3434

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Patiene a tainin

LEPHOX RPOSIE

PAGENAG

Дубна

P9 - 3434 - 1

Экз. чит. зала

В.П. Дмитриевский, Т.М. Прилипко, В.С. Рыбалко

ВЛИЯНИЕ ЛОКАЛЬНЫХ НЕОДНОРОДНОСТЕЙ МАГНИТНОГО ПОЛЯ НА ДВИЖЕНИЕ ЧАСТИЦ В УСКОРИТЕЛЯХ С ПРОСТРАНСТВЕННОЙ ВАРИАЦИЕЙ

1967.

P9 - 3434 - 1

В.П. Дмитриевский, Т.М. Прилипко, В.С. Рыбалко

ВЛИЯНИЕ ЛОКАЛЬНЫХ НЕОДНОРОДНОСТЕЙ МАГНИТНОГО ПОЛЯ НА ДВИЖЕНИЕ ЧАСТИЦ`В УСКОРИТЕЛЯХ С ПРОСТРАНСТВЕННОЙ ВАРИАЦИЕЙ

Введение

Одной из основных проблем, возникающих при разработке ускорителей с пространственной вариацией магнитного поля, является проблема высокоэффек тивного вывода пучка из камеры ускорителя. Успешное решение этой задачи связано с созданием таких условий для движения частип, при которых осуществляется значительное радиальное разделение орбит на конечных радиусах ускорителя при сохранении устойчивости аксиального движения.

Реэкое увеличение радиального шага траекторий может быть достигнуто только при создании резонансной связи между азимутальной и радиальной степенями свободы движения. Для вывода пучка из синхропиклотронов обычно применяется регенеративный метод^{/1,2/}. В этом методе используются локальные неоднородности градиента магнитного поля для параметрического резонансного возбуждения радиальных колебаний вблизи значения частоты $Q_r = 1$. Регеноративный метод успешно применен для вывода пучка из изохронных циклотронов на низкие энергии^{/3,4/}, рассматриваются возможности использования подобных систем в релятивистских циклотронах и фазотронах с вариацией магнитного поля.

Для релятивистского циклотрона на энергию протонов 700 Мэв^{/5/}, наряду с модифицированным резонансным методом вывода пучка^{/6/}, также разрабатывался метод вывода, использующий локальные неоднородности магнитного поля – "градиентные" каналы. При изучении вопросов, связанных с выводом пучка из проектируемого циклотрона, был проведен теоретический анализ влияния локальных неоднородностей на движение частиц в периодических магнитных полях, рассмотрены вопросы расчета и моделирования необходимых конфигураций магнитных полей, а также проведен значительный комплекс численных расчетов траекторий по точным уравнениям движение.

Проведенные исследования позволяют сделать вывод о том, что использование таких систем для вывода пучка из ускорителей с пространственной вариацией является перспективным. При хорошем качестве внутреннего пучка и тщательной оптимизации параметров выводной системы можно получить высокий коэффициент вывода, сравнимый со значениями, полученными при использовании механизма нелинейного резонанса Q₂ = 8/4 ^{/7/}.

В настоящей работе изложены основные результаты теоретических исследований, на основе которых были определены требуемые параметры локальных неоднородностей для релятивистского циклотрона.

В общем случае конфигурация магнитного поля неоднородностей должна быть такой, чтобы до входа частиц в область максимальных значений возмущения частота радиальных колебаний изменилась до соответствующего резонансного значения Q = 1, 3/2, 2. В этой переходной области аксиальное движение должно оставаться устойчивым и формфактор аксиальных колебаний не должен превышать допустимых значений. Необходимые для этих целей величины возмущений магнитного поля нельзя считать малыми, в связи с чем не всегда можно использовать для анализа их влияния асимптотические методы. Поэтому в работе используется матричный метод и метод построения аналитических решений обобщенного уравнения Хилла.

Показано, что воздействие локальных неоднородностей на движение частиц в ьериодических магнитных полях отличается рядом существенных особенностей, исцользование которых открывает широкие возможности для осуществления эффективных резонансных методов вывода пучка.

> Исследование устойчивости орбит при наличии локальных неоднородностей на основе матричного метода

Для аналяза движения частиц в магнитных полях с пространственной вариапией обычно используют уравнения движения в пилиндрической системе координат с азимутальным углом ϕ в качестве независимой переменной. Однако при наличии локальных неоднородностей градиента магнитного поля более удобно использовать натуральную систему координат, связанную с невозмущенной равновесной орбитой $t_0(\phi)$. В этом случае линейные уравнения бетатронных колебаний имеют вид

4 ·

$$\frac{d^{2} X}{d\theta^{2}} + \left(\frac{R_{0}}{\rho_{0}}\right)^{2} (1 + n) X = 0, \qquad (1)$$

$$\frac{d^{2} Z}{d\theta^{2}} - \left(\frac{R_{0}}{\rho_{0}}\right)^{2} n Z = 0, \qquad (2)$$

где $n = \frac{\rho_0}{H_z} \cdot \frac{\partial H_z}{\partial x}$ показатель роста магнитного поля на орбите в направлении главной нормали, ρ_0 и R_0 – радиус кривизны и эквивалентный радвус орбиты, $\theta = \frac{1}{R_0} \int_0^{\phi} \sqrt{r_0^2 + r_0'^2} d\phi$ – обобщенный азимут. При отсутствии возмущений период коэффициентов в уравнениях (1), (2) совпадает с периодом структуры основного магнитного поля равным $2\pi/N$. Если же в некоторой области $\theta_1 < \theta < \theta_1 + \alpha$ градиент магнитного поля имеет значение

$$\frac{\partial H_{z}}{\partial X} = \frac{\partial H_{z0}}{\partial X} + G$$

где H_{z0} – невозмущенное магнитное поле, G – добавочный постоянный градиент, введенный в области протяженностью a, то $n = n_0 + \Delta n_1(\theta)$ и период коэффициентов становится равным 2π .

При заданных начальных условиях $X = X_0$, $X' = X'_0$ при $\theta = \theta_0$ значение вектора $|\begin{array}{c} X\\ X' \\ X' \\ \\ CS \\ \nu$ -ой степенью матрицы $M_{\theta_0} + 2\pi$, что, согласно теореме Сильвестра /8/, можно представить в форме

$$M_{\theta_{0}+2\pi}^{\nu} = \begin{cases} \cos 2\pi \, Q \, \nu - \frac{a_{22}^{2} - a_{11}^{2}}{2} \frac{\sin 2\pi \, Q \, \nu}{\sin 2\pi \, Q}; & a_{12}^{2} \frac{\sin 2\pi \, Q \, \nu}{\sin 2\pi \, Q} \\ a_{21}^{2} \frac{\sin 2\pi \, Q \, \nu}{\sin 2\pi \, Q}; & \cos 2\pi \, Q \, \nu + \frac{a_{22}^{2} - a_{11}}{2} \frac{\sin 2\pi \, Q \, \nu}{\sin 2\pi \, Q} \end{cases}$$
(3)

где Соз $2\pi Q = \frac{1}{2} \begin{pmatrix} a \\ 11 \\ 2 \end{pmatrix}$, $a_{11} \begin{pmatrix} \theta \\ 0 \end{pmatrix}$ – элементы матрицы $M_{\theta_0} + 2\pi$. Из выражения (3) видно, что при $\frac{1}{2} |$ Sp $M_{2\pi} | < 1$ отклонение частиц от орбиты на азимуте $\theta = \theta_0$ в зависимости от числа оборотов описывается гармоническими колебаниями, амплитуда и фаза которых зависят от начальных условий и элементов матрицы a_{11} . При увеличении Δn_1 , частота радиальных колебаний возрастает и, в зависимости от значения Q_0 , может достигнуть ближайшего целого или полуцелого значения. В этом случае $\frac{1}{2} | \text{Sp M}_{2\pi} | = 1$ и движение становится неустойчивым, отклонение частии от орбиты растет пропорционально числу оборотов.

При дальнейшем увеличении Δ а , шпур матрицы становится по модулю большим единицы и

$$M_{\theta_{0}+2\pi}^{\mu} = \begin{bmatrix} Ch \ 2\pi\nu\beta - \frac{a_{22}^{-a_{11}}}{2} & \frac{Sh \ 2\pi\nu\beta}{Sh \ 2\pi\beta}; a_{12} & \frac{Sh \ 2\pi\nu\beta}{Sh \ 2\pi\beta}; a_{12} & \frac{Sh \ 2\pi\nu\beta}{Sh \ 2\pi\beta} \\ a_{21} & \frac{Sh \ 2\pi\nu\beta}{Sh \ 2\pi\beta}; Ch \ 2\pi\nu\beta + \frac{a_{22}^{-a_{11}}}{2} & \frac{Sh \ 2\pi\nu\beta}{Sh \ 2\pi\beta} \end{bmatrix}$$
(4)

где

Ch
$$2\pi\beta = \frac{1}{2}$$
 Sp M $_{2\pi} > 1$.

Из (4) видно, что движение неустойчиво, и при больших значениях ν отклонение от орбиты возрастает по экспоненциальному закону. Если известны элементы трансформационной матрипы, относящиеся к произвольному начальному значению $\theta = \theta_0$, то на основании формул (3), (4) можно определить все характеристики движения как в переходной области, так и в области радиальной неустойчивости, где осуществляется режим разделения орбит. Однако для ускорителей с пространственной вариацией непосредственное применение матричного метода не представляется возможным, так как квазиупругие силы нельзя аппроксимировать кусочно-постоянными функциями.

Общее решение уравнений (1), (2) в области устойчивости имеет вид /9/.

 $X = A \Phi(\theta) \cos \left[Q \theta + \Psi(\theta) + B \right],$

где Ф и Ψ – периодические функции, являющиеся модулем и фазой комплексных решений в форме Флоке. При заданной амплитуде колебаний функция АФ(θ) является огибающей всех траекторий в пучке. Нормируя линейно-независимые решения так, чтобы вроискиан равнялся единице, для элементов трансформационной матрицы можно получить выражения

$$a_{11} = \frac{\Phi(\theta)}{\Phi(\theta_{0})} \cos \Omega - \Phi(\theta) \Phi'(\theta_{0}) \sin \Omega , \quad a_{12} = \Phi(\theta) \Phi(\theta_{0}) \sin \Omega ,$$

$$a_{21} = -\left[\frac{1}{\Phi(\theta)\Phi(\theta_{0})} + \Phi'(\theta)\Phi'(\theta_{0})\right] \sin\Omega + \left[\frac{\Phi'(\theta)}{\Phi(\theta_{0})} - \frac{\Phi'(\theta_{0})}{\Phi(\theta)}\right] \cos\Omega,$$
(5)
$$a_{22} = \frac{\Phi(\theta_{0})}{\Phi(\theta)} \cos\Omega + \Phi'(\theta)\Phi(\theta_{0}) \sin\Omega,$$

где

 $\Omega = Q \left(\theta - \theta_{0}\right) + \Psi(\theta) - \Psi(\theta_{0})$ $\left[Q + \Psi'(\theta)\right] \Phi^{2}(\theta) = 1.$

При $\theta = \theta_0 + 2 \pi$ получим компоненты матрицы, соответствующие периоду структуры магнитного поля

$$a_{11} = \cos 2 \pi Q - \Phi'(\theta_0) \Phi(\theta_0) \sin 2 \pi Q , a_{12} = \Phi^2(\theta_0) \sin 2 \pi Q ,$$

$$a_{21} = -\left[\frac{1}{\Phi^2(\theta_0)} + \Phi'^2(\theta_0)\right] \sin 2 \pi Q ,$$
(6)
$$a_{22} = \cos 2 \pi Q + \Phi'(\theta_0) \Phi(\theta_0) < \sin 2 \pi Q ,$$

Из (6) видно, что функция Ф и ее производная связаны с компонентами матрицы соотношениями

$$\Phi^{2}(\theta_{0}) = \frac{a_{12}(\theta_{0})}{\sin 2 \pi Q}, \qquad (7)$$

$$\Phi^{\prime 2}(\theta_{0}) = \frac{-a_{21}(\theta_{0})}{\sin 2\pi Q} - \frac{\sin 2\pi Q}{a_{12}(\theta_{0})}$$

Если известно решение уравнения бетатронных колебаний X (θ), удовлет. воряющее произвольным начальным условиям, то, как следует из выражений (6), частота и огибающая колебаний могут быть определены как

$$\cos 2 \pi Q = \frac{X(\theta + 2\pi) + X(\theta - 2\pi)}{2X(\theta)} = \frac{X'(\theta + 2\pi) + X'(\theta - 2\pi)}{2X'(\theta)},$$
(8)

$$\Phi^{2}(\theta) = \frac{2}{\sin 2\pi Q} \frac{X^{2}(\theta) - X(\theta + 2\pi) X(\theta - 2\pi)}{[X(\theta + 2\pi) - X(\theta - 2\pi)] X'(\theta) - [X'(\theta + 2\pi) - X'(\theta - 2\pi)] X(\theta)}$$

Обозначим $M_0(\theta, \theta_0)$ – трансформационную матрицу невозмущенного движения. Элементы этой матрицы можно представить в виде, аналогичном выражениям (5), полагая

$$Q = Q_0 ,$$

$$\Phi = \Phi_0(\theta) = \Phi_0(\theta + \frac{2\pi}{N}) .$$

$$\Psi = \Psi_0(\theta) = \Psi_0(\theta + \frac{2\pi}{N}) ,$$

где Q₀, Ф₀ - частота и огибающая колебаний невозмущенного движения. Из свойств матрицы М₀ (θ, θ₀) отметим следующие:

1)
$$M_0(\theta_0, \theta_0) = |\begin{array}{c} 1 & 0 \\ 0 & 1 \end{array}|,$$

2)
$$M_{0}\left(\theta_{0} + \frac{2\pi}{N}k, \theta_{0}\right) = M_{0}^{p}\left(\theta_{0} + \frac{2\pi}{N}, \theta_{0}\right), k = 1, 2, 3, ...$$

3)
$$M_{0}\left(\theta_{2}, \theta_{1}\right) M_{0}\left(\theta_{1}, \theta_{2}\right) = M_{0}\left(\theta_{2}, \theta_{0}\right),$$

 $\theta_{n} > \theta_{n} > \theta_{n}$

При наличии одной локальной неоднородности матрица, соответствующая периодичности структуры магнитного поля (одному обороту), может быть определена как

$$M(\theta_0 + 2\pi, \theta_0) = M_0(\theta_0, \theta_1 + \alpha) M_1(\theta_1 + \alpha, \theta_1) M_0(2\pi + \theta_1, \theta_0)$$
(9)
$$\theta_1 + \alpha \le \theta_0 \le 2\pi + \theta_1.$$

для $\theta_1 + a \le \theta_0 \le 2\pi + \theta_1$. При заданной частоте Q_0 значение элементов этой матрицы определяется огибающей колебаний невозмущенного движения и элементами матрицы M_1 , осуществляющей преобразование входных значений $\begin{vmatrix} X \\ X \end{vmatrix}$ вх в значения $\begin{vmatrix} X \\ X \end{vmatrix}$ вых на выходе из области возмущения. Конечно, все общие соотношения, приведенные выше для радиального движения, при соответствующем изменении обозначений относятся и к аксиальному движению. В частности, отношение максимальных значений огибающих $\frac{\Phi_{max}}{\Phi_{0 max}}$ характеризует увеличение аксиальных размеров пучка при воздействии локальных неоднородностей.

Огибающие бетатронных колебаний невозмущенного движения

Для исследования движения частиц в магнитном поле вида

$$H_{z0}(r,\phi) = H(r) \{ 1 + \epsilon(r) \sin [\beta(r) - N\phi] \}$$
(10)

с помощью уравнений движения в натуральной системе координат (1), (2) необходимо определить характеристики орбиты ρ_0 , R_0 и значение показателя $n_0 = \frac{\rho_0}{H_{z0}} - \frac{\partial H_{z0}}{\partial X}$ в зависимости от обобщенного азимута. Рассмотрим движение частиц с импульсом $P = \frac{e}{c} H(R) R$, В этом случае равновесная орбита может быть найдена как периодическое решение уравнения

$$\frac{1}{\rho_{0}} = \frac{r_{0}^{2} + 2r_{0}^{2} - r_{0}r_{0}^{*}}{(r_{0}^{2} + r_{0}^{*})^{3/2}} = \frac{1}{R} \frac{H_{z0}(r_{0}, \phi)}{H(R)}.$$
 (11)

Уравнение орбиты можно представить в форме

 $\mathbf{r}_{\mathbf{0}}(\phi) = \mathbf{R} - \Delta \mathbf{R} + \rho(\phi),$

где (R-ΔR)- средний радиус орбиты, ρ - вынужденные колебания с периодичностью структуры магнитного поля. Так, для магнитного поля вида (10) форма орбиты с достаточной точностью описывается выражением /10/

$$r_{0}(\phi) = R - \frac{R(\epsilon n_{N} + 2\epsilon^{2})}{2(n+1)[N^{2} - n - 1]} + \frac{R\epsilon}{N^{2} - n - 1} \sin[\beta(R) - N\phi],$$
(12)

где

$$\mathbf{n} = \frac{\mathbf{R}}{\mathbf{H}} \frac{\partial \mathbf{H}}{\partial \mathbf{R}}, \quad \mathbf{n}_{\mathrm{N}} = \frac{\mathbf{R}}{\mathbf{H}} \frac{\partial}{\partial \mathbf{R}} (\epsilon \mathbf{H}),$$

Из выражения (12) видно, что в ускорителях с пространственной вариацией вынужденные колебания малы по сравнению со средним радиусом орбиты

 $\left(\frac{\rho_{max}}{R} \approx \frac{\epsilon}{N^2}$ при $\epsilon \leq 1$). Значение показателя магнитного поля на орбите $t_0(\phi)$ можно определять как

$$n_{0} = \frac{\rho_{0}^{2}}{H(R)R} \left\{ \frac{\partial H_{z0}}{\partial r} \right|_{r=r_{0}} \frac{r_{0}}{\sqrt{r_{0}^{2} + r_{0}^{2}}} - \frac{1}{r_{0}} \frac{\partial H_{z0}(r_{0},\phi)}{\partial \phi} \frac{r_{0}'}{\sqrt{r_{0}^{2} + r_{0}^{2}}} (13)$$

Используя (12) и (13), уравнения (1), (2) можно привести к уравнениям

$$\frac{d^{2}x}{d\theta^{2}} + \{1 + n - \frac{\epsilon^{2}(R\beta')^{2}}{2(N^{2} - n - 1)} + \epsilon R\beta' \cos[\beta(R) - N\phi(\theta)]\} x = 0, - (14)$$

$$\frac{d^{2}Z}{d\theta^{2}} + \{-n + \frac{\epsilon^{2}(R\beta')^{2}}{2(N^{2} - n - 1)} + \frac{\epsilon N^{2}}{2(N^{2} - n - 1)} - \epsilon R\beta' \cos[\beta(R) - N\phi(\theta)]\} Z = 0,$$
(15)

в которых азимутальный угол φ должен быть выражен через обобщенный азимут θ. Легко видеть, что

и периодическая функция $\int_{0}^{\phi} \frac{\rho_0}{R} d\phi$ имеет максимальное значение $\approx \frac{\epsilon}{N^3}$. Поэтому в (14), (15) можем приближенно считать, что $\phi(\theta) = \theta$.

Таким образом, уравнения бетатронных колебаний в натуральной системе координат приводятся к уравнениям Матье, которые аналогичны уравнениям колебаний в цилиндрической системе координат /10/

Заменой переменной $\beta(R) - N\theta = 2\xi$ уравнения приводятся к канонической форме

$$Y'' + [a - 2q \cos 2\xi] Y = 0, Y = (X, Z)$$
 (16)

со значениями параметров

$$a_{x} = \frac{4}{N^{2}} \left\{ 1 + n - \frac{\epsilon^{2} (R\beta')^{2}}{2(N^{2} - n - 1)} \right\}, a_{z} = \frac{4}{N^{2}} \left\{ -n + \frac{\epsilon^{2} (R\beta')^{2}}{2(N^{2} - n - 1)} + \frac{\epsilon^{2} N^{2}}{2(N^{2} - n - 1)} \right\},$$

 $q = \pm \frac{2\epsilon}{N^2} R\beta'$ - положительное для аксиального движения и отрицательное для радиального.

Решение уравнений (16) выражается через функции Матье

$$A \sum_{k=-\infty}^{\infty} C_{2k} \cos \left(2k + \mu_{y}\right) \xi + B \sum_{k=-\infty}^{\infty} C_{2k} \sin \left(2k + \mu_{y}\right) \xi$$

$$\mu_{\mathbf{x},\mathbf{x}} = \frac{2}{N} Q_{\mathbf{x},\mathbf{x}},$$

которые обычно нормируются согласно условию /11/

$$\sum_{k=-\infty}^{\infty} C_{2k}^2 = 1.$$

В таблице 1 представлены значения коэффициентов С₂₁, рассчитанные на ЭВМ для параметров, соответствующих предельному радиусу релятивистского циклотрона.

T.	a	б	л	и	ц	a	1	,

		Co	C2.10I	C_210 ^I	C4.10 ²	C.4.10 ²	C ₆ ,10 ⁵	C_6.10 ⁵
(-1) ^k C	(x) 2 k	0,9858	-0,6043	-I ,5640	0,1106	0,4514	-0,9597	-5,2970
C ⁽ 2	z) :k	0,9921	-0,8160	-0,9560	0,1759	0,2232	-1,7100	-2,2890

Из таблины видно, что коэффициенты функций Матье C_{2k} быстро уменьшаются с ростом К и с достаточной точностью можно считать не равными нулю только коэффициенты C_6 , C_2 и C_{-2} . Расчеты показывают, что это приближение справедливо для любого положения рабочей точки в первой области устойчивости при $q \leq 1$. В этом случае из рекуррентных соотношений /11/ можно получить простые и достаточно точные выражения для коэффициентов C_6 , C_2 и C_2

$$C_{g} = 1 - \frac{q^{2}}{2} \left\{ \frac{1}{\left[a - (\mu + 2)^{2}\right]^{2}} + \frac{1}{\left[a - (\mu - 2)^{2}\right]^{2}} \right\},$$
(17)

$$C_2 = \frac{q}{a - (\mu + 2)^2}, \quad C_{-2} = \frac{q}{a - (\mu - 2)^2}$$

Из анализа выражений (17) видно, что функция Ψ_0 является достаточно малой, и при рассмотрении невозмущенного движения можно не учитывать периодическую модуляцию фазы бетатронных колебаний. Нормируя линейно-независимые решения так, чтобы их вронскиан равнялся единице, получим приближенные выражения для огибающих в виде

$$\Phi_{0y} = \frac{1}{\sqrt{Q_{0y}}} \left\{ 1 - q M(\mu_y) \cos \left[\beta - N\theta\right] \right\}, \quad (18)$$

где

 $M(\mu) = \frac{1}{(2+\mu)^2 - a} + \frac{1}{(-2+\mu)^2 - a}$

Из этих выражений видно, что максимум огибающей для радиальных колебаний находится на азимуте $\theta = \frac{1}{N} \beta(R)$, т.е. в точке, где вынужденные колебания орбиты проходят через нуль, а скорость $\frac{dr_0}{d\phi}$ имеет максимальное отрицательное значение. Максимум Φ_{0z} смещен относительно максимума Φ_{0z} на угол $\frac{\pi}{N}$.

Для аксиального движения $\mu_{s} \ll 1$ и численное значение $M(\mu_{s})$ близко к значению M= 1/2. В этом случае выражение (18) совпадает с модулем функнии флоке, определенной для уравнения (16) на основе первого приближения метода усреднения ^{/9/}. При увеличении μ численное значение M возрастает. В частности, для радиальных колебаний на предельных радиусах релятивистского циклотрона $\mu_{s} = 0.45$ и значение $M(\mu_{s}) = 0.61$.

На рис.1. приведены графики функций $\sqrt{Q_{0x}} \Phi_{0x}$ и $\sqrt{Q_{0x}} \Phi_{0x}$, рассчитанные на основе численного решения уравнения (14), (15). На этом же рисунке для сравнения приведена зависимость Sin (β -N ϕ) от азимута, характеризующая вынужденные колебания орбиты. Видно, что положение экстремальных значений огибающих и отношение величин $\frac{\Phi_{max}}{\Phi_{min}}$ хорошо согласуются с формулой (18).

На рис.2 приведена равновесная орбита $r_0(\phi)$ и одна из траекторий движения в аксиальном направлении $Z(\phi)$, рассчитанные на ЭВМ по точным уравнениям движения в магнитном поле релятивистского циклотрона, сформированном на модели магнитной системы /12/. Видно, что из-за модуляции с пориодичностью $2\pi/N$ траектория заключена между кривыми Z_{min} и Z_{mex} и отношение $\frac{Z_{mex} - Z_{min}}{Z_{mex} + Z_{min}} = 0.18$ Так как это отношение можно представить в виде $\frac{1}{\Phi_{max} + \Phi_{min}}{\Phi_{max} + \Phi_{min}} = \frac{q}{2} = 0,18$, то это показывает, что точность приближенного выражения (18) вполне достаточна для описания движения в реальных магнитных полях. На рис.2 приведена также зависимость $\frac{dZ}{d\phi}$ от азимута (кривая 2). Видно, что скорости, вызываемые периодической модуляцией, значительно превышают скорости колебаний с частотой Q_{z0} . Это означает, что компоненты матрицы $a_{21}(\theta_0)$, $a_{22}(\theta_0)$ существенно зависят от положения θ_0 относительно периода структуры магнитного поля, и аппроксимация невозмущенного движения гармоническими колебаниями с частотой Q_0 является недопустимой. Однако в переменных

$$\eta = \frac{Y}{\Phi_0} \quad \mu \quad r = \frac{1}{Q_0} \int \frac{d\theta}{\Phi_0^2} = (\theta - \theta_0) + \frac{1}{Q_0} [\psi_0(\theta) - \psi_0(\theta_0)] \quad (19)$$

уравнения бетатронных колебаний приводятся к уравнениям с постоянными коэффициентами

$$\frac{\mathrm{d}^{2}\eta}{\mathrm{d}r^{2}} + Q_{0}^{2}\eta = 0.$$

Следовательно, для описания движения можно использовать матрицы гармонических колебаний, осуществляя линейное преобразование начальных и конечных значений У и У' согласно выражению

$$\begin{vmatrix} \mathbf{Y} \\ \mathbf{Y} \\ \mathbf{Y} \end{vmatrix} = \mathbf{K}^{-1}(\theta) \begin{vmatrix} \cos Q_0 \mathbf{r}, & \frac{\sin Q_0 \mathbf{r}}{Q_0} \\ -Q_0 \sin Q_0 \mathbf{r}, & \cos Q_0 \mathbf{r} \end{vmatrix} = \mathbf{K}(\theta_0) \begin{vmatrix} \mathbf{Y}_0 \\ \mathbf{Y}_0 \end{vmatrix}, \quad (20)$$

где

$$\mathbf{K}_{0}(\theta) = \begin{vmatrix} \frac{1}{\Phi_{0}(\theta)}, & 0 \\ -Q_{0}\Phi_{0}'(\theta), & Q_{0}\Phi_{0}(\theta) \end{vmatrix}$$

Частоты и огибающие колебаний при наличии локальных

неоднородностей

В области возмущения $\theta_1 \leq \theta \leq \theta_1 + \alpha$ движение описывается уравнениями, отличающимися от уравнений (14), (15) только измененным значением постоянного коэффициента, в соответствии со значением показателя в области протяженностью а

При известном значении µ решения в этой области могут быть найдены на основе методов, изложенных в работе /11/. Однако в рассматриваемом случ, чае более удобно воспользоваться приближенным решением интегральных уравнений, которым удовлетворяют линейно-независимые решения уравнения Матье

 $n_1 = n + \Delta n_1, \Delta n_1 = \frac{R}{H} G$

$$Y_{1}(\xi) = \cos \sqrt{a} \quad (\xi - \xi_{0}) - 2q \quad \int_{\xi_{0}}^{\xi} \cos 2t \quad \frac{\sin \sqrt{a} (t - \xi)}{\sqrt{a}} Y_{1}(t) dt,$$
(21)

$$Y_{2}(\xi) = \frac{\sin \sqrt{a} (\xi - \xi_{0})}{\sqrt{a}} - 2q \int_{\xi_{0}}^{\xi} \cos 2t \frac{\sin \sqrt{a} (t - \xi)}{\sqrt{a}} Y_{2}(t) dt.$$

Решение уравнений (21) находится методом последовательных приближений и определяется квадратурами тригонометрических функций. Исследование этих решений показывает, что при малых значениях азимутальной протяженности области возмущения (*a* << 1) трансформационная матрица M₁ может быть представлена в виде

$$M_{1Y}(\theta_{1} + \alpha, \theta_{1}) = \begin{vmatrix} 1 & \alpha \\ -\frac{\alpha N^{2}}{4} \left[\alpha_{y} - 2q \cos(\beta - N \theta_{1}) \right], 1 \end{vmatrix}, \qquad (22)$$

независимо от положения изображающей точки на области устойчивости. В этом случае матрицу оборота можно привести к виду

$$M(\theta_0 + 2\pi, \theta_0) = M_0(\theta_0, \theta_1) M_1 M_0(2\pi + \theta_1, \theta_0)$$

со значением матрицы М, , равным

$$M_{1} = \begin{pmatrix} 1 & , & 0 \\ -T_{1} & , & 1 \end{pmatrix},$$
 (23)

где $T_1 = + \Delta n_1 \alpha$ и (-) относится к аксиальному движению, (+) - к радиальному. Матрица M₁ в форме (23) соответствует приближению "тонких" линэ и обычно используется в теории регенеративного метода^{/13/}. Частота и огибаюшая колебаний при воздействии одной локальной неоднородности определяются в этом приближении выражениями

$$\cos 2 \pi Q = \cos 2 \pi Q_{0} - \frac{T_{1}}{2} \Phi_{0}^{2} (\theta_{1}) \sin 2 \pi Q_{0}, \qquad (24)$$

$$\Phi_{0}^{2}(\theta) \sin 2\pi Q = \Phi_{0}^{2}(\theta) \{ \sin 2\pi Q_{0} - \frac{T_{1}}{2} \Phi_{0}^{2}(\theta_{1}) [\cos 2Q_{0}[\pi - \theta + \theta_{1}) - \cos 2\pi Q_{0}] \}.$$

Чтобы отметить особенности влияния градиентных неоднородностей на движение частиц в периодических магнитных полях и оценить пределы применимости приближения "тонких" линэ, рассмотрим решение для случая, когда движение онисывается гармоническими колебаниями. Такое рассмотрение является строгим для аксиально-симметричных магнитных полей, а в ускорителях с пространственной вариацией соответствует учету в функциях Матье только основного члена, связанного с коэффициентом C_0 . В этом случае легко найти матрицу, соответствующую периодичности системы (одному обороту), и определить частоту и огибающую колебаний при любых значениях a. Если неоднородность градиента создана в области $0 \le \phi \le a$, то

$$Cos 2\pi Q = Cos (2\pi - \alpha) Q_0 Cos Q_1 \alpha - \frac{1}{2} \left(\frac{Q_0}{Q_1} + \frac{Q_1}{Q_0} \right) Sin Q_0 (2\pi - \alpha) Sin Q_1 \alpha, (25)$$

$$\Phi^2(\phi) Sin 2\pi Q = A_1 + B_1 Cos Q_1 (\alpha - 2\phi) \quad \text{при} \quad 0 \le \phi \le \alpha;$$

$$\Phi^2(\phi) Sin 2\pi Q = A_0 + B_0 Cos Q_0 (2\pi - 2\phi + \alpha)$$

$$\Phi^2(\phi) Sin 2\pi Q = A_0 + B_0 Cos Q_0 (2\pi - 2\phi + \alpha)$$

при где

$$A_{1} = \frac{\sin Q_{1} \alpha}{Q_{1}} \cos Q_{0} (2\pi - \alpha) + \frac{\sin Q_{0} (2\pi - \alpha)}{Q_{0}} \cos Q_{1} \alpha \frac{1}{2} (1 + \frac{Q_{0}^{2}}{Q_{1}^{2}}),$$
$$B_{1} = \frac{\sin Q_{0} (2\pi - \alpha)}{Q_{0}} \frac{1}{2} (1 - \frac{Q_{0}^{2}}{Q_{0}^{2}}),$$

$$A_{0} = \frac{\operatorname{Sin} Q_{0}(2\pi - \alpha)}{Q_{0}} \operatorname{Cos} Q_{1} \alpha + \frac{\operatorname{Sin} Q_{1} \alpha}{Q_{1}} \operatorname{Cos} Q_{0}(2\pi - \alpha) \frac{1}{2} (1 + \frac{Q_{1}^{2}}{Q_{0}^{2}}),$$
$$B_{0} = \frac{\operatorname{Sin} Q_{1} \alpha}{Q_{1}} \frac{1}{2} (1 - \frac{Q_{1}^{2}}{Q_{0}^{2}})$$

и Q₁ - действительное или мнимое - в зависимости от значения n₁ в области *i* возмущения.

На рис. З приведена зависимость Q, и Q, от п, при с =0,1 для Q_{r0} = 0,9 и Q_{z0} = 0,45, соответствующих значению п =-0,2 на предельных радиусах синхропиклотрона. Видно, что введение одной локальной неоднородности с п₁ > 0 (регенератор) позволяет осуществить раскачку радиальных колебаний на конечных радиусах синхропиклотрона при сохранении аксиальной устойчивости. Понять основные особенности механизма воздействия неоднородности на движение частиц можно на основе гармонического подхода к рассматриваемой задаче. Разложив магнитное поле в ряд Фурье, получим уравнения бетатронных колебаний в форме уравнений Хилла

$$Y'' + [a_{y} - 2q \sum_{k=1}^{\infty} a_{k} \cos 2k \xi] Y = 0, \qquad (26)$$

где

$$\begin{array}{c} x = 4\left(1 + n + \Delta n \frac{a}{12\pi}\right), \ a_{1} = -4\left(n + \Delta n \frac{a}{12\pi}\right) \\ q = \pm 8 \frac{\Delta n}{2\pi} \sin \frac{a}{2}, \ a_{1} = 1, \ a_{k} = \frac{1}{k} \frac{\sin k \frac{a}{2\pi}}{\sin \frac{a}{2}} \\ 2 \xi = \phi - \frac{a}{2} \end{array}$$

Если считать $0 \le \mu \le 1$ для каждой области устойчивости, то частоты колебаний связаны с показателем μ соотношением

$$Q_{y} = \frac{1}{2} (m - 1 + \mu_{y}),$$

где m - номер области устойчивости.

Хотя ряд Σ а_k Cos 2 k ξ сходится медленно (a₁=1, a₁₀=0,96, a₂₀=0,84, a₃₀=0,67 и т.д.), основное влияние на частоты колебаний оказывают низшие гармоники. Значение μ для уравнения (26) может быть определено из выраже-/10/ ния

$$\cos \pi \mu_{y} = \cos \sqrt{a_{y}} \pi - \frac{q^{2}}{2} \frac{\pi}{4} \frac{\sin \sqrt{a_{y}} \pi}{\sqrt{a_{y}}} + \frac{\infty}{k=1} \frac{a_{k}}{k^{2} - a_{y}}$$
(27)

Расчеты по формуле (27) показывают, что в рассматриваемом случае частоты колебаний определяются с достаточной точностью при учете только четырех низших гармоник. Изменение частот, обусловленное отдельными гармоническими компонентами возмущения при $\Delta n_1 = 5$, приведено в таблице II

№ гармоники	I	2	3	4
ΔQ,	-0,0029	0,0181	0,0012	0,0002
ΔQ _z	0,0416	0,0056	0,0021	060011

Таблица II

Видно, что основное влияние на частоту радиальных колебаний имеет вторая гармоника, а на частоту аксиальных колебаний - первая.

На рис. 4 ноказана огибающая аксиальных колебаний, рассчитанная для значений $a_1=2$, 7, 30. Огибающая имеет минимум в зоне регенератора при $\phi = \frac{a}{2}$. Так как амплитуда колебаний для частип, пересекающих область регенератора, пропорциональна функции $\frac{\Phi(\xi)}{\Phi(0)}$, то максимальные отклонения частиц от плоскости Z = 0 возрастут в 1,5; 2,5 и 4,5 раза при действии регенератора со значениями $a_1 = 2$, 7 и 30 соответственно. Это обстоятельство накладывает ограничение на значение градиента в зоне возмущения и заставляет использовать минимальное разделение орбит, необходимое для заброса частиц в магнитный канал. Так как определяющее влияние на величину огибающей аксиальных колебаний имеет первая гармоника, то в общем случае для синхропиклотрона наиболее оптимальной будет такая система неоднородностей, которая обее спечивает максимальное значение второй и минимальное значение первой гармоники градиента магнитного поля.

Переход в формулах (25) к случаю, когда воздействие неоднородности онисывается матрицей вида (23), требует соблюдения условий Q₁ a << 1 и Q₀a << 1. В этом случае

$$\cos 2 \pi Q = \cos 2 \pi Q_{0} - \frac{T_{1}}{2} - \frac{\sin 2 \pi Q_{0}}{Q_{0}}$$

$$p^{2}(\theta) \sin 2\pi Q = \frac{\sin 2\pi Q_{0}}{Q_{0}} - \frac{T_{1}}{2Q_{0}^{2}} [\cos 2Q_{0}(\pi - \theta + \theta_{1}) - \cos 2\pi Q_{0}],$$
$$T_{1} = (Q_{1}^{2} - Q_{0}^{2}) \alpha = \Delta \pi_{1} \alpha.$$

(28)

где

Точки, нанесенные на графиках рисунков 4 и 5, соответствуют значениям частот и огибающих колебаний, рассчитанным по формулам (28). Эти результаты, а также аналогичные расчеты для других значений параметров Q₀ и а показывают, что приближение "тонких" линз и формулы (24) можно использовать во всех практически важных случаях при условии, что изменение функции Ф₀ на азимутальной протяженности неоднородности является незначительным.

Сравнение формул (28) и (24) показывает, что особенностью влияния неоднородности на движение частиц в периодических магнитных полях является то, что эффективность ее воздействия существенно зависит от азимутального положения.

Если ввести величину эффективной напряженности градиентного возмущения, зависящую от азимута с периодичностью $\frac{2\pi}{N}$

$$T_{1}^{*} = T_{1} \Phi_{0}^{*} (\theta_{1}), \quad \Phi_{0}^{*} = \sqrt{Q_{0}} \Phi_{0}$$

то формулы (24) и (28), определяющие изменение частот колебаний для магнитного поля с пространственной вариацией и аксиально-симметричного магнитного поля, совпадают, а отношение огибающих равно $\Phi_0^*(\theta)$. Таким образом, в ускорителях с пространственной вариацией при расположении возмущения на азимутах $\theta_1 = \frac{\beta}{N} + \frac{2\pi}{N}$ n (n = 0, 1, 2, ...) эффективность его воздействия на радиальное движение усиливается на множитель [1 + q M(µ)]² по сравнению с воздействием аналогичного возмущения в аксиально-симметричном магнитном поле. Существенно, что при таком расположении эффективность воздействия возмущения на аксиальное движение ослабляется на коэффициент $\approx (1 - \frac{q}{2})^2$, так как огибающая аксиальных колебаний в этих точках имеет минимальное значение. Для параметров релятивистского циклотрона значение этих коэффициентов равно 1,49 для радвального п 0,67 – для аксиального движения.

На рис. 5 показаны зависимости частот бетатронных колебаний от величины возмущения $\Delta \pi$, для $\alpha = 0,1$, $Q_{0} = 1,7987$ и $Q_{0} = 0,3183$, рассчитанные no формуле (24) при трех значениях $\theta = \frac{\beta}{N}$, $\theta = \frac{\beta}{N} - \frac{\pi}{2N}$ $\theta = \frac{\beta}{N} - \frac{\pi}{2N}$ Точками отмечены точные значения частот для этих случаев, полученные путем численного решения линеаризованных уравнений движения. Видно, что формула (24) правильно описывает зависимость частот колебаний от азимутального положения неоднородности и обеспечивает достаточную для практики точность. Из этого рисунка также видно, что при использовании одной локальной неоднородности в рассматриваемом случае нельзя обеспечить условия возбуждения радиальных колебаний без потери аксиальной устойчивости. Проведенный общий анализ показывает, что при обычных значениях частот аксиальных колебаний 0_=0,2÷0,3 q < 0,5 одна локальная неоднородность может быть использована для осуи ществления системы вывода только при таких значениях частот радиальных колебаний па конечных радиусах, которые отличаются от резонансных значений Q, = 1, 3/2, 2 на величину, не превышающую ΔQ =0,1;0,15. При этом для увеличения значения Q, используется неоднородность с Δn , > 0 (регенератор), а для уменьшения - неоднородность с $\Delta n < 0$ (возбудитель).

В ускорителе типа релятивистского циклотрона требуемая система возбуждения радиальных колебаний может быть осуществлена при использовании двух градиентных неоднородностей. В этом случае частота и огибающая колебаний определяются выражениями

$$\cos 2 \pi Q = \cos 2 \pi Q_0 - \frac{1}{2} [T_1 \Phi_0^2(\theta_1) + T_2 \Phi_0^2(\theta_2)] \sin 2 \pi Q_0^+$$
(29)

$$+ \frac{1}{2} T_{1} T_{2} \Phi_{0}^{2}(\theta_{1}) \Phi_{0}^{2}(\theta_{2}) \sin Q_{0} \beta_{1} \sin Q_{0}(2\pi - \beta_{1}),$$

$$\Phi^{2}(\theta) \sin 2\pi Q = \Phi_{0}^{2}(\theta) \left\{ \sin 2\pi Q_{0} + \frac{T_{1}}{2} \Phi_{0}^{2}(\theta_{1}) \left[\cos 2\pi Q_{0} - \cos 2Q_{0}(\pi - \theta + \theta_{1}) \right] + \frac{T_{1}}{2} \Phi_{0}^{2}(\theta_{1}) \left[\cos 2\pi Q_{0} - \cos 2Q_{0}(\pi - \theta + \theta_{1}) \right] + \frac{T_{1}}{2} \Phi_{0}^{2}(\theta_{1}) \left[\cos 2\pi Q_{0} - \cos 2Q_{0}(\pi - \theta + \theta_{1}) \right] + \frac{T_{1}}{2} \Phi_{0}^{2}(\theta_{1}) \left[\cos 2\pi Q_{0} - \cos 2Q_{0}(\pi - \theta + \theta_{1}) \right] + \frac{T_{1}}{2} \Phi_{0}^{2}(\theta_{1}) \left[\cos 2\pi Q_{0} - \cos 2Q_{0}(\pi - \theta + \theta_{1}) \right] + \frac{T_{1}}{2} \Phi_{0}^{2}(\theta_{1}) \left[\cos 2\pi Q_{0} - \cos 2Q_{0}(\pi - \theta + \theta_{1}) \right] + \frac{T_{1}}{2} \Phi_{0}^{2}(\theta_{1}) \left[\cos 2\pi Q_{0} - \cos 2Q_{0}(\pi - \theta + \theta_{1}) \right] + \frac{T_{1}}{2} \Phi_{0}^{2}(\theta_{1}) \left[\cos 2\pi Q_{0} - \cos 2Q_{0}(\pi - \theta + \theta_{1}) \right] + \frac{T_{1}}{2} \Phi_{0}^{2}(\theta_{1}) \left[\cos 2\pi Q_{0} - \cos 2Q_{0}(\pi - \theta + \theta_{1}) \right] + \frac{T_{1}}{2} \Phi_{0}^{2}(\theta_{1}) \left[\cos 2\pi Q_{0} - \cos 2Q_{0}(\pi - \theta + \theta_{1}) \right] + \frac{T_{1}}{2} \Phi_{0}^{2}(\theta_{1}) \left[\cos 2\pi Q_{0} - \cos 2Q_{0}(\pi - \theta + \theta_{1}) \right] + \frac{T_{1}}{2} \Phi_{0}^{2}(\theta_{1}) \left[\cos 2\pi Q_{0} - \cos 2Q_{0}(\pi - \theta + \theta_{1}) \right] + \frac{T_{1}}{2} \Phi_{0}^{2}(\theta_{1}) \left[\cos 2\pi Q_{0} - \cos 2Q_{0}(\pi - \theta + \theta_{1}) \right]$$

$$\frac{T_2}{2} \Phi_{\mathfrak{g}}^2(\theta_2) [\operatorname{Cos} 2 Q_0 \pi - \operatorname{Cos} 2 Q_0 (\pi - \theta + \theta_2)] - \frac{T_1 T_2}{2} \Phi_{\mathfrak{g}}^2(\theta_1) \Phi_{\mathfrak{g}}^2(\theta_2) F(\theta) \},$$

где

$$F(\theta) = \sin Q_0 \beta_1 \left\{ \cos 2Q_0 \left(\pi - \frac{\beta_1}{2} \right) - \cos 2Q_0 \left[\pi - \left(\theta - \frac{\theta_1 + \theta_2}{2} \right) \right] \right\}$$
(30)

 $\theta_2 \leq \theta \leq \theta_1 + 2\pi$

 $F(\theta) = \operatorname{Sin} Q_0 (2\pi - \beta_1) \{ \operatorname{Cos} Q_0 \beta_1 - \operatorname{Cos} 2 Q_0 (\theta - \frac{\theta_1 + \theta_2}{2}) \}$ $\operatorname{при} \theta_1 \le \theta \le \theta_0 \quad \text{a} \quad \beta_1 = \theta_0 - \theta_1,$

θ₁ и θ₂- азимуты расположения неоднородностей.

При $\Phi_0^2(\theta) = \frac{1}{Q_0}$ формула (29) совпадает с известной формулой, описывающей воздействие регенеративной системы на движение частиц в аксиально-симметричном матнитном поле¹¹⁴. Так как в граничных точках азимутальных интервалов F = 0, то огибающая является непрерывной функцией азимута. Однако даже в случае одного градиентного возмущения амплитуды гармоник в разложении приведенной огибающей $\frac{\Phi}{\Phi_0}$ в ряд Фурье могут не убывать монотонно с увеличением номера m, так как в огибающей усиливаются амплитуды гармоник с номером m ~ 2Q

На рис. 6 приведена зависимость $\frac{1}{2}$ Sp M₂ от п₁ для двух локальных неоднородностей с равными по абсолютной величине, но противоположными по знаку значениями градиентов. Неоднородности расположены по азимуту непосредственно друг за другом и их азимутальная протяженность принята равной а₁=0,15 рад. для 1₁>0 и а₂=0,1 рад. для 1,<0. Кривые (1), (2) на рис. 6 соответствуют значениям Cos 2 л Q , , рассчитанным для Q, =1,8 и Q₂₀=0,3 без учета влияния огибающих невозмущенного движения. Как следует из предыдущего анализа, такая зависимость должна иметь место и в реальных условиях при определенных положениях неоднородностей относительно периода структуры магнитного поля. На этом же рисунке показана зависимость Cos 2 m Q п, (кривая 3) для одного из азимутальных положений, соответствующего от значениям азимута 0,2454 $\leq \phi \leq$ 0,3954 в 0,3954 $< \phi <$ 0,4954 для первой в второй неоднородности соответственно. Эта кривая рассчитана по формуле (29) Q. = 1,7987 при использовании среднего значения огибающей на азимутальдля ной протяженности возмущений. При использовании среднего значения огибающих формулами (24), (29) можно пользоваться и в случае, когда огибающая колебаний меняется существенно на азимутальной протяженности возмущения. Действительно, разбивая азимутальную протяженность неоднородности на достаточно малые интервалы и производя последовательное перемножение - соответствую-

щих им матриц, можно получить тождественные с выражениями (24), (29) формулы, в которых используются значения

$$\overline{\Phi_{\mathfrak{s}1}^2} = \frac{1}{\alpha_1} \int_{\theta_1}^{\theta_1 + \alpha_1} \Phi_{\mathfrak{s}1}^2(\theta) d\theta = \overline{\Phi_{\mathfrak{s}2}^2} = \frac{1}{\alpha_2} \int_{\theta_2}^{\theta_2 + \alpha_2} \Phi_{\mathfrak{s}2}^2(\theta) d\theta$$

вместо $\Phi_0^2(\theta_1)$ и $\Phi_0^2(\theta_2)$ соответственно.

Нанесенные на рис. 6 точки соответствуют точным значениям Cos 2 п Q₁, рассчитанным на ЭВМ путем численного интегрирования линеаризованных уравнений движения. Некоторое отклонение точек от кривой (3) при больших значениях л₁ означает, что приближение "тонких" линз становится в этой области параметров слишком грубым приближением.

Из сравнения кривых рисунков (6) к (7) следует, что использование двух неоднородностей позволяет существенно расширить область значений n_1 , в которой аксиальное движение остается устойчивым. В частности, описанная система двух неоднородностей может быть использована в качестве одной из возможных систем, для осуществления вывода пучка из ускорителя типа релятивистского циклотрона. Если $Q_0>0.5$, то, как следует из анализа выражения (32), параметры неоднородностей можно выбрать таким образом, что частота данного внда колебаний остается неизменной. Так, например, при $q \rightarrow 0$ такими параметрами являются $T_1 = -T_2$ и $\beta_1 = -\frac{\pi}{Q_0}$. Это может представлять интерес для циклотронов с жесткой фокусировкой ($Q_{01} > 1$), где с помощью неоднородностей можно изменить частоту радиальных колебаний, не меняя значение Q_{-n}

Рассмотрам особенности воздействая на движение частиц различных гармонических составляющих возмущений, вносимых локальными неоднородностями, При разложении магнитного поля неоднородности в ряд Фурье, уравнения бетатронных колебаний имеют вид обобщенного уравнения Хилла с периодом коэффициентов 2*п* , причем максимальное значение имеет коэффициент, соответствующий периодичности структуры основного магнитного поля. Определение характеристинеских показателей для таких уравнений может быть произведено путем использования преобразования (20). В этом случае уравнения приводятся к виду

$$\frac{d^{2}\eta}{dr^{2}} + Q_{0}^{2} [1 + \Omega_{1}(r)\Phi_{0}^{4}(r)]\eta = 0,$$

где $\Omega_1(r) = \Delta n_1 \alpha f [\theta(r)]$ и функция $f(\theta) = \frac{1}{2\pi} + \frac{1}{\pi} \sum_{m=1}^{\infty} \frac{\sin m \frac{\alpha}{2}}{m \frac{\alpha}{2}} \cos m (\theta - \theta_1)$

и характеризует азимутальное распределение поля неоднородности. При гармоническом подходе приближению "тонких" линз соответствует замена действительи ного азимутального распределения б-функцией

$$\delta(\theta-\theta_1)=\frac{1}{2\pi}+\frac{1}{\pi}\sum_{m=1}^{\infty}\cos m(\theta-\theta_1).$$

Для этого случая уравнение (31) приводится к виду

$$\frac{d^{2}\eta}{dr^{2}} + \left\{ \left(Q_{0}^{2} + \frac{T^{*}}{2\pi} \right) + \frac{T^{*}}{\pi} \sum_{m=1}^{\infty} \cos m \left(r - r_{1} \right) \right\} \eta = 0 \right\}, \quad (32)$$

(31)

где $T^* = \Delta n_1 \alpha \Phi_0^{*2}(\theta_1)$ эффективная напряженность градиентного возмущения.

Аналогичные преобразования уравнений легко выполнить и при наличии нескольких локальных неоднородностей. Так как линейное преобразование (20) не изменяет характеристических показателей, то частота колебаний определяется непосредственным выражением

$$Cos 2 \pi Q = Cos 2 \pi \gamma - T^* \frac{Sin 2 \pi \gamma}{2\pi \gamma} \sum_{m=1}^{\infty} \frac{1}{m^2 - 4\gamma^2}, \quad (33)$$
$$\gamma^2 = Q_{c}^2 + \frac{T^*}{2\pi},$$

в котором отдельные слагаемые характеризуют влияние соответствующих гармоник, а наличие T^* в γ^2 обусловлено изменением среднего значения показателя а на орбите.

Формула (33) является приближенной формулой, так как определяет частоту колебаний для уравнения (32) с точностью до членов, пропорциональных T*³. Используя формулу суммирования

$$\frac{4\gamma}{\pi} \sum_{m=1}^{\infty} \frac{1}{m^2 - 4\gamma^2} = \frac{1}{2\pi\gamma} - Ctg \ 2\pi\gamma,$$

можно показать, что с точностью до членов « T *³. она совпадает с точным выражением (24), определенным на основе матричного метода.

Как следует вз анализа формулы (33), определяющее вляяние на взменение частоты колебаний Q_0 имеют гармоники, номер которых m наиболее близок к значению 2 Q_0 . При этом гармоники с номером m > 2 Q_0 вызывают увеличение, а гормоники с m < 2 Q_0 – уменьшение частоты колебаний. Поэтому при Q_0 > 0,5, изменяя азимутальное положение двух неоднородностей, можно найти такое соотношение между амплитудами гармоник, что эффект воздействия фокусирующих и дефокусирующих гармоник полностью скомпенсируется.

Если система неоднородностей не изменяют среднего значения на орбите, то $y = Q_0$. В этом случае при значениях Q_0 , достаточно близких к резонансному целому или полуцелому значению, из широкого спектра гармоник на величину шпура матрицы оборота влияет только резонансная гармоника.

В общем случае оцтимальными параметрами системы являются, очевидно, такие параметры, которые обеспечивают минимальное эначение резонансных гарьмоник для аксиального движения при максимальных значениях гармоник, наяболее эффективно воздействующих на радиальные колебания. Если частоты радиальных и аксиальных колебаний существенно различны, то введение одной резонансной гармоники по радиальным колебаниям слабо влияет на аксиальное движение. Так, в релятивистском циклотроне ($Q_{r0} = 1.8$; $Q_{r0} = 0.3$) введение в структуру магнитного поля 4-й гармоники позволяет увеличить частоту радиальных колебаний до $Q_r = 2$, незначительно изменяя при этом частоту аксиальных колебаний

Нелинейные эффекты

Изложенная теория, основанная на исследовании решений линеаризованных уравнений движения, позволяет выявить основные закономерности воздействия градиентных неоднородностей на движение частии и выбрать предварительные значения параметров системы, необходимой для осуществления вывода пучка. Дальнейшее уточнение параметров должно производиться на основе численного расчета траекторий движения в реальных магнитных полях с учетом изменения радиуса орбиты из-за набора энергия. Это обусловлено тем, что распределение основного магнитного поля ускорителя вблизи конечных радиусов и

особенно распределение магнитного поля локальных возмущений являются существенно линейными. Так как определение оптимальных параметров на основе численного счета требует значительного времени на ЭВМ, то основные нелинейные эффекты должны быть учтены при первоначальном выборе параметров системы.

Нелинейность уравнений движения и характеристик магнитного поля приводит в основном к зависимости частот колебаний от амплитуды и возникновению нелинейных резонансов при соотношениях частот

$$\nu Q \pm p Q = m$$
,

где ν , р, m – целые числа (ν + р – порядок резонанса). В ускорителях с пространственной вариацией имеется достаточно сильная зависимость частоты

Q₂ от амплитуды аксиальных колебаний, которая связана с увеличением амплитуды вариации при отходе от медианной плоскости^{/10/}. Кроме того может иметь место существенная зависимость Q₂ от амплитуды радиальных колебаний, определяемая в основном нелинейными характеристиками зависимости среднего магнитного поля и фазы вариации от радиуса. Зависимость частоты радиальных колебаний от их амплитуды определяется, в основном, характеристиками среднего магнитного поля в области предельных рабочих радиусов ускорителя. В первом приближении учет этих эффектов сводится к требованию, чтобы система неоднородностей обеспечивала в рамках линейной теории режим раскачки радиальных колебаний при сохранении аксиальной устойчивости для соответствующих интервалов частот невозмущенного движения. Выполнение этого условия только за счет выводной системы не всегда представляется возможным и обычно эти исследования приводят к дополнительным требованиям на характеристики основного магнитного поля в области радиусов вывода.

Зная интервалы изменения частот Q_г и Q_г, можно оценить обычными методами^{/10/} эффективность нелинейных резонансов в переходной области. При этом необходимо иметь в виду, что действительная скорость прохождения частицами этой области неравномерна и значительно выше радиальной скорости орбиты, онределяемой набором энергии. Это связано с возбуждением радиальных колебаний за счет увеличения огибающей при подходе к границе области устойчивости. Исследования, проведенные в связи с разработкой системы вывода пучка из релятивистского циклотрона, показывают, что параметры выводной системы могут

быть выбраны такими, что всю переходную область частицы проходят за 10-30 оборотов при обычных циклотронных наборах энергии. За счет быстрого прохождения эффективность нелинейных резонансов существенно ослаблена и практическую опасность могут представлять только резонансы связи колебаний третьего и Q. порядка в случае, когда характер изменения Q. такой, что резонансное условие поддерживается в эначительной части переходной области. Измененце величины магнитного поля в переходной области приводит также к появлению в уравнениях бетатронных колебаний дополнительных членов, связанных с возмущениями равновесной орбиты. Это вызывает некоторое усиление влияния неодно- $\theta \approx \frac{\beta}{N}$. Прородности на радиальное и аксиальное движение при значениях веденные оценки показывают, что для локальных неоднородностей малой азимутальной протяженности влияние этих членов незначительно и определяющим является эффект огибающих невозмущенного движения. Нелинейность градиента магнитного поля локальных неоднородностей приводит к появлению дополнительных условий на режим их воздействия на радиальные колебания с большими амплитудами. Попадание частиц в область возмущения начинается уже с энергетических радиусов, смещенных внутрь относительно радиуса предельной орбиты на величину максимальной амплитуды радиальных колебаний. Для таких частиц, очевидно, нельзя обеспечить условия прохождения возмущений на каждом обороте, так как изменение фазы бетатронных колебаний за оборот в основном еще определяется эначением частоты невозмущенного движения Q . Поэтому попадание частиц в область возмущения будет наблюдаться в основном через период прецессии невозмущенного движения. Для бетатронных колебаний относительно предельной невозмущенной равновесной орбаты условия действия неоднородности на каждом обороте сводятся к требованию, чтобы на азимуте установки неоднородности смещение от орбиты было положительным. Соблюдение этого условия в режиме раскачки амплитуд радиальных колебаний возможно только в случае -1 Sp M > 1, т.е. при целых значениях предельной резонансной частоты радиальных колебаний. Если же выводная система использует неустойчивость при полуцелых значениях Q, то основные ее параметры определяются из условия действия неоднородности через один оборот.

При использовании нескольких локальных неоднородностей, значительно смещенных по азимуту друг относительно друга, условия прохождения частицами

этих областей будут различны из-за изменения фазы бетатронных колебаний. Расчеты показывают, что это может существенно ограничивать интервал радиальных амплитуд, для которых осуществляется режим разделения орбит без потери аксиальной устойчивости. В этом отношении более предпочтительными являются системы, использующие неоднородности, локализованные в узком интервале азимутов.

Все эти факторы необходимо учитывать при разработке системы заброса частиц в магнитный канал. Однако более подробный анализ этих факторов выходит за рамки одной работы и требует особого рассмотрения в каждом конкретном случае.

В заключение авторы выражают благодарность В.В., Кольге и Н.Л. Заплатину за полезное обсуждение рассмотренных вопросов.

Литература

- 1. A.V.Crewe, K.J.Le Couteur, Rev.Sci.Inst., 2b, 725, 1955.
- 2. В.П. Дмитриевский, В.И. Данилов и др., ПТЭ, 1, 11, (1957).
- 3. E.A. Finlay, Nucl.Inst. Method <u>18-19</u>, 25, 1962.
- 4. H.Kim, G.H.Mackenzy, W.B.Powel, P.J. Waterton Proc. International Conf. on Secror-focused Cyclotrons and Meson Factories, CERN, p.73, 1963.
- 5. А.А. Глазов, Ю.Н. Денисов, В.П. Джелепов и др. Труды международной конференции по ускорителям, 1963 г. М. Атомиздат, 1964 г., стр. 556.
- 6. V.P.Dmitrievsky, V.V.Kolga et alf. Nuclear Science, NS-13, 84, 1966.
- 7. R.S.Livingston, J.A.Martin. Труды международной конференции по ускорителям, 1963, стр. 561.
- 8. L.A.Pipes, Jour. Appl. Phys., 24, 1953.
- А.А. Коломенский, А.Н. Лебедев, Теория циклических ускорителей. ФМЛ, М., (1962).
- 10. В.В. Кольга. Диссертация, Дубна 1965 г.
- 11. Н.В. Мак-Лахлан. Теория и применение функций Матье. М. ИЛ, 1953.
- 12. В.П. Дмитриевский, Н.Л. Заплатин, В.С. Рыбалко, Л.А. Саркисын. Моделирование магнитного поля релятивистского циклотрона с пространственной вариацией на энергию протонов 700 Мэв. Препринт ОИЯИ 1432, Дубна 1963.

- 13. H.Kim, Nuclear Science, <u>NS-13</u>, 58, 1966.
- 14. K.J.Le Couteur, Proc. Phys. Soc., <u>B-64</u>, 1073, 1951,
- В.П. Дмитриевский, В.В. Кольга, Н.И. Полумордвинова. Получение резонансных частот радиальных колебаний в релятивистских циклотронах. Препринт ОИЯИ, 1981, Дубна 1965.

Рукопись поступила в издательский отдел 12 июля 1967 г.

ные колебания орбиты.

Рис. 2. Форма равновесной орбиты и аксиальных колебаний на предельных радиусах релятивистского циклотрона. І – форма равновесной орбиты г_б(ф), II, III – зависимость Z и $\frac{dZ}{d\phi}$ от азимута.

ис. 4. Огибающая аксиальных колебаний для нескольких значений показателя п в регенераторе. — расчет по точной формуле (25), •••- расчет по приблаженной формуле (28).

при различных положениях ее относительно периода структуры магнитного поля. 1,2,3 – зависимость Q_{τ} от Δn_{1} , рассчитанная по формуле (24) при значениях $\theta_{1} = \frac{B}{N}$, $\theta_{1} = \frac{B}{N} - \frac{\pi}{2N}u$, $\theta_{1} = \frac{B}{N} - \frac{\pi}{N} - \frac{\pi}{N}$ соответственно; 4,5,6 – зависимость Q_{τ} от Δn_{1} , при тех же азимутальных положениях неоднородности; ••• – точные значения частот,

полученные из численного решения линеаризованных уравнений движения.

