02-141

СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Дубна

52026

P9-2002-171

И. Н. Киян, С. Б. Ворожцов, Р. Тарашкевич*

ОПИСАНИЕ ПРОГРАММЫ РАСЧЕТА ЧАСТОТ БЕТАТРОННЫХ КОЛЕБАНИЙ (BETATRON OSCILLATION RESEARCH PROGRAM — BORP)

^{*}Институт ядерной физики, Краков, Польша

Введение

В изохронных циклотронах с вариацией магнитного поля (флаттером) — ускоряемая частица в процессе ускорения совершает свободные колебания в пространстве, называемые бетатронными колебаниями. Эти колебания можно разложить на радиальную и вертикальную составляющие и просчитать частоты радиальных и вертикальных бетатронных колебаний — $f_r(r)$ и $f_z(r)$. Частоты бетатронных колебаний необходимо знать при расчёте и оценке резонанса Уолкиншоу: $Q(r) = f_r(r) - 2 \cdot f_z(r)$, который надо учитывать, чтобы избежать перехода энергии радиальных бетатронных колебаний в энергию вертикальных бетатронных колебаний, так как такой переход приводит к расхождению пучка в вертикальном направлении и к потере ускоряемых частиц на дуантах изохронного циклотрона.

Представленная в данной работе программа для расчёта частот бетатронных колебаний — $f_r(r)$ и $f_z(r)$ (Betatron Oscillation Research Program - BORP) представляет собой один из расчётных модулей программы помощи оператору изохронного циклотрона в выборе режимов работы изохронного циклотрона (Cyclotron Operator Help Program – COHP). Данная программа написана на C++ с использованием Visual C++ v.6.0 для Windows 32. Целями написания BORP были: во-первых, использование данной программы для расчётов в качестве отдельного модуля с дружественным графическим интерфейсом пользователя ввиду отсутствия других программ с аналогичным набором возможностей, вовторых, встраивание программного кода в программу помощи оператору.

В программу помощи оператору входят ещё два расчётных модуля: программа расчёта среднего магнитного поля изохронного циклотрона с учётом флаттера (Cyclotron Analytic Model Program – CAMP) и программа для расчёта фазового движения (Phase Motion Research Program – PMRP). Кроме расчётных модулей, в программу помощи оператору входят также Structured Query Language (SQL) реляционные базы данных параметров контроля и управления работой изохронного циклотрона. Описание САМР даётся в предыдущей публикации (Р9–2002–170). Описание остальных программных модулей будет представлено в последующих публикациях.

Описание алгоритма расчёта частот радиальных и вертикальных бетатронных колебаний

В основе разработанного программного алгоритма лежит методика, описанная Т. Stammbach [1]. Программный алгоритм представлен в виде блок – схемы на рис. 1.

1. Считывание исходных данных из выходного *.flt САМР файла и задание числа основных гармоник $i=1\div 6$ для их расчёта и представления. При $n=i\cdot N$ где N – число магнитных секторов.

$$B_{n}(r) = \sqrt{G_{n}^{2}(r) + H_{n}^{2}(r)} \qquad \varphi_{n}(r) = \frac{1}{n} \cdot \arctan\left(\frac{G_{n}(r)}{H_{n}(r)}\right)$$

3. Расчёт тангенса угла спирали:

$$tg\zeta(r) = \frac{r}{N \cdot B_N^2(r)} \cdot \left(H_N(r) \cdot \frac{dG_N(r)}{dr} - G_N(r) \cdot \frac{dH_N(r)}{dr} \right)$$

4. Расчёт функций флатера и редуцированного флатера:

$$F(r) = \frac{\sum_{k=0}^{N_p-1} B_k^2(r, \theta_k)}{N_p} - B_0^2(r) \qquad F'(r) = \frac{1}{2} \cdot \frac{\sum_{n>0} \frac{B_n^2(r)}{n^2}}{B_0^2(r)}$$

где N_p – число точек азимута, а $B_0(\mathbf{r})$ – усреднённое по азимуту магнитное поле.

5. Расчёт индекса поля:

$$k(r) = r \cdot \frac{\sum_{k=0}^{N_p-1} \frac{dB_k(r, \theta_k)}{dr}}{\sum_{k=0}^{N_p-1} B_k(r, \theta_k)}$$

Рис. 1. Блок – схема программного алгоритма

Описание программного интерфейса

Программа расчёта частот бетатронных колебаний – $f_r(r)$ и $f_z(r)$ позволяет представить рассчитанные данные в виде графиков и в виде таблицы результатов. Данные могут быть выведены на печать, а также записаны в виде файлов в бинарном и текстовом форматах.

Далее приведён пример работы программы для AVF — Riken изохронного циклотрона для полученного пучка ионов $^{14}N^{5+}$ с конечной энергией 100 МэВ/нукл. Ввод исходных данных осуществляется через считывание выходного *.flt САМР файла и диалог ввода числа основных гармоник для их расчёта и представления, который показан на рис. 2. Задание числа основных гармоник осуществляется в пределах $i=1\div 6$. При $n=i\cdot N$ где N — число магнитных секторов.

Рис. 2. Ввод числа основных гармоник для их расчёта и представления

Результаты расчётов, сделанные с помощью BORP, представляются в виде таблицы результатов. В этой таблице в зависимости от радиуса выводятся рассчитанные значения функций флаттера и редуцированного флаттера, тангенса угла спирали, индекса поля, квадратов частот радиальных и вертикальных бетатронных колебаний, частот радиальных и вертикальных бетатронных колебаний, а также рассчитанные значения функции резонанса Уолкиншоу и рассчитанные значения гармонических коэффициентов Фурье для первой гармоники и для основных гармоник.

Результаты расчётов для AVF – Riken изохронного циклотрона со спиральными секторами приведены в таблице на рис. 3.

ave As	EXI.				
Number	Radius (m)	F (unit)	FAst (unit)	TingSA (unit) ▲	
1	+.040000	+.000006	+.0000000	- 029598	
2	+.060000	+.000121	+.000008	+.009809	
3	+.080000	+.000746	+.006047	+.021923	
4	+.100000	+.002383	+.000149	+.037690	
5	+.120000	+.005146	+ 000322	+.055957	
6	+.140000	+.008800	+.000550	+.077309	
7	+.160000	+.013034	+.000814	+ 099300	
8	+.180000	+.017576	+.001098	+.121276	
9	+ 200000	+.022220	+,001387	+.143319	
10	+.220000	+.026815	+.001671	+.163337	
11	+.240000	+.031305	+.001948	+.183989	
12	+.260000	+.035530	+,002208	+.205997	
13	+ 280000	+.039502	+.002450	+.226835	
14	+ .300000	+.043204	+.002674	+.247138	
15	+.320000	+.046641	+.002880	+.268353	
16	+.340000	+.049812	+.003068	+.290485	
17	+.360000	+.052696	+.003237	+.309792	
18	+.380000	+.055267	+.003386	+.330038	
19	+ 400000	+.057521	+.003513	+.352397	
20	+.420000	+.059479	+.003622	+.372498	
21	+.440000	+.061155	+.003713	+.395093	
22	+.460000	+.062562	+.003786	+.418499	
23	+.480000	+.063711	+ 003843	+.442234	
24	+.500000	+.064606	+.003884	+.466177	
25	→ .520000	+.065241	+.003909	+ 489811	
26	+.540000	+.065610	+.003918	+.516245	
27	+ 560000	+.065685	+.003909	+.542321	
28	+.580000	+.065426	+.003881	+.572105	

Рис. 3. Таблица результатов расчёта (AVF – Riken, пучок ионов ¹⁴N⁵⁺ с конечной энергией 100 МэВ/нукл)

На рис. 4 показана функция флаттера. На рис. 5 показан график зависимости квадрата частоты радиальных бетатронных колебаний от радиуса для определения возможности расчёта действительных значений частоты $\mathbf{f}_r(\mathbf{r})$ ($\mathbf{f}_r^2(\mathbf{r}) \geq 0$). На рис. 6 показан график зависимости квадрата частоты вертикальных бетатронных колебаний от радиуса для определения возможности расчёта действительных значений частоты $\mathbf{f}_r(\mathbf{r})$ ($\mathbf{f}_r^2(\mathbf{r}) \geq 0$).

Рис. 4. Функция флаттера

Рис. 5. Квадрат частоты радиальных бетатронных колебаний $f_{\tau}^{2}(\mathbf{r})$

Рис. 6. Квадрат частоты вертикальных бетатронных колебаний $f_z^2(\mathbf{r})$

На рис. 7 показан график зависимости частоты радиальных бетатронных колебаний от радиуса — $f_r(r)$. На рис. 8 показан график зависимости частоты вертикальных бетатронных колебаний от радиуса — $f_z(r)$. На рис. 9 показана рабочая диаграмма частот свободных колебаний. На рис. 10 представлен график функции резонанса Уолкиншоу, где $Q(r) = f_r(r) - 2 \cdot f_z(r)$. Если $Q(r) \neq 0$, то резонанс Уолкиншоу отсутствует.

Рис. 7. Частота радиальных бетатронных колебаний $f_r(r)$

Рис. 8. Частота вертикальных бетатронных колебаний $f_z(\tau)$

Рис. 9. Рабочая диаграмма частот свободных колебаний

Рис. 10. График функции резонанса Уолкиншоу

Применение программы для различных циклотронных установок

В процессе настройки программы были выполнены расчёты для различных циклотронных установок: циклотрон со спиральными секторами AVF — Riken для полученного пучка ионов $^{14}N^{5+}$ с конечной энергией 100 МэВ/нукл, циклотрон с прямыми секторами SSC2 — Саеп для полученного пучка ионов $^{36}Ar^{18+}$ с конечной энергией 95.5 МэВ/нукл, циклотрон со спиральными секторами AIC144 — Krakow для полученного пучка протонов с конечной энергией 60 МэВ/нукл. Результаты расчётов показаны на рис. 3, 11 и 12 соответственно.

Результаты расчётов для SSC2 – Caen изохронного циклотрона с прямыми секторами приведены в таблице на рис. 11.

ve As	Exa			
Number	Radius (m)	F (unit)	FAst (unit)	TingSA (unit)
	+1.000000	+ 705754	+ 036528	+.000000000000000
	+1.020000	+.705752	+.036527	100000000000000
1	+1.040000	+ 705750	+.036527	+ 000000000000000
TAYE.	+1.060000	+.705747	+.036526	+.00000000000000
	+1.080000	+.705745	+.036525	+.000000000000000
HIR	+1.100000	+.705743	+.036524	+.00000000000000000
	+1.120000	+.705740	+.036523	0000800000000000000000000000000000000
	+1.140000	+,705738	+.036522	.00000000000000000000000000000000000000
	+1.160000	+.705736	+.036521	+.0000000000000000000.+
0	+1.180000	+.705733	+.036520	.00000000000000000000000000000000000000
1	+1.200000	+ 705730	+.036519	+ 000000000000000
2	+1.220000	+,705728	+.036518	000000000000000000000000000000000000000
3	+1.240000	+.705725	+.036517	+.0000000000000000
4	+1.260000	+,705723	+.038516	000000000000000000000000000000000000000
5	+1.280000	+ 705720	+.036515	000000000000000000000000000000000000
6	+1.300000	+.705717	+.036514	+.0000000000000000000000000000000000000
7	+1.320000	+.705714	+.036512	. 0000000000000000000000000000000000000
8	+1.340000	+,705711	+.036511	+.000000000000000
9	+1.360000	+.705708	+.036510	+ 000000000000000
0	+1.380000	+,705705	+.036509	000000000000000000000000000000000000000
1	+1.400000	+.705702	+.036508	+ 000000000000000
2	+1.420000	+,705699	+.036508	+ 000000000000000
3	+1.440000	+,705696	+.036505	.00000000000000000000000000000000000000
4	+1.460000	+,705693	+.036504	+.0000000000000000
5	+1.480000	+ 705690	+.036503	+.000000000000000
6.	+1,500000	+ 705686	+.036501	000000000000000000000000000000000000
潮間響	+1.520000	+ 705683	+.036500	+.000000000000000
	+1.540000	+.705680	+ 036499	300000000000000000000
				94

Рис. 11. Таблица результатов расчёта (SSC2 – Caen, пучок ионов 36 Ar $^{18+}$ с конечной энергией 95.5 МэВ/нукл)

Результаты расчётов для AIC144 – Krakow изохронного циклотрона со спиральными секторами приведены в таблице на рис. 12.

aye As						
Number	Radius (m)	F (unit)	FAst (unit)	TingSA (unit)		
15 %	+ 020000	+.000000	+.00900000	855410		
2	+.040000	+.000016	+.000001	+.203461		
3	+.060000	+.000164	+.000010	+.242183		
4) +.0800 <u>00</u> 0	+.000646	+.000040	+ 314480		
5	+.100000	+,001544	+ 000096	+.402996		
6	+.120000	+.002776	+.000173	+.497098		
7	+.140000	+.004164	+.000260	+.594728		
3	+.160000	+.005526	+.000345	+,697954		
9.	+.180000	+.006755	+.000422	+.807733		
10	+.200000	+.007835	+.000489	+.919167		
11: . <u>- </u>	+.220000	+.008806	+.000549	+1.024656		
12	+.240000	+.009711	+.000606	+1.124726		
13	+.260000	+.010559	+.000659	+1,222447		
14	+.280000	+.011339	+.000707	+1.318083		
15	+ 300000	+.012047	+.000751	+1.413851		
16	+,320000	+.012679	+.000791	+1.510443		
17	+ 340000	+.013242	+.000826	+1.604804		
18	+.360000	+.013741	+.000857	+1.691809		
19	+.380000	+.014145	+.000882	+1,772613		
20	+.400000	+.014389	+.000897	+1.850971		
21	+.420000	+.014386	+.000896	+1.938847		
22	+.440000	+.014107	+.000879	+2.053502		
23	+ 460000	+.013653	+.000851	+2.188502		
24 :	+.480000	+.013236	+.000825	+2.307049		
25	+.500000	+.013022	+.000812	+2.368203		
26	+.520000	+.012971	+,000803	+2.363695		
27	+,540000	+.012839	+.000799	+2.315725		
28	+.560000	+.012253	+.000760	+2.268390 <u>*</u>		
4				.		

Рис. 12. Таблица результатов расчёта (AIC144 – Krakow, пучок протонов с конечной энергией 60 МэВ/нукл)

Заключение

Результаты расчётов, выполненных с помощью BORP, были проверены и подтверждены с использованием численных методов расчёта частот бетатронных колебаний – $f_r(r)$ и $f_z(r)$. Расхождение результатов расчётов, выполненных с помощью BORP и с помощью численных методов, было в пределах от нуля до нескольких процентов, что доказало правильность расчётов, сделанных с помощью BORP для различных циклотронов с вариацией магнитного поля.

С помощью BORP была достигнута необходимая для оценки резонанса Уолкиншоу точность расчёта расчёта частот бетатронных колебаний – $f_r(r)$, $f_r(r)$.

Данная программа написана для Windows 32 на языке C++, который является в настоящее время самым быстродействующим языком программирования в мире. BORP написана в стандарте Single Document Interface (SDI) с использованием Visual C++ v.6.0, что позволило организовать удобный графический интерфейс взаимодействия с пользователем, включающий в себя стандартную Help систему.

Данная программа может быть использована как для расчётов циклотронов с прямыми секторами, так и для расчётов циклотронов со спиральными секторами.

Авторы выражают глубокую признательность нач. Циклотронного Отдела Института Ядерной Физики в Кракове др—у Эдмунду Бакевичу за постоянное внимание к работе по созданию программного обеспечения для выбора эксплуатационных режимов работы изохронного циклотрона.

Мы также хотели бы поблагодарить проф. А.Гото за любезное разрешение использовать данные по магнитному полю AVF — Riken циклотрона, а также проф. И.Барона за любезное предоставление в наше распоряжение карты магнитного поля SSC2 — Caen циклотрона.

Литература

1. T. Stammbach. 'Cyclotrons'. Joint Universities Accelerator School, France, 1997.

Получено 15 июля 2002 г.