2}(x) \cos m \beta (r') + \frac{1}{a} \left[2(x - \frac{r'}{r}) \frac{d}{dx} Q_{m-1/2}(x) + Q_{m-1/2}(x) \right] \right\}$$

$$\left(\begin{bmatrix} \sin m \beta (r') \\ \cos m \beta (r') \end{bmatrix} - \frac{dr'}{\sqrt{r'}} \right)$$

$$\left(\begin{bmatrix} \sin m \beta (r') \\ \cos m \beta (r') \end{bmatrix} - \frac{dr'}{\sqrt{r'}} \right)$$

Здесь $\beta(\mathbf{r}'_1) = \frac{\mathbf{R}_H}{\mathbf{a}} + \theta_0 - \frac{\pi}{\mathbf{N}}$, $\beta(\mathbf{r}'_2) = \frac{\mathbf{R}_k}{\mathbf{a}} + \theta_0$, $\beta(\mathbf{r}') = \frac{\mathbf{r}'}{\mathbf{a}} + \theta_0$, $\mathbf{a} = \mathbf{N}\lambda$, θ_0 - угол между касательной к средней линии элемента периодичности и осью $\Phi = 0$ в начале координат, a_1 и a_2 - углы азимутальных участков 1 и 2 элемента периодичности (рис. 2), $\mathbf{R}_1 = \mathbf{R}_H$, $\mathbf{R}_2 = \mathbf{R}_k$, $Q_{m-1/2}(\mathbf{x}) = \frac{\mathbf{d}}{\mathbf{d}\mathbf{x}} Q_{m-1/2}(\mathbf{x}) -$ - сферическая функция Лежандра II -го рода и ее производная аргумента $\mathbf{x} = \frac{\mathbf{r'}^2 + \mathbf{r}^2 + \mathbf{h}^2}{2\mathbf{r}'\mathbf{r}}$.

При численных расчетах на ЭВМ поля по выражению (7) использовались интегральные представления функций Лежандра и их производных

$$Q_{m-1/2}(x) = \int_{0}^{\pi} \frac{\cos m \theta}{(2x-2\cos \theta)^{1/2}} d\theta,$$

$$\frac{d}{dx} Q_{m-1/2}(x) = (-1) \int_{0}^{\pi} \frac{\cos \pi \theta}{(2x - 2\cos \theta)^{3/2}} d\theta$$

Для обеспечения необходимой точности шаг интегрирования был выбран $\Delta \theta = 0,02$ радиан, $\Delta r' = 1,5$ см. Зависимость h(r) задавалась таблицей, выборка данных из которой производилась с помощью квадратичной интерполяции.

Анализ расчетов амплитуды и фазы основной гармоники производился по отклонению рассчитанного поля от заданного закона и смещению фазы максимума основной гармоники β(r) от средней линии элемента периодичности обмотки согласно

$$\Delta H_{\mathfrak{g}} = H_{\mathfrak{g}}^{\mathfrak{p}} - H_{\mathfrak{g}}^{\mathfrak{s}}, \qquad (8)$$

$$\Delta \Phi_{\mathfrak{g}} = \frac{1}{N} \left[\beta(\mathfrak{r}) - \frac{\mathfrak{r}}{\frac{1}{N}} \right].$$

Величина тока гармонической обмотки I = 700 а была выбрана из условия создания необходамой глубины вариации поля на конечных радиусах при минимальном зазоре 2 h = 10 см и значении угла элемента периодичности $\alpha = \pi/8$. Этот выбор был осуществлен по формуле для расчета амплитуд гармоник от бесконечной системы прямолинейных токов.

$$H_{mN}(r) = \frac{0, 81}{m\lambda_{3\phi}} e^{-m\frac{h}{\lambda_{3\phi}}} \sin(mN\frac{\alpha}{2}), \qquad (9)$$

где

$$\dot{\mathbf{x}}_{\ni \phi} = \frac{5 \dot{\mathbf{x}}}{\sqrt{1 + \left(\frac{N \dot{\mathbf{x}}}{T}\right)^2}}.$$

Формирование амплитуды основной гармоники поля в заданных допусках вдоль радиуса осуществлялось путем выбора несбходимой зависимости h(r) по формуле (9). Окончательные параметры гармонической обмотки были получены путем коррекции h(r) на основании расчетов по формулам (6). Расчеты показали, что для формирования вариации в рабочем интервале радиусов начальный и конечный радиусы гармонической обмотки могут быть приняты равными R_H = 10 см и R_k = 114 см. В качестве проводника обмотки будет использована медная трубка с диаметром Φ (0,8 к 0,15) см.

На рис. З показаны результаты расчета основной гармоники поля и отклонения фазы максимума гармоники от средней линии элемента периодичности для окончательного выбранного профиля гармонической обмотки, приведенного в таблице II . Видно, что отклонения вариации поля в интервале радиусов $\Delta t =$ =(18-101) см не превышают допустимых величия, определяемых значениями частот Q_z=1,05 к Q_z=1,30 (кривая 1). При: учете характера отклонения фазы основной гармоники $\Delta \Phi_{b}$ на конечных радиусах (t> 90 см) появляется дополнительная фокусировка в вертикальном направлении, приводящая к уменьшению требуемой амилитуды основной гармоники согласно

$$\Delta H_{g} = -N \frac{1}{\lambda} H_{g} \frac{d}{dr} \left(\Delta \Phi_{g} \right).$$
 (10)

Оценки показали, что при учете реального характера отклонения фазы $\Delta \Phi_{\mathfrak{g}}$ вариация поля сформирована в допусках до радиуса г = 105 см (кривая 2).

Для иллюстрации магнитного поля гармонической обмотки на рис. 4 приведены радиальные зависимости амплитуды и фазы 8-ой гармоники от участков элемента периодичности, обозначенных (1,2) и (3,4) на рис. 2. Отметим, что магнитное поле азимутальных участков 1 и 2 уменьшает краевой эффект в амплитуде и фазе спиральных участков 3 и 4 при суперпозиции их полей.

На рис. 5 приведены результаты расчета амплитуды и фазы 24-ой гармоники поля гармонической обмотки. Амплитуда 24-ой гармоники максимальна на конечном раднусе и не превышает = 17% от основной. Оценки показали, что наличие в структуре поля этой гармоники практически не влияет на динамические свойства орбит.

Азимутальные участки 1 и 2 гармонической обмотки наряду с вариацией создают также среднее магнитное поле, зависимость которого от радиуса приведена на рис. 6 (кривая 1). На этом же рисунке приведено среднее магнитное поле, которое должно быть сформировано с помощью аксиально-симметричных обмоток (кривая 2). Эта кривая получена как разность между требуемым изохронным законом среднего поля и суммой средних полей гармонической обмотки и вертикальной составляющей магнитного поля Земли, которая принята равной 0,5 э.

Формирование среднего поля в заданных допусках осуществлялось с помощью 13 обмоток грубой коррекции. Определение необходимого тока в этих обмотках производилось на ЭВМ методом наименьших квадратов. Узловые точки в рабочем диапазоне радиусов брались с интервалом $\Delta t = 1,0$ см. Для случая, когда магнитное поле отдельных обмоток аппроксимировалось полем витка, требуемые значения токов IW_1 приведены в таблице III. Полные эллиптические интегралы I -го и II -го рода в формуле магнитного поля витка определялись с помощью представления их гипергеометрическим рядом. В расчете использовалось 20 членов ряда. Отклонения рассчитанного среднего поля от требуемого не превышает допуска (кривая 1 ряс. 7). На основании этих расчетов было выбрано сечение обмоток при максимальной плотности тока

ј =100 а/см² и коэффициенте заполнения, равном 0,3. Обмотки № 1,12 и 13 выполнены в виде одиночных трубчатых проводников Ф (0,8 х 0,15) см. Дальнейшее уточнение ампервитков производилось тем же методом, но магнитное поле рассчитывалось с учетом выбранных размеров поперечного сечения. Параметр локалязации Δ , характеризующий радиальный размер вокруг точки наблюдения, в которой учитывается конечность размеров обмоток, был принят равным $\Delta =\pm 20$ см. При расчете магнитного поля обмоток узловые точки были выбраны равными $\Delta t =1,0$ см и $\Delta t =0,5$ см в диапазоне радиусов (18-98) см и (98-108) см, соответственно. Окончательные параметры и ампервитки $I W_2$ обмоток грубой коррекции, полученные на основе этих расчетов, приведены в таблице Ш. Видно, что значения ампервитков обмоток IW_1 и IW_2 незначительно отличаются друг от друга, а отклонения поля не превышают допуска (кривая 2). Поэтому во всех дальнейших рассмотрениях использовалось среднее поле, рассчитанное по формуле витка.

Для отклонения среднего поля, представленного на рис. 7 кривой 1, смещение фазы частицы, рассчитанное по формуле /4/

$$\Delta \Psi = \arcsin\left(-\frac{\pi E_0}{e V_0 r_\infty^2 H_0 r_H} \int \Delta H(r) r dr\right)$$
(11)

не превышает 1,5⁰ при наборе энергии за оборот 1,2 кэв (рис. 7), а изменение частоты аксиальных колебаний Q_x, обусловленное характером зависимости среднего магнитного поля от радиуса не превышает <u>+0</u>,01.

В магнитной системе электронной модели предусмотрена специальная система 24-х концентрических обмоток - обмоток тонкой коррекции, предназначенная для компенсации электромагнитного поля пучка, стабилизации топографии магнитного поля или стабилизации фазы пролета пучка относительно ускоряюшего промежутка. Эти обмотки позволят также исправить ошибки среднего поля, которые могут возникнуть за счет неточного изготовления элементов магнитной системы. Выбранные параметры этих обмоток приведены в таблице IV.

Схема основных элементов магнитной системы электронной модели, формирующих вариацию и среднее поле, приведена на рис. 8. При проектировании магнитной системы модели были приняты следующие допуски на точность выполнения различных параметров этой системы:

a) вариационная и одновитковые концентрические обмотки: ΔR =+0,02 см,
 Δh =+0,015;

6) многовитковые концентрические обмотки : $\Delta R = \pm 0.15$ см, $\Delta h = \pm 0.05$ см. Оценки максимальных ошибок поля при этих допусках приводят к значениям: $H_{z}^{(1)}=0.3$ э, $H_{z}^{(2)}=0.35$ э, $H_{z}^{(3)}=0.1$ э, $H_{z}^{(6)}=0.25$ э, $H_{z}^{(0)}=0.8$ э, $H_{z}^{(1)}=0.25$ э. Видно, что наибольшую опасность для движения частиц в ускорителе может представлять первая гармоника вертикальной и радиальной компоненты поля, поскольку в магнитной системе модели не продусмотрены токовые обмотки для коррекции этих гармоник.

2. Эксперименты на модели гармонической обмотки

Для исследований точности формирования вариации поля при практическом исполнении гармонической обмотки из проводника конечного сечения были проведены эксперименты с плоской гармонической обмоткой при коэффициенте подобия по радиусу k =2,23.

Вариационная обмотка (рис. 9) была изготовлена из трубчатого проводника Φ (0,7 X 0,15) см и смонтирована на дюралевых дисках с точностью $\Delta h =\pm 0,15$ см, $\Delta R =\pm 0,1$ см, $\Delta a =\pm 0,2^{\circ}$, $\Delta \lambda =\pm 0,2$ см. Горизонтальность дисков проверялась с помощью уровня.

Измерения вертикальной H_и и радиальной H_и компонент поля осуществлялись с помощью магнитометров с пермаллоевыми датчиками, отградуиро-

ванных с точностью $\pm 0,03\% \pm 0,002$ э в диапазоне полей ± 100 э при градиенте 5 э/см^{/5/}. Датчик магнитометра располагался на измерительной штанге с точностью $\Delta z = \pm 0,05$ см, $\Delta r = \pm 0,05$ см и $\Delta \Phi = \pm 0,1^{\circ}$.

Эксперименты проводились при токе обмотки I =250 а, который устанавливался с точностью ±2·10⁻³ и стабилизировался с точностью ±5·10⁻⁴.

На рис. 10 приведены экспериментальные и расчетные распределения среднего поля, 8-ой и 24-ой гармоник, а также отклонение фазы 8-ой гармоники от $\frac{t}{N_{\Lambda}^{4}}$ при зазоре между проводниками 2h = 5,8 см в интервале радиусов $\Delta t = (27-51)$ см. Отличие экспериментальных значений поля от расчетных, полученных по формулам (6) на радиусах $t \leq (R_{k}-2h)$, не превышает 1,6% для основной гармоники и $\pm 3\%$ – для среднего поля. Оценки по формуле (10) показывают, что несовпадение отклонений фаз 8-ой гармоники $\Delta \Phi_{g}$ должно быть учтено при формировании основной гармоники на конечных радиусах. Величины низших гармоник H и H, составляющих поля не превышают 0,4 э и 0,03 э, соответственно. В этих экспериментах при определении среднего поля H составляющей и первой гармоники H, составляющей учитывалось магнитное поле Земли, соответствующие компоненты которого равны $H_{g}^{(0)}=0,41$ э и $H_{g}^{(1)}=0,15$ э (рис. 11). Приведенные выше отклонения экспериментальных значений поля от расчетных могут быть объяснены точностью изготовления вариационной обмотки и нэмерительной штанги.

Таким образом, можно утверждать, что выбор параметров вариационной обмотки электронной модели может быть выполнен по приведенным выше формулам (6).

Выбор числа измеряемых равностоящих по азимуту (0-2π) точек 2ν определялся требуемой точностью выделения гармоник поля при минимально возможном числе этих точек. При структуре магнитного поля с периодичностью N число точек 2ν не должно равняться (2m+1)N и 2mN из-за требований к точности определения среднего поля и основной гармоники и быть достаточно большим при использовании практических методов гармонического анализа

Для магнитной системы электронной модели при N = 8 и α = π/8 в структуре поля присутствуют лишь нечетные высшие гармоники, максимальные значения которых составляют H₂₄ =3,0 э, H₄₆=0,4 э, H₅₆=0,06 э. Так как эти

гармоники превышают допуск на среднее магнитное поле, число измеряемых точек 2 и не должно равняться 24, 40, 56.

Определение минимального числа точек 2*ν* было осуществлено экспериментально на модели вериационной обмотки. Результаты этих экспериментов сведены в таблице *V*, в которой приведены максимальные ошибки среднего иоля и основной гармоники в зависимости от числа измеряемых точек.

2 v	30	36	40	45	48	60	72	90	
$\frac{H^{2\nu} - H}{\delta} = \frac{H^{2\nu}}{H}$	10 [°] <u>+</u> 2,9	<u>+6</u> ,2	<u>+</u> 34,8	<u>+</u> 9,0	<u>+</u> 2,6	<u>+</u> 1,3	<u>+</u> 3,5	<u>+</u> 2,7	
$\frac{H_{r}^{2\nu}-H_{B}}{H_{B}}$	- 10 0,20	0,03	0,07	0,05	0,72	0,06	0,01	0,01	

Таблица V

Солятая H_{c} г. с. получень иль 2: = 180. На основании этих экспериментов для определения среднего поля и вариации с точностью $\frac{\Delta H_{0}}{H_{0}} = \pm 2.5 \cdot 10^{-3}$ и $\frac{\Delta H_{8}}{H_{0}} = \pm 6.4 \cdot 10^{-2}$ измерения на модели гармонической обмотки проводились при $\frac{2}{\nu} = 60$.

Компенсация горязонтальной составияющей магнатарго пола Земля

Так, в Окрыдже на слектронной молост Mc^2 замале И) горизонтальна компонента воличиной 0,2 в приводила к потера замлай (4-5 раз) на радлусе (* 20 см., соответствующему разлостному резоналсу селат $Q_r - Q_z = 1$. При компенсации этой компоненты поля потери лучка на данном воднусе не наблюдались /7/.

Поскольку в элементарной модели циклотрона с жесткой фокуситськой частота аксиальных колебаний близка к единице во всем диапазоне радиусов (Q_z(t) = 1,1), то компенсация горизонтальной компоненты поля до.жил осуществляться во всей области ускорения. Ввиду ограниченности пространства, где могла располагаться система компенсации применение пары катушек Гельмгольца^{77,87} было исключено. Компенсация поля в электронной модели ЛЯП будет осуществлена с помощью двух прямолинейных проводников с одинаковым направлением тока, расположенных по одну сторону от средней плоскости (рис. 12а). Практическое выполнение этой системы компенсации показано на рис. 12в. При указанных на этом рисунке направлениях тока в проводниках 1,2,3,4 и $\xi \gg 2h$ горизонтальные компоненты поля H₂ и H₂ от системы записываются в энде:

$$H_{x} = 0,11 \ i \frac{h}{h^{2} + (s-x)^{2}} \left[\cos(\operatorname{arc ctg} \frac{\ell - y}{\sqrt{h^{2} + (s-x)^{2}}}) + \cos(\operatorname{arc ctg} \frac{\ell + y}{\sqrt{h^{2} + (s-x)^{2}}}) \right] + \frac{1}{\sqrt{h^{2} + (s-x)^{2}}} \left[\cos(\operatorname{arc ctg} \frac{\ell - y}{\sqrt{h^{2} + (s-x)^{2}}}) + \cos(\operatorname{arc ctg} \frac{\ell - y}{\sqrt{h^{2} + (s-x)^{2}}}) \right] + \frac{1}{\sqrt{h^{2} + (s-x)^{2}}} \left[\cos(\operatorname{arc ctg} \frac{\ell - y}{\sqrt{h^{2} + (s-x)^{2}}}) + \cos(\operatorname{arc ctg} \frac{\ell - y}{\sqrt{h^{2} + (s-x)^{2}}}) \right] + \frac{1}{\sqrt{h^{2} + (s-x)^{2}}} \left[\cos(\operatorname{arc ctg} \frac{\ell - y}{\sqrt{h^{2} + (s-x)^{2}}}) + \cos(\operatorname{arc ctg} \frac{\ell - y}{\sqrt{h^{2} + (s-x)^{2}}}) \right] + \frac{1}{\sqrt{h^{2} + (s-x)^{2}}} \left[\cos(\operatorname{arc ctg} \frac{\ell - y}{\sqrt{h^{2} + (s-x)^{2}}}) + \cos(\operatorname{arc ctg} \frac{\ell - y}{\sqrt{h^{2} + (s-x)^{2}}}) \right] + \frac{1}{\sqrt{h^{2} + (s-x)^{2}}} \left[\cos(\operatorname{arc ctg} \frac{\ell - y}{\sqrt{h^{2} + (s-x)^{2}}}) + \cos(\operatorname{arc ctg} \frac{\ell - y}{\sqrt{h^{2} + (s-x)^{2}}}) \right] + \frac{1}{\sqrt{h^{2} + (s-x)^{2}}} \left[\cos(\operatorname{arc ctg} \frac{\ell - y}{\sqrt{h^{2} + (s-x)^{2}}}) + \cos(\operatorname{arc ctg} \frac{\ell - y}{\sqrt{h^{2} + (s-x)^{2}}}) \right] + \frac{1}{\sqrt{h^{2} + (s-x)^{2}}} \left[\cos(\operatorname{arc ctg} \frac{\ell - y}{\sqrt{h^{2} + (s-x)^{2}}}) + \cos(\operatorname{arc ctg} \frac{\ell - y}{\sqrt{h^{2} + (s-x)^{2}}}) \right] + \frac{1}{\sqrt{h^{2} + (s-x)^{2}}} \left[\cos(\operatorname{arc ctg} \frac{\ell - y}{\sqrt{h^{2} + (s-x)^{2}}}) + \cos(\operatorname{arc ctg} \frac{\ell - y}{\sqrt{h^{2} + (s-x)^{2}}}) \right] + \frac{1}{\sqrt{h^{2} + (s-x)^{2}}} \left[\cos(\operatorname{arc ctg} \frac{\ell - y}{\sqrt{h^{2} + (s-x)^{2}}} \right] + \frac{1}{\sqrt{h^{2} + (s-x)^{2}}} \left[\cos(\operatorname{arc ctg} \frac{\ell - y}{\sqrt{h^{2} + (s-x)^{2}}} \right] + \frac{1}{\sqrt{h^{2} + (s-x)^{2}}} \left[\cos(\operatorname{arc ctg} \frac{\ell - y}{\sqrt{h^{2} + (s-x)^{2}}} \right] + \frac{1}{\sqrt{h^{2} + (s-x)^{2}}} \left[\cos(\operatorname{arc ctg} \frac{\ell - y}{\sqrt{h^{2} + (s-x)^{2}}} \right] + \frac{1}{\sqrt{h^{2} + (s-x)^{2}}} \left[\cos(\operatorname{arc ctg} \frac{\ell - y}{\sqrt{h^{2} + (s-x)^{2}}} \right] + \frac{1}{\sqrt{h^{2} + (s-x)^{2}}} \left[\cos(\operatorname{arc ctg} \frac{\ell - y}{\sqrt{h^{2} + (s-x)^{2}}} \right] + \frac{1}{\sqrt{h^{2} + (s-x)^{2}}} \left[\cos(\operatorname{arc ctg} \frac{\ell - y}{\sqrt{h^{2} + (s-x)^{2}}} \right] + \frac{1}{\sqrt{h^{2} + (s-x)^{2}}} \left[\cos(\operatorname{arc ctg} \frac{\ell - y}{\sqrt{h^{2} + (s-x)^{2}}} \right] + \frac{1}{\sqrt{h^{2} + (s-x)^{2}}} \left[\cos(\operatorname{arc ctg} \frac{\ell - y}{\sqrt{h^{2} + (s-x)^{2}}} \right] + \frac{1}{\sqrt{h^{2} + (s-x)^{2}}} \left[\cos(\operatorname{arc ctg} \frac{\ell - y}{\sqrt{h^{2} + (s-x)^{2}}} \right] + \frac{1}{\sqrt{h^{2} + (s-x)^{2}}} \left[\cos(\operatorname{arc ctg} \frac{\ell - y}{\sqrt{h^{2} + (s-x)^{2}}} \right] + \frac{1}{\sqrt{h^{2} + (s-$$

$$+\frac{h}{h^{2}+(s+x)^{2}}\left[\begin{array}{c}\cos\left(\arccos \, \csc \, \csc \, \csc \, \frac{\ell-y}{\sqrt{h^{2}+(s+x)^{2}}}\right)+\cos\left(\arccos \, \csc \, \csc \, \csc \, \frac{\ell+y}{\sqrt{h^{2}+(s+x)^{2}}}\right)\right]\right\},$$
(12)

$$H_{y} = 0, 1 I \left\{ \frac{h}{h^{2} + (\ell - y)^{2}} \left[\cos\left(\operatorname{arc ctg} \frac{s - x}{\sqrt{h^{2} + (\ell - y)^{2}}} \right) + \cos\left(\operatorname{arc ctg} \frac{s + x}{\sqrt{h^{2} + (\ell - y)^{2}}} \right) \right] - \sqrt{h^{2} + (\ell - y)^{2}}$$

$$-\frac{h}{h^{2} + (\ell + y)^{2}} \begin{bmatrix} \cos(\operatorname{arc} \operatorname{ctg} \frac{s - x}{\sqrt{h^{2} + (\ell + y)^{2}}} + \cos(\operatorname{arc} \operatorname{ctg} \frac{s + x}{\sqrt{h^{2} + (\ell + y)^{2}}} \end{bmatrix} + .$$

Смысл принятых обозначений ясен из рис. 12.

Расчеты, выполненные по этим формулам, показывают, что цри нараметрах системы 2 h = 460 см, 2 s = 220 см, 2 ℓ = 500 см, 380 см. I =150 а неоднородность H_x и H_y компонент не превышает 105 нисть до $\frac{x}{s} = \frac{y}{s} = 1$.

Для компенсации горизонтальной компоненты одгочитного поля Земли катушка должна располагаться так, чтобы ее проводники 2 и 4 были перпендикулярны направлению магнитного меридиана. Экспериментальное исследование магнитного поля этой системы было проведено при коэффициенте подобия k =2,37. Азимутальные измерения поля показали, что при токе в проводниках l = 80 а первая гармоника радиальной компоненты, обусловленная горизонтальной составляющей магнитного поля Земли величиной 0,15 э, была уменьшена до значения 0,02-0,03 э на всех радиусах вплоть до t/s =1. Среднее значение вертикальной компоненты поля катушки постоянно с радиусом и составляет -0,2 э, а амплитуда первой гармоники в интервале рабочих радиусов возрастает с 0,03 до 0,08 э.

4. Компенсация нормальной компоненты магнитного поля вдоль тракта инжекции

В электронной модели циклотрона предусмотрена как внутренняя, так и внешняя инжекция пучка электронов с энергией ~ 5,7 кэв. В случае внешней инжекции электроны из источника движутся в вертикальном фокусируюшем тракте длиной ~ 80 см ^{/0/}. Ось тракта пересекает среднюю линию элемента периодичности гармонической обмотки на радиусе r = 18 см. Для перевода пучка в среднюю плоскость ускорителя (z = 0) на радиусе инжекции предполагается использовать девяностоградусный электростатический инфлектор с радиусом кривизны $\rho = 4$ см.

С целью исследования воздействия поля магнитной системы модели на движение электронов вдоль тракта были рассчитаны нормальная H_n и тангенциальная H₋-компоненты поля согласно выражениям:

$$H_{n} = \sqrt{(H_{n}^{*})^{2} + H_{r}^{2}},$$

$$\beta_{n} = \operatorname{arc} \operatorname{tg} \frac{H_{r}}{H_{n}^{*}},$$

$$H_{t} = H_{rt} + H_{\phi t},$$
(13)

где

$$H_{n}^{*} = (H_{z}^{(0)} + H_{z}^{(8)}) \sin \alpha - H_{\phi} \cos \alpha ,$$
$$H_{r} = H_{r}^{(0)} + H_{r}^{(8)} ,$$

$$H_{zt} = (H_{z}^{(0)} + H_{z}^{(0)}) \cos \alpha$$
$$H_{\phi t} = H_{\phi}^{(0)} \sin \alpha ,$$
$$\alpha = \arcsin \frac{\rho - z}{\rho}$$

Расчет вертикальной H⁽⁰⁾ и горизонтальной H⁽⁰⁾, компонент поля катушек грубой коррекции и азимутальных участков гармовических катушек производился по формулам витка.

Компоненты магнитного поля $H_{t}^{(6)}$, $H_{t}^{(8)}$, $H_{\phi}^{(8)}$ от спиральных участков гармонических катушек определялись по приближенным формулам:

$$H_{\pi}^{(8)} = \frac{0,4I}{\lambda_{9\phi}} e^{-\frac{|\zeta|}{\lambda_{9\phi}}} \cos N\Phi, \qquad (14)$$

$$H_{\pi}^{(8)} = \frac{0,4I}{\lambda_{9\phi}} e^{-\frac{|\zeta|}{\lambda_{9\phi}}} \sin N\Phi. \sin \mu, \qquad (14)$$

$$H_{\Phi}^{(8)} = \frac{0,4I}{\lambda_{9\phi}} e^{-\frac{|\zeta|}{\lambda_{9\phi}}} \sin N\Phi. \cos \mu, \qquad (14)$$

где ζ равно h + z и h - z для верхней и нижней катушки соответственно, $\Phi = 2 \arctan \left[\frac{\rho}{2\tau} \sin \left(\arccos \frac{\rho - z}{\rho} \right) \right]$, $\mu = \arctan \left[\frac{r}{N\lambda} \right]$.

На рис, 13 приведены результаты расчета компонент поля $H_n(z)$ и $H_n(z)$, для параметров магнитной системы модели, приведенных в таблицах II и III. В прямолинейной части тракта нормальная компонента поля H_n направлена по радиусу г , а в области высот $\Delta z = (0-4)$ см наблюдается отклонение H_n от радиуса, достигающее $\Delta \beta_n = 60^\circ$. Оденки показали, что нормальная компонента поля $H_n(z)$ приведет к полной потере пучка в тракте.

Для компенсации нормальной компоненты поля может быть использована система 4-х параллельных токовых проводников, рассмотренных выше. Расчеты показывают, что при выборе расстояний между проводниками 2 s = 2 см, 2 h = 11,3 см, длине 2l = 40 см, токе в проводниках I = 50 а и расстоянии от средней плоскости до токовой системы 8 см компонента H_n будет в основном скомпенсирована вдоль прямолинейной части тракта (рис. 13). В районе инфлектора воздействие нормальной компоненты магнитного поля на нучок будет скомпенсировано электростатическим полем.

Для исследования возмущений поля в средней плоскости ускорителя от этой системы были проведены измерения поля от катушки, выполненной в полном масштабе. Результаты измерений $H_{t}^{(m)}(r)$ и $H_{t}^{(m)}(r)$ компонент поля приведены на рис. 11. Для компенсации первой гармоники радиальной компоненты $H_{t}^{(1)} \approx 0,1$ э могут быть использованы две такие катушки, расположенные симметрично относительно средней плоскости ускорителя. При этом низшие гармоники вертикальной компоненты поля не превысят 0,05 э на радиусе инжекции.

Заключение

Исследования, проведенные в работе, позволили решить вопросы, связанные с разработкой всех элементов магнитной системы электронной модели цяклотрона с жесткой фокусировкой:

1. Определены параметры гармонической обмотки и обмоток грубой коррекции, позволяющие создать требуемый закон вариации и среднего поля в заданных допусках.

 Экспериментально подтверждены результаты расчета вариации поля гармонической обмотки в случае цроводника конечного сечения.

3. Разработано устройство комценсации горизонтальной компоненты магнитного поля Земли.

 Разработано устройство компенсации нормальной компоненты поля магнитной системы ускорителя в прямолинейной части тракта инжекции электронов.

Литература

1. В.П. Джелепов, В.П. Дмитриевский, Б.И. Замолодчиков, В.В. Кольга. Препринт ОИЯИ 2904-1, Дубна 1966.

- 2. С.Б. Ворождов, Н.Л. Заплатин, В.С. Рыбалко, Л.А. Саркисян. Препринт ОИЯИ Р-2852-1, Дубна 1966.
- J. A. Martin, R. S. Livingston, J. E. Mann. Proc. Inter Conf. on High Energy Accelerators, Brookhaben, p. 355, 1961.

- 4. В.В. Кольга. Диссертация ЛЯП ОИЯИ (1965).
- 5. Ю.Н. Денисов, А.Г. Комиссаров, П.Т. Шишлянников. Препринт ОИЯИ 2883, Дубна 1966.
- 6. М.Г. Серебрянников. Гармонический анализ, ОГИЗ, Гостехиздат, 1948.
- 7. J.A. Martin and J.E. Mann. Nucl. Inst and Methods 18, 19, 461-468 (1962).
- 8. H.G. Blosser, R. E. Worsham et al. Rev. Sci. Inst. 20, 819-834 (1958).
- 9. А.А. Глазов, Д.Л. Новиков. Препринт ОИЯИ Р9-3024-1, Дубна 1966.

Рукопись поступила в издательский отдел 20 июля 1967 г.

Таблица II

Профиль гармолической катушки h(r)

				11	R
r(CM) h(CM)	r(см) h (см)	r(cm) h (cm)	r(см) h (см)	r(см) h (см)	I r(см) h (см)
10 5,00	28 7,08	46 9,01	64 I0,03	82 9.98	100 8 14
II 5,00	29 7,21	47.9,08	65 I0,07	83 9.94	101 7.97
12 5,00	30 7,34	48 9,15	66 IO,IO	84 9.90	102 7.75
I3 5,00	3I 7,47	49 9,23	67 10,12	85 9,85	103 7.53
I4 5,00	32 7,60	50 9,30	68 IO,I4	86 9,78	I04 7.30
I5 5,00	33 7,72	5I 9,36	69 10,16	87 9,71	105 7.05
16 5,13	34 7,83	52 9,43	70 10,17	88 9,64	106 6.79
17 5,34	35 7,94	53 9,50	71 10,18	89 9,56	107 6.52
18 5,52	36 8,04	54 9,56	72 10,18	90 9,47	108 6.24
19 5,70	37 8,14	55 9,63	73 10,18	9I 9,36	109 5,96
20 5,86	38 8,24	56 9,69	74 ; 10,17	92 9,25	110 5,68
21 6,02	39 8,34	57 9,74	75 10,17	93 9,15	III 5,39
22 6,18	40 8,45	58 9,79	76 [!] IO,I6	94 9,04	II2 5,09
23 6,34	4I 8,55	59 9,83	77 10,14	95 8,9I	II3 5,00
24 6,50	42 8,64	60 9,88	78 10,12	96 8,78	114 5,00
25 6,66	43 8,74	6I 9,92	79 10,09	97 8,63	
≤5 5,80 A	44 8,83	62 9,96	80 10,05	98 8,47	
27 6,94	45 8,93	63 10,00 E	81 10,02	99 8,3I	
	1	P		1	

	кванафор
Ħ	
ø	60ř
Ħ	py
ы	<u>r</u> _
5	OK
ю	L L
5	6M
H	0
	Параметры

13	116,2	, ,	1. 67	6'IT+					402,2	200	
12	(II.5		6,4	-28,6					-20,8	I50	
Ĩİ	105		12,75	1,171	102,5	107,5	I6, II	65,51	L74,8	250	elses seese
IO	45		I2,75	59,8	93,5	96,5	16,11	13,59	56,9	T20	
6	ЯĢ		I2,75	44,0	83,5	86,5	12,24	L3,26	45 , 3	00 T	
ω	75	2	12,75	30,5	73.5	76,5	12,28	13,26	30,2	nor	2
. 2	C R	no O	12,75	24,I	64,0	66,0	12,32	I3,I8	24,3	20	
9	L L	2	I2,75	18,8	54,0	56,0	I2,32	I3,I8	18,8	20	
5		C +	I2,75	I6,0	44,0	46,0	I2,32	13,18	I6,2	50	and the second se
4		35	12,75	. S ' 1 1	34,0	36.0	12,32	13,18	15,4	20	
3		5	12,75	₽'8].	$0^{4} h_{2}$	26.0	TS,32	812, E.L	5,19,2	20	
2		12	57, 'ST	5 201 5	: 9,5	Ç• † 1	16°II,	13,59	1. 197	250	
-		IO	6.4	-235,5					-219.	350	
0,7		R (cM)	h ()	IW (aB)	R . (cu)	R (cw)	h . (cM)		110 (cm)	IW (ab)	

	Т	a	б	л	M	ц	a	IV
Параметры	об	м)TC	oπ	т	онв	ιой	коррекция

							_						
N°	I	, 2	3	4		5		6	7		8	9	
R ₁ (см)	22,0	26,0	30,0	34,0	38	38,0		42,0		0	50,0	54,0	Τ
R ₂ (см)	24,0	28,0	32,0	36,0	40	40,0		44,0		0	52,0	56,0	
ћ ₁ (см)	4,2	4,2	4,2	4,2	4,2		4,2		4,2		4,2	4,2	
h ₂ (см)	4,75	4,75	4,75	4,75	4,	4,75 4,		4,75 4,7		5	4,75	4,75	
IW _{mex} (ab)	50	50	50	50		50 50)	50		50	50	
N ^o	10	II	12	13	I4		15		16		17	18	
R 1 (см)	58,0	62,0	66,0	70,0	74,0		78,	0	82,0	8	36,0	90,0	
R ₂ (см)	60,0	64,0	68,0	72,0	76,0		80,0		84,0	18	38,0	92,0	No. of the local division of the local divis
ћ ₁ (см)	4,2	4,2	4,2	4,2	4,2		4,2		4,2	1	4,2	4,2	
ћ ₂ (см)	4,75	4,75	4,75	4,75	4,7	1,75 4		4,75		4	+,75	4,75	
IW max(ab)	50	50	50	50	50	50			50		50	50	
N [°]	19	20	21	22		23		2	4				
R ₁ (см)	94,0	98,0	102,0	106,	0.	109	,4	11	4,7				

4,2

5,7

150

4,2

4,5

50

4,2

6,8

300

R₂(CM) 96,0 100,0 104,0 108,0 112,6 116,1

4,2

5,7

I50

h,(cm) 4,2 4,2

h₂ (см) 4,75 5,2

IW (ab) 50 I00

.

Рис. 3. Отклонение амплитуды и фазы 8-ой гармоники от требуемых значений.

Рис. 4. Амплитуда и фаза 8-ой гармоники отдельных участков элемента периоличности обмотки. 1-амплитуда гармоники азимутальных участков 1 и 2; 2 - амплитуда гармоники спиральных участков 3 и 4; 3 - амплитуда гармоники элемента периодичности обмотки; 4 - отклонение фазы гармоники участков 3 и 4 от средлей липен элемента периодичности; 5 - отклонение фазы гармоники элемента периодичности.

Рис. 5. Амплитуда и отклонение фазы от средней линии элемента периодичности обмотки для 24-ой гармоники.

Рис. 6. Зависимость среднего поля от радиуса.

Рис. 7. Отклонение сформированного среднего магнитного поля от изохронного и фазовый сдвиг в зависимости от радиуса.

Рис. 8. Схема расположения токовых обмоток электронной модели.

Рис. 9. Плоская гармоническая обмотка.

Рис. 12. Устройство компенсации горизонтальной компоненты магнитного поля Земли: а) принципиальная схема; в) конструктивная схема.

Рис. 13. — – распределение нормальной H_n(z) и тангенциальной H₁(z) компонент поля магнитной системы электронной модели вдоль тракта инжекции; Х Х С – нормальная компонента поля H_n(z) катушки компенсации.