ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

3763/2-77

19/1x - 7 † P9 - 10649

А.Г.Бонч-Осмоловский, С.Н.Доля

СИЛЬНОТОЧНЫЙ УСКОРИТЕЛЬ ИОНОВ СРЕДНИХ ЭНЕРГИЙ С ПОЛЫМ ЭЛЕКТРОННЫМ ПУЧКОМ II. Параметры и схема ускорителя

P9 - 10649

А.Г.Бонч-Осмоловский, С.Н.Доля

СИЛЬНОТОЧНЫЙ УСКОРИТЕЛЬ ИОНОВ СРЕДНИХ ЭНЕРГИЙ С ПОЛЫМ ЭЛЕКТРОННЫМ ПУЧКОМ II. Параметры и схема ускорителя

Направлено в АЭ

1	валенинский ниститут
	ME CHAX HECHELOBAHH
	BHGJHOTEKA

Бонч-Осмоловский А.Г., Доля С.Н.

Сильноточный ускоритель нонов средних энергий с полым электронным пучком. П. Параметры и схема ускорителя

Предложена схема ускорителя и обсуждаются параметры электронного пучка (энергия, ток) и отдельные элементы ускорителя в двух вариантах: для ускорения легких ядер до энергий ~ 250 МэВ/нуклон и конов любой зарядности до энергий 20-30 МэВ/нуклон.

Работа выполнена в Лаборатории высоких энергий ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубиа 1977

Bonch-Osmolovsky A.G., Dolya S.N.

P9 - 10649

High-Current Mean-Energy Ion Accelerator with a Hollow Electrons Beam. II.Parameters and Scheme of Accelerator

A scheme of an accelerator is suggested, Electron beam parameters are discussed as well as separate elements for two kinds of accelerator: for acceleration of light nuclei up to the energy of about 250 MeV/nucl. and for ions of any charge up to the energies of 20-30 MeV/nucl.

The investigation has been performed at the Laboratory of High Energy, JINR.

Preprint of the Joint Institute for Nuclear Research, Dubna 1977

В предыдущей работе /1/ были изложены идея и физические обоснования метода ускорения ионов в модулированном полом электронном пучке. (В дальнейшем ссылки на эту работу обозначаются 1). Исходными положениями при этом являлись сравнительно малые числа частиц в отдельных сгустках и слаборелятивистская энергия пучка. На основе этой идеи ниже рассматривается схема ускорителя, способного обеспечить темп набора энергии ионов 10 Z/A мB/м. Это значение примерно на порядок выше, чем у классических линейных ускорителей ионов и выбрано, исходя из реальных возможностей начального этапа разработки данного метода.

На основе известных экспериментальных данных (см. ссылки в 1) выберем геометрические параметры полого пучка R = 3 см, $2\Delta = 0,3$ см ($2\Delta = 2a$). Для того чтобы получить указанную выше величину набора энергии ионов, необходимо обеспечить эффективное продольное электрическое поле в электронном сгустке $E_z = 100$ кВ/см. Тогда, рассматривая в качестве основной модель сгуст-ка в виде тороида с примерно одинаковыми радиальным и аксиальным полуразмерами ($a \approx b$), для числа частиц в сгустке из формулы $E_z |_{b/2} = \frac{eN_e}{\pi R(a+b)}$ получаем

N_e = 2·10¹² эл/сг.

Установив эту величину, остальные важные параметры ускорителя определим с весьма незначительным разбросом.

© 1977 Объединенный инспинут ядерных исследований Дубна

3

Согласно (1), степень компрессии в каспе может быть принята равной 10, расстояние между сгустками в период наибольшего сближения при захвате ионов положим равным 1 см. Это приводит к длине волны группирования порядка 100 см, примем $\lambda = 1$ м.

Для обеспечения указанной величины N , ток пучка до группирователя должен составлять 100 А. Принимая во внимание анализ физических процессов группирования (степень модуляции 30) и перехода полого пучка через касп/1/, примем "фактор запаса" равным 2, т.е. ток из электронной пушки I = 200 А.

Согласно формулам (I,1) и (I,1'), теперь можно рассчитать амплитуду напряжения на группирователе, необходимую для получения данной степени модуляции. Она оказывается равной 1000 кВ, при этом длина пути группирования (I,4) равна 2 м. Для компенсации разброса, вносимого каспом, его необходимо сдвинуть от фокуса к группирователю на 20 см. Эти цифры имеют лишь оценочный характер, оптимальная установка каспа по отношению к группирователю должна корректироваться экспериментом.

Выбор длины волны группирователя не вполне однозначен. В принципе, при заданном ускоряющем поле (потенциале сгустка) и степени компрессии в каспе около 10 длину волны группирователя можно варьировать примерно от 30 см и выше. При малой длине сгустки сойдутся слишком близко при максимальном торможении пучка, при большой - число сгустков будет уменьшаться при заданной длительности импульса электронной пушки (но N_e при этом растет, если происходит соответствующее увеличение степени компрессии).

Следует отметить также, что возможно создание сгустков после каспа при аксиальном размере, значительно превышающем радиальный: b>>a. При этом:

а) увеличивается ток пучка и число частиц в сгустке (при E =const); б) уменьшается степень компрессии в каспе (при

 $\lambda = \text{const}$);

в) несколько ухудшаются условия фокусировки и растет влияние неустойчивостей (при у = const). Поэтому

в качестве наиболее легко осуществимой при минимальном у выбрана модель сгустка с примерно равными малыми размерами.

Теперь остановимся на одном из важнейших вопросов: о выборе минимального значения $\gamma(\simeq \gamma_1)$. При выбранном числе частиц N в сгустках решающими соображениями при выборе у являются вопросы устойчивости и фокусировки.

При использовании Но или мультипольной фокусировки (v, > 1) поперечное расталкивание не ограничивает у 1 снизу при выбранном значении N. (см. формулу (I.15). Можно считать, что поперечная фокусировка достаточно эффективна, если $\nu_1^2 = 2$ и $\gamma_1 > 2$.

<u> Нф- фокусировка в продольном направлении</u>

На основании (1.9) получаем, что фокусировка начинает работать при у₁ <3,1. Наименьшее значение Н_ф-поля будет вблизи этого значения $\gamma \perp$. Например, при $\gamma \downarrow = 3$ условия фокусировки выполняются при $H_{\phi} \gtrsim 1.4 H_z$. Поле Н_z, необходимое для обеспечения прохождения частиц через касп, $H_z = \frac{mcyV_o}{eR}$, составляет 1600 Э, напряжен-ность азимутального поля ≥ 2300 Э. Наибольшая возможная скорость сгустков при их дальнейшем ускорении $(H_{cb} = \text{const})$ составляет $\beta_z = 0,32$.

Фокусировка анизотропным экраном обеспечивается, если уд достаточно велика, практически минимальным значением является $y_{\perp} = 2.5 \div 3.$

, Рассмотрение устойчивости сгустков показывает,что, вообще говоря, выгодно увеличивать уд. Импеданс полностью экранированного пучка (отрицательная масса) при у 1=3 равен (1.17) 50 Ом, импеданс сгустка в свободном пространстве, как известно, (см.1.18).равен ~320 Ом.

При использовании H_{ϕ} -фокусировки экранированный пучок является хорошим приближением и при $\gamma_{\rm KD}=1$ критический разброс (1.16) составляет 6%. Когда внешний металлический цилиндр разрезан вдоль оси (фокусировка анизотропным экраном), пучок оказывается как бы в свободном пространстве и критический разброс

становится недопустимо большим (>20%), поэтому требуется дополнительная экранировка. Это можно сделать, располагая вне анизотропного экрана на достаточном удалении еще один металлический сплошной экран, пользуясь тем, что при малых у возбуждаются сравнительно низкие гармоники (n < 10). Оценивая импеданс в этом случае величиной порядка 100 Ом, получаем при $\nu_z^2 = 2$ и у = 3 критический полуразброс по энергиям $\frac{\Delta E}{E} = 10\%$ при $\frac{\Delta R}{R} = 5\%$. Эти оценки показывают, что разброс после каспа

Эти оценки показывают, что разброс после каспа необходимо увеличить до величины порядка 5%, что еще совместимо с величиной $\frac{\Lambda}{R} = 1/20$. Величину у₁ в соответствии с вышеизложенным выбираем равной 3, т.е. энергия электронов в пучке равна 1 МэВ ($\gamma = \gamma_1$).При выбранных параметрах (N₁ < 10⁻³ N_e) двухлучковая неустойчивость (I.19), как показывают оценки, не развивается.

На рис. 1 показан схематический вид ускорителя, в котором используется мультипольная фокусировка и фокусировка анизотропным экраном. Этот вариант рассчитан на легкие ядра (p,d, a) и энергию ~1 ГэВ. Основные параметры этого ускорителя сведены в табл. 1.

При ускорении тяжелых ионов до энергии 20÷ ÷30 МэВ/нукл. при внешней инжекции ионов, целесообразно использовать Н_ф-фокусировку; схема ускорителя отличается устройством ускоряюшей секции, данные которой приведены в табл. 2. Так как для создания указанного значения Н_ф-поля по оси системы нужно пропускать ток до 35 кА, то конструкция коаксиальной ускоряющей секции длиной 4 м требует нетривиальных конструктивных и технологических проработок. Укажем на два возможных пути решения этой задачи: глубокое охлаждение всей секции и импульсный режим работы источника питания осевого тока.

Вернемся к варианту ускорителя средних энергий, (рис. 1).

В качестве электронной пушки выбрана магнетронная пушка-диод с магнитной изоляцией, которая, с одной стороны, позволяет формировать достаточно длинные

Таблица 1 Основные параметры ускорителя на средние энергии

Ток пучка электронов	A	200
Энергия электронов W _е	МэВ	1
Длительность импульса г	мкс	10 ÷ 100
Радиус пучка R	См	3
Толщина трубки 2Δ	СМ	0,3
Длина волны группирователяλ	м	1
Амплитуда напряжения на зазоре		
группирующего резонатора U	MB	1,0
Напряженность аксиального		
магнитного поля Н,	кЭ	1,6
Напряженность мультипольного		•
поля Н _М	кЭ	2,7
Срядняя напряженность ускоряюще	го	
сгустка поля Ее	В/см'	150
Число ионов в импульсе N:		$10^{12} \div 10^{13}$
Энергия ионов W;	МэВ/нукл.	250 (500-p)
Длина ускорителя L	м	55
Число импульсов в секунду		1 ÷ 100
		-

Таблица 2

Параметры ускоряющей секции для тяжелых ионов

Напряженность Н _ф поля, кЭ	2,3
Средняя напряженность ускоряющего	
сгустки поля в В/см	450
Число ионов в импульсе (Z/A=1/2)	$10^{12} \div 10^{13}$
Энергия ионов МэВ/нуклон	20
Длина ускорителя, м	6

импульсы ввиду магнитной изоляции катод-анодного промежутка, а с другой - отсутствие анодной фольги позволяет такой пушке работать с большой частотой повторения*. Пучок модулируется резонатором коаксиального типа, возбуждаемого от лампового генератора. На рис. 1 питание резонатора и пушки не показано. Модулированный пучок фокусируется на касп с концентратором поля, после чего в сгустки вносится специально установленными фольгами энергетический разброс для подавления продольной неустойчивости. С помощью ре-ЗИСТИВНЫХ СТЕНОК ИЛИ ПЕТЕЛЬ СГУСТКИ ТОРМОЗЯТСЯ. ПОСЛЕ чего захватывают ионы либо из внешнего инжектора. либо из ультразвуковой струи газа. Фокусировка после каспа (поддержание полученных размеров) осуществляется с помощью аксиального магнитного поля (большой радиус и радиальный размер), анизотропного экрана (аксиальный размер) и мультипольного магнитного поля (ужесточение радиальной фокусировки).

Сгустки с ионами ускоряются ВЧ резонаторами без использования накопленной в них энергии, когда лампа присоединяется параллельно ускоряющему зазору резонатора, в котором создается растущее магнитное поле; между резонаторами запасенная во вращательном движении энергия переводится в поступательную/2/. При использовании резонаторных систем ускорения, связанных с внесением существенных неоднородностей в тракте ускорения электронных сгустков, возникает, как известно, проблема когерентного излучения переходного и черенковского типов. Зависимость мощности этого излучения от N^2 может привести к существенным потерям энергии ускоряемых сгустков, а также к потерям части ионов (см., например, $\sqrt{3}$). Отметим как существенное преимущество то обстоятельство, что в данном варианте ускорителя мощность излучения отдельного сгустка на два порядка меньше величин, обычно фигурирующих в подобных расчетах.

*Анодное напряжение может составлять 1 МВ или меньше с последующим доускорением индукционным методом. На выходе ускорителя рассматриваемого типа получается импульс ускоренных электронов и ионов длительностью до 100 мкс и высокочастотной структурой (f = = 300 мГц). После "сброса" электронов выводится длинный импульс ионного тока, что также является характерным для данного варианта коллективного ускорения и сближает его с классическими ускорителями.

ЗАКЛЮЧЕНИЕ

Рассмотренный вариант ускорителя, как видно из изложенного в данной работе и в/1, обладает достаточно хорошими характеристиками как в смысле темпа набора энергии, так и интенсивности ускоряемых ионов. Выбранная величина темпа набора энергии 10 Z/A МэВ/м связана с минимальными требованиями на параметры ускорителя. Увеличение ее означает увеличение числа электронов в отдельных сгустках и, согласно развитым представлениям, которые, конечно, должны быть корректированы экспериментом, может быть осуществлено лишь при увеличении у. Что касается интенсивности ионного пучка, то увеличение ее тесно связано с прогрессом в разработке электронных пушек с большой длительностью импульса.

Авторы хотели бы выразить свою искреннюю признательность участникам семинара отделов ускорителя ЛВЭ и особенно Ю.Д.Безногих и А.Д.Коваленко за конструктивные обсуждения проблем данной работы.

ЛИТЕРАТУРА

- 1. Бонч-Осмоловский А.Г., Доля С.Н., ОИЯИ, Р9-10648, Дубна, 1977.
- Векслер В.И. и др. Труды VI Международной конференции по ускорителям высоких энергий, Кэмбридж, 1967.
- Кузнецов А.Б., Рубин С.Б. Труды I симпозиума по коллективным методам ускорения, ОИЯИ, Д9-6707, Дубна, 1972.

Рукопись поступила в издательский отдел 10 мая 1977 года.

10