

СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Дубна

5201

P9-2002-171

И. Н. Киян, С. Б. Ворожцов, Р. Тарашкевич*

ОПИСАНИЕ ПРОГРАММЫ РАСЧЕТА ЧАСТОТ БЕТАТРОННЫХ КОЛЕБАНИЙ (BETATRON OSCILLATION RESEARCH PROGRAM — **BORP**)

*Институт ядерной физики, Краков, Польша

2002

Введение

В изохронных циклотронах с вариацией магнитного поля (флаттером) – ускоряемая частица в процессе ускорения совершает свободные колебания в пространстве, называемые бетатронными колебаниями. Эти колебания можно разложить на радиальную и вертикальную составляющие и просчитать частоты радиальных и вертикальных бетатронных колебаний – $f_r(r)$ и $f_z(r)$. Частоты бетатронных колебаний необходимо знать при расчёте и оценке резонанса Уолкиншоу: $Q(r) = f_r(r) - 2 \cdot f_z(r)$, который надо учитывать, чтобы избежать перехода энергии радиальных бетатронных колебаний в энергию вертикальных бетатронных колебаний в энергию вертикальных бетатронных колебаний и вертикальных и вертикальных бетатронных колебаний в энергию вертикальных бетатронных колебаний и в энергию вертикальных бетатронных колебаний и вертикальных бетатронных колебаний и вертикальных бетатронных колебаний и вертикальных бетатронных колебаний и вертикальных бетатронных колебаний в энергию вертикальных бетатронных колебаний и вертикальных бетатронных колебаний в знергию вертикальных бетатронных колебаний и к потере ускоряемых частиц на дуантах изохронного циклотрона.

Представленная в данной работе программа для расчёта частот бетатронных колебаний – $f_r(r)$ и $f_z(r)$ (Betatron Oscillation Research Program - BORP) представляет собой один из расчётных модулей программы помощи оператору изохронного циклотрона в выборе режимов работы изохронного циклотрона (Cyclotron Operator Help Program – COHP). Данная программа написана на C++ с использованием Visual C++ v.6.0 для Windows 32. Целями написания BORP были: во-первых, использование данной программы для расчётов в качестве отдельного модуля с дружественным графическим интерфейсом пользователя ввиду отсутствия других программ с аналогичным набором возможностей, вовторых, встраивание программного кода в программу помощи оператору.

В программу помощи оператору входят ещё два расчётных модуля: программа расчёта среднего магнитного поля изохронного циклотрона с учётом флаттера (Cyclotron Analytic Model Program – CAMP) и программа для расчёта фазового движения (Phase Motion Research Program – PMRP). Кроме расчётных модулей, в программу помощи оператору входят также Structured Query Language (SQL) реляционные базы данных параметров контроля и управления работой изохронного циклотрона. Описание САМР даётся в предыдущей публикации (Р9–2002–170). Описание остальных программных модулей будет представлено в последующих публикациях.

Описание алгоритма расчёта частот радиальных и вертикальных бетатронных колебаний

В основе разработанного программного алгоритма лежит методика, описанная Т. Stammbach [1]. Программный алгоритм представлен в виде блок – схемы на рис. 1.

1. Считывание исходных данных из выходного *.ft
САМР файла и задание числа основных
гармоник i = 1÷6 для их расчёта и представления.
При n = i · N где N – число магнитных секторов.
2. Гармонический анализ введенной карты
магнитного поля для расчёта коэффициентов Фурье:

$$G_n(r) H_n(r)$$

 $B_n(r) = \sqrt{G_n^2(r) + H_n^2(r)} $\varphi_n(r) = \frac{1}{n} \cdot \arctan\left(\frac{G_n(r)}{H_n(r)}\right)$
3. Расчёт тангенса угла спирали:
 $rg\zeta(r) = \frac{r}{N \cdot B_N^2(r)} \cdot \left(H_N(r) \cdot \frac{dG_N(r)}{dr} - G_N(r) \cdot \frac{dH_N(r)}{dr}\right)$
4. Расчёт функций флатера и редуцированного
флатера:
 $F(r) = \frac{N_p^{-1}}{B_0^2(r)} - B_0^2(r)$
 $F(r) = \frac{N_p^{-1}}{B_0^2(r)} - F^*(r) = \frac{1}{2} \cdot \sum_{n=0}^{n=20} \frac{B_n^2(r)}{n}$
где N_p – число точек азимута, а $B_0(r)$ –
усреднённое по азимуту магнитное поле.
5. Расчёт индекса поля:
 $k(r) = r \cdot \frac{\sum_{k=0}^{N_p-1} dB_k(r, \theta_k)}{\sum_{k=0}^{N_p-1} B_k(r, \theta_k)}$$

Рис. 1. Блок - схема программного алгоритма

Описание программного интерфейса

Программа расчёта частот бетатронных колебаний – $f_r(r)$ и $f_2(r)$ позволяет представить рассчитанные данные в виде графиков и в виде таблицы результатов. Данные могут быть выведены на печать, а также записаны в виде файлов в бинарном и текстовом форматах.

Далее приведён пример работы программы для AVF – Riken изохронного циклотрона для полученного пучка ионов ${}^{14}N^{5+}$ с конечной энергией 100 МэВ/нукл. Ввод исходных данных осуществляется через считывание выходного *.flt САМР файла и диалог ввода числа основных гармоник для их расчёта и представления, который показан на рис. 2. Задание числа основных гармоник осуществляется в пределах $i = 1 \div 6$. При $n = i \cdot N$ где N – число магнитных секторов.

Enter Number of the Harmonics	
Number of the Harmonics: E	and a fit for set to a grad the

Рис. 2. Ввод числа основных гармоник для их расчёта и представления

Результаты расчётов, сделанные с помощью BORP, представляются в виде таблицы результатов. В этой таблице в зависимости от радиуса выводятся рассчитанные значения функций флаттера и редуцированного флаттера, тангенса угла спирали, индекса поля, квадратов частот радиальных и вертикальных бетатронных колебаний, частот радиальных и вертикальных бетатронных колебаний, а также рассчитанные значения функции резонанса Уолкиншоу и рассчитанные значения гармонических коэффициентов Фурье для первой гармоники и для основных гармоник.

ave As	Ex					
Number	Radius [m)	F (unil)	FAst (unit)	TrigSA (unit)		
	+ 040000	+ 000006	+.000000	· 029598		
2	+ 060000	+.000121	+.000008	+.009809		
3	+.080000	+.000746	+.006047	+.021923		
4	+.100000	+.002383	+.000149	+.037698		
5	+.120000	+.005146	+ 000322	+.055957		
6	+.140000	+.008800	+.000550	+.077309		
7	<u>}</u> +,160000	+.013034	+.000814	+ 099300		
8	j+.180000	+.017576	+.001098	+.121276		
9	+.200000	+.022220	+.001387	+.143319		
10	+.220000	+.026815	+.001671	+.163397		
1	+.240000	+.031305	+.001948	+.183989		
12	+.260000	+.035530	+.002208	+.205997		
13	+.280000	+.039502	+.002450	+.226835		
14]+.300000	+.043204	+.002674	+.247138		
15	+.320000	+.046641	+.002880	+.268353		
16	+.340000	+.049812	+.003068	+.290485		
17	+.360000	+.052696	+.003237	+.309792		
18	+.380000	+.055267	+.003386	+.330038		
19	+.400000	+.057521	+.003513	+ 352397		
20	∫+.420000	+.059479	+.003622	+.372498		
21	+.440000	+.061155	+.003713	+.395093		
22	+.460000	+.062562	+.003786	+.418499		
23	+.480000	+.063711	+ 003843	+ 442234		
24	+.500000	+.064606	+.003884	+.466177		
25	+.520000	+.065241	+.003909	+ 483811		
26	+.540000	+.065610	+.003918	+.516245		
27	+.560000	+.065685	+.003909	+.542321		
28	+ 580000	+.065426	+.003881	+.572105 🛛 🚬		

Результаты расчётов для AVF – Riken изохронного циклотрона со спиральными секторами приведены в таблице на рис. 3.

Рис. 3. Таблица результатов расчёта (AVF – Riken, пучок ионов ¹⁴N⁵⁺ с конечной энергией 100 МэВ/нукл)

На рис. 4 показана функция флаттера. На рис. 5 показан график зависимости квадрата частоты радиальных бетатронных колебаний от радиуса для определения возможности расчёта действительных значений частоты $f_r(\mathbf{r})$ ($f_r^2(\mathbf{r}) \ge 0$). На рис. 6 показан график зависимости квадрата частоты вертикальных бетатронных колебаний от радиуса для определения возможности расчёта действительных значений частоты $f_r(\mathbf{r})$ ($f_r^2(\mathbf{r}) \ge 0$).

Рис. 5. Квадрат частоты радиальных бетатронных колебаний $f_r^2(r)$

Рис. 6. Квадрат частоты вертикальных бетатронных колебаний f₂²(r)

На рис. 7 показан график зависимости частоты радиальных бетатронных колебаний от радиуса – $f_r(r)$. На рис. 8 показан график зависимости частоты вертикальных бетатронных колебаний от радиуса – $f_z(r)$. На рис. 9 показана рабочая диаграмма частот свободных колебаний. На рис. 10 представлен график функции резонанса Уолкиншоу, где $Q(r) = f_r(r) - 2 \cdot f_z(r)$. Если $Q(r) \neq 0$, то резонанс Уолкиншоу отсутствует.

Рис. 8. Частота вертикальных бетатронных колебаний f, (r)

Рис. 9. Рабочая диаграмма частот свободных колебаний

Рис. 10. График функции резонанса Уолкиншоу

Применение программы для различных циклотронных установок

В процессе настройки программы были выполнены расчёты для различных циклотронных установок: циклотрон со спиральными секторами AVF – Riken для полученного пучка ионов ¹⁴N⁵⁺ с конечной энергией 100 МэВ/нукл, циклотрон с прямыми секторами SSC2 – Саеп для полученного пучка ионов ³⁶Ar¹⁸⁺ с конечной энергией 95.5 МэВ/нукл, циклотрон со спиральными секторами AIC144 – Кгакоw для полученного пучка протонов с конечной энергией 60 МэВ/нукл. Результаты расчётов показаны на рис. 3, 11 и 12 соответственно.

Результаты расчётов для SSC2 – Саеп изохронного циклотрона с прямыми секторами приведены в таблице на рис. 11.

sults on we As	Base Field Map Ext	Harmonic Analys		
Number	Radius (m)	F (unit)	FAst (unit)	TrigSA (unit)
1	+1.000000	+ 705754	+.036528	+ 0000000000000000
2	+1.020000	+.705752	+.036527	0000000000000000
3	+1.040000	+ 705750	+.036527	+ 000000000000000
4	+1.060000	+ 705747	+.036526	+.00000000000000
5	+1.080000	+.705745	+.036525	+.000000000000000
S	+1.100000	+.705743	+.036524	+.0000000000000000
6 /38-3	+1.120000	+,705740	+.036523	.0000000000000000
	+1.140000	+,705738	+.036522	.00000000000000000000000000000000000000
	+1.160000	+.705736	+.036521	+.0000000000000000
0	+1.180000	+.705733	+.036520	000000000000000000000000000000000000000
1	+1.200000	+,705730	+.036519	+ 000000000000000
2	+1.220000	+.705728	+.036518	000000000000000000000000000000000000000
3	+1.240000	+.705725	+.036517	+.000000000000000
4	+1.260000	+,705723	+.036516	000000000000000000000000000000000000000
5	+1.280000	+.705720	+.036515	. 00000000000000000000
6	+1.300000	+.705717	+.036514	+.0000000000000000
7.	+1.320000	+.705714	+.036572	.000000000000000000
8	+1.340000	+.705711	+.036511	+.000000000000000
9	+1.360000	+.705708	+.038510	+ 000000000000000
20	+1.380000	+.705705	+.036509	000000000000000000000000000000000000000
1	+1.400000	+.705702	+.036508	+.0000000000000000
2	+1.420000	+,705699	+.036506	+ 00000000000000
3	+1.440000	+,705696	+.036505	- 0000000000000000
4	+1.460000	+,705693	+.036504	+ 00000000000000
5	+1.480000	+ 705690	+ 036503	+ 00000000000000
6	+1,500000	+ 705686	+.036501	00000000000000000
7 11	+1.520000	+ 705683	+.036500	+ 000000000000000
8.	+1.540000	+.705680	+.036499	00000000000000000

Рис. 11. Таблица результатов расчёта (SSC2 – Саел, пучок ионов ³⁶Ar¹⁸⁺ с конечной энергией 95.5 МэВ/нукл)

ave As	Ext				
Number	Radius (m)	F (unit)	FAst (unit)	TingSA (unit)	
1018.85	+.020000	+.000000	+.00000000	.855410	
2	+.040000	+.000016	+.000001	+.203461	
3	+.060000	+.000164	+.000010	+.242183	
4	+.080000	+.000646	+.000040	+ 314480	
5	+.100000	+.001544	+ 000096	+.402996	
6	+.120000	+.002776	+.000173	+.497098	
7	+.140000	+.004164	+.000260	+.594728	
8	+.160000	+.005526	+.000345	+.697954	
9.	+.180000	+.006755	+.000422	+.807733	
10	+.200000	+.007835	+.000489	+.919167	
<u>11</u>	+.220000	+.008806	+ 000549	+1.024656	
12	+.240000	+.009711	+.000606	+1.124726	
13	+.260000	+.010559	+.000659	+1.222447	
14	+.280000	+.011339	+.000707	+1.318083	
15	+ 300000	+.012047	+.000751	+1.413851	
16	+.320000	+.012679	+.000791	+1.510443	
17	+ 340000	+.013242	+.000826	+1.604804	
18	+.360000	+.013741	+.000857	+1.691809	
19	+.380000	+.014145	+.000882	+1.772613	
20	+.400000	+.014389	+.000897	+1.850971	
21	(+.420000	+.014386	+.000836	+1.938847	
22	+.440000	+.014107	+.000879	+2.053502	
23	+.460000	+.013653	+.000851	+2.188502	
24	+.480000	+.013236	+.000825	+2.307849	
25	+.500000	+.013022	+.000812	+2.368203	
26	+.520000	+.012971	+.000803	+2.363695	
27	+.540000	+.012839	+.000799	+2.315725	
28	+.560000	+.012253	+.000760	+2.268390 🚬	

Результаты расчётов для AIC144 – Кгакоw изохронного циклотрона со спиральными секторами приведены в таблице на рис. 12.

Рис. 12. Таблица результатов расчёта (AIC144 – Krakow, пучок протонов с конечной энергией 60 МэВ/нукл)

Заключение

Результаты расчётов, выполненных с помощью BORP, были проверены и подтверждены с использованием численных методов расчёта частот бетатронных колебаний – $f_r(r)$ и $f_z(r)$. Расхождение результатов расчётов, выполненных с помощью BORP и с помощью численных методов, было в пределах от нуля до нескольких процентов, что доказало правильность расчётов, сделанных с помощью BORP для различных циклотронов с вариацией магнитного поля.

С помощью BORP была достигнута необходимая для оценки резонанса Уолкиншоу точность расчёта расчёта частот бетатронных колебаний – $f_r(r)$, $f_r(r)$.

Данная программа написана для Windows 32 на языке C++, который является в настоящее время самым быстродействующим языком программирования в мире. BORP написана в стандарте Single Document Interface (SDI) с использованием Visual C++ v.6.0, что позволило организовать удобный графический интерфейс взаимодействия с пользователем, включающий в себя стандартную Help систему.

Данная программа может быть использована как для расчётов циклотронов с прямыми секторами, так и для расчётов циклотронов со спиральными секторами.

Авторы выражают глубокую признательность нач. Циклотронного Отдела Института Ядерной Физики в Кракове др–у Эдмунду Бакевичу за постоянное внимание к работе по созданию программного обеспечения для выбора эксплуатационных режимов работы изохронного циклотрона.

Мы также хотели бы поблагодарить проф. А.Гото за любезное разрешение использовать данные по магнитному полю AVF – Riken циклотрона, а также проф. И.Барона за любезное предоставление в наше распоряжение карты магнитного поля SSC2 – Caen циклотрона.

Литература

1. T. Stammbach. Cyclotrons . Joint Universities Accelerator School, France, 1997.

Получено 15 июля 2002 г.