50/2-77

5-817

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

10/,-74

P9 - 10093

А.Г.Бонч-Осмоловский, С.Н.Доля

УСКОРЕНИЕ ИОНОВ В МОДУЛИРОВАННЫХ ЭЛЕКТРОННЫХ ПУЧКАХ

P9 - 10093

А.Г.Бонч-Осмоловский, С.Н.Доля

УСКОРЕНИЕ ИОНОВ В МОДУЛИРОВАННЫХ ЭЛЕКТРОННЫХ ПУЧКАХ

Направлено на II симпозиум по коллективным методам ускорения, Дубна, 1976 г.

Объединенный институт ядорных псоледования **БИБЛИОТЕКА**

Создание плотных электронных сгустков для ускорения ионов связано с рядом трудностей физического порядка из-за необходимости компенсации кулоновских сил расталкивания и различных неустойчивостей, а также с техническими - при больших γ_{ϕ} /релятивистский фактор вращательного движения/ удержание сгустков требует больших магнитных полей.

В последнее время разрабатывались интересные идеи получения движущихся электронных сгустков методом аксиальной компрессии из отрезков трубчатого пучка в статических магнитных полях /1,2/.

В данном сообщении формулируется следующий подход к проблеме коллективного метода ускорения: плотность электронов и энергия их вращательного движения ограничиваются относительно малыми значениями /но при этом эффективное ускоряющее ноны поле составляет не менее 10 *МэВ/м*/, соответственно сравнительно малы числа электронов и ионов в отдельном сгустке, число же создаваемых сгустков в единицу времени велико, так что потоки ускоряемых ионов могут быть значительными. При этом:

а/ влияние коллективных эффектов, в частности, неустойчивостей, может быть скомпенсировано разработанными методами;

б/ используются статические магнитные поля умеренной напряженности и ряд известных технических устройств.

Рассмотрим в сжатом виде отдельные аспекты реализации этого метода.

Сформировать трубчатый пучок можно электронной пушкой типа Пирса-Харриса^{/,1}/магнетронной пушкой ^{/3/} а также кольцевым автокатодом в магнитном поле /2/. Необходимо, чтобы обобщенный момент был одинаков для всех частиц пучка и энергетический разброс не превышал величины ~1%. Экспериментально доказано, что можно получить полый пучок электронов с током 1 кА и выше с отношением толщины трубки к ее радиусу не более О,1 /2-4/ Такой пучок модулируется по плотности с помощью группирователя клистронного или автофазируюшего типа. Известны пролетные кристроны мощностью 100 МВт в импульсе и даже больше; такого же порядка мошность и автофазирующих систем - ЛБВ, генераторы СВЧ с релятивистскими электронными пучками 4 Степень модуляции пучка достигает при этом 10, а максимальная плотность электронов - 1011 эл/см³н более.

Пучок, модулированный одним из указанных способов и представляющий собой последовательность цилиндрических полых сгустков, направляется в область магнитного каспа /поле остроугольной геометрии/, образованную, например, двумя встречно включенными соленоидами / 5/. Функции каспа состоят в аксиальном торможении пучка, создании вращательного движения электронов дополнительном увеличении плотности /до И $n_{e} \approx 10^{12} \, \text{эл/см}^{3}$. Подробное рассмотрение показывает, что продольная скорость сгустков может быть уменьшена в результате прохождения каспа до 0,1 с, где с скорость света, а плотность электронов увеличена примерно на порядок за счет продольного сжатия сгустков. Потери частиц и расширение пучка малы при следующих

условиях:
$$L/R < 1$$
 , $\frac{\Delta_Y}{\gamma} + \frac{a^2}{R^2} + \frac{\Delta r}{R} < (\frac{V}{V_0})^2$ где L - длина

области каспа, R - раднус трубчатого пучка, 2a - толщина трубки, Δr_0 - разброс раднусов вылета электронов с катода, V₀ и V - продольные скорости до и после прохождения каспа, у - полная энергия электронов / в единицах mc^2 /.

После прохождения каспа пучок состоит из кольцевых сгустков с продольными размерами b ~ а и вращательной энергией ~ у. На начальном участке тракта

ускорения происходит захват ионов либо путем ионизации атомов в струе нейтрального газа, либо при инжекции ионов извне. В первом случае необходимо дополнительное торможение сгустков до скорости V $\leq 10^{-2}$ с $\sqrt{Z/A}$ е Z - заряд и А - атомный вес ионов. Торможение осуществляется нарастающим за каспом продольным магнитным полем. На всем тракте ускорения должна быть обеспечена фокусировка сгустков, для чего предполагается использовать метод H_{ϕ} -фокусировки /6/ или фокусировку анизотропным металлическим экраном /7/ Азимутальное магнитное поле, созданное центральным проводником с током, центрирует сгустки относительно фокусирует их при условии оси системы И

 $1 < \frac{2\nu_e}{\beta_{\phi}^2 \gamma_{\gamma}^3} \left(\frac{\mathbf{R}}{\mathbf{a}}\right)^2 < \frac{(1+\mathbf{p}^2)^2}{4\mathbf{p}^2}$, где ν_e - погонный электрон, $\mathbf{p} = \mathbf{H}_{\phi}^{-1}/\mathbf{H}_z$, $\beta_z^2 << 1$.

К недостаткам метода следует отнести ограничение длины тракта ускорения, в частности, из-за действия силы Лоренца на ионы. Фокусировка полями изображения в анизотропном экране эффективна, если движение электронов происходит вблизи экрана, h ~ a , h - расстояние центра тяжести поперечного сечения трубки от экрана. Условие фокусировки тогда таково: $\gamma > 2h/a$. Чтобы приблизить пучок к стенке и при этом не вызвать его потери, используются создающие мультипольное магнитное поле проводники с противоположно направленными токами, расположенные вдоль цилиндрической поверхности вне пучка. Как показано в /8/, при этом возможно эффективное центрирование пучка, а также подавление наиболее опасной из неустойчивостей, в данных условиях продольной неустойчивости типа НОМ. Для этого необходимо, чтобы $\gamma \leq \gamma_{\rm KP} = \nu_{\rm r} = \sqrt{1+q}$, где q определяется уравнением q e q = \bar{p}^2 и $p = H_{\rm M}/H_z$, $H_{\rm M}$ - амплитуда мультипольного магнитного поля, ν_r - безразмерная частота радиальных колебаний. Мультиполи стабилизируют и прецессионные неустойчивости, в частности, дипольную двухпучковую.

Приведем возможный набор параметров ускорителя. При энергии электронов 500 кэВ (у=2) и токе пучка 1 кА модуляция производится на длине волны $\lambda = 30$ см.

При этом число электроноввсгустке не менее N_e= 2.10¹². После прохождения каспа с $H_0 = \pm 0.9$ кЭразмеры сгуст-ков таковы: R = 3 см, $a_r \simeq a_z = 0.15$ см. Поле, ускоряющее ионы, E = 12 *МэВ/м*, допустимое ускоряющее

сгустки поле $E_e = E_i \frac{m\gamma}{M} (1 + p^2) \le 1,9 \ \kappa B/cm$. При фокуси-

ровке азимутальным магнитным полем его величина равна Н_ф = 3,8 кЭ, амплитуда мультипольного поля Н_М = = 6,8 кЭ. При длительности импульса пушки r = 2 мкс число сгустков составляет N_{CF} = 2.10³ 1/имп н при частоте повторения импульсов $f = 10^2 \Gamma u$ число ускоряемых ионов может достигать $10^{13} \div 10^{14}$ i/c/протоны, легкие ядра/.

Литература

- 1. А.Л.Минц и др. "Радиотехника и электроника", 20, 2524, 1975.
- 2. W. Destler et al. Proc. IX Int. Conf. High En. Accel. p.218, Stanf., 1974.
- 3. M. Friedman. M. Ury. Rev.Sci.Instr.,43,1659,1972.
- 4. Y.Carmel et al., Phys.Rev.Lett., 33, 1278, 1974.
- 5. M.Rhee, W.Destler. Phys.Fluids, 17, 1574, 1974.
- А.Г.Бонч-Осмоловский. ЖТФ, 11, 1345, 1971.
- 7. Г.В.Долбилов и др. ОИЯИ, Р9-4737, Дубна, 1969.
- 8. А.Г.Бонч-Осмоловский, В.И.Данилов. ОИЯИ,
- Р9-9886, Дубна, 1976.

Рукопись поступила в издательский отдел 8 сентября 1976 года.