

Сообщения объединенного института ядерных исследований дубна

P8-87-505

Ко Гым Сек, И.С.Мамедов, Ю.П.Филиппов

ВЛИЯНИЕ МАССОВОЙ СКОРОСТИ НА ИСТИННОЕ ОБЪЕМНОЕ ПАРОСОДЕРЖАНИЕ ПОТОКА ДВУХФАЗНОГО ГЕЛИЯ

Исследованию одной из основных характеристик потоков двухфазного гелия /ДФГ/ - истинного объемного паросодержания /ИОП/ посвящены всего три работы ^{/1-3/}, результаты которых получены для кольцевых каналов вертикальной ^{/1/} и горизонтальной ^{/2/} ориентаций, а также для вертикальной трубы ^{/3/}. Эти работы содержат в основном информацию экспериментального характера, которая сопоставлялась с некоторыми известными расчетными зависимостями для частных случаев течения двухфазного потока. Однако попытки систематизировать имеющиеся данные, связанные с ИОП потоков ДФГ, видимо, не предпринимались.

Для анализа процессов в двухфазном потоке может использоваться предложенный в $^{/4/}$ принцип минимального прироста энтропии. Этот метод уже применялся в работе $^{/6/}$, в которой для кольцевого режима течения без учета трения получено широко известное соотношение для определения величины ϕ^* :

$$\phi = \left[1 + \frac{1 - x_1}{x_1} (\rho'' / \rho')^{2/3}\right]^{-1}.$$
 /1/

Как показано в $^{2,3/}$, расчеты по соотношению /1/ хорошо согласуются с экспериментальными данными при сравнительной малой массовой скорости m =/10÷40/кг/м²·с потока двухфазного гелия. Однако при относительно больших скоростях /m \geq 100 кг/м²·с/ расчеты по /1/ дают в сравнении с экспериментальными значениями ϕ существенно заниженные результаты. Причиной этого может служить неучтенное в соотношении /1/ влияние массовой скорости на величину ϕ , что отмечено в $^{6/}$. Используя результаты работы $^{6/}$, для дисперсно-кольцевого режима течения можно легко получить общее соотношение

$$\phi = \{1 + k \frac{1 - x_1}{x_1} \frac{\rho''}{\rho'} + (1 + \frac{3}{2}N)^{1/3} (1 - k) \frac{1 - x_1}{x_1} (\frac{\rho''}{\rho'})^{2/3} \times \frac{1 - x_1}{\rho'} (\frac{\rho''}{\rho'})^{2/3} = 0$$

* Все обозначения величин приведены в конце работы.

De Se anno annail BHCTRTY'I SHENNE BECSEDOBAUNA

$$\left[\frac{1+k\frac{1-x_{1}}{x_{1}}\frac{\rho''}{\rho'}}{1+k\frac{1-x_{1}}{x_{1}}}\right]^{1/3} \right]^{-1}, \qquad (2)$$

где параметры

 $N = \frac{SLf}{A(1-\phi)} \qquad M \qquad k = \frac{x_{3}}{x_{2} + x_{3}}$ /3/

определяют соответственно эффекты трения и уноса доли жидкости в газовое ядро. В свою очередь величины k и N зависят от массовой скорости m. При k = N = 0 соотношение /2/ принимает вид /1/.

/1/. В '6/ приведены графики, отражающие влияние фактора N и различных степеней захвата жидкости ядром потока на истинное объемное паросодержание. Однако из-за неопределенностей в оценках величин k и f эти графики носят иллюстративный характер и не могут быть использованы для корректного количественного анализа рассматриваемых процессов в потоках двухфазного гелия.

Цель настоящей работы, также базирующейся на принципе минимального прироста энтропии, состоит в разработке методики расчета величин k и N, корректировке обобщающего соотношения /2/ и сопоставлении полученных результатов с имеющимися экспериментальными данными при адиабатических условиях. Ниже приведен анализ как для дисперсно-кольцевых режимов течения, так и для расслоенных, которые в /6/ не рассматривались. Расслоенные режимы течения ДФГ характерны, в частности, для систем криогенного обеспечения современных электрофизических установок /7.8.9/.

Перейдем теперь к изложению деталей предлагаемой методики. Как известно, принцип минимальности прироста энтропии при минимальной кинетической энергии предполагает, что система стремится затратить наименьшую работу для ускорения пара и жидкости до скоростей, удовлетворяющих уравнению неразрывности ^{/5/}. В соответствии с этим принципом величина ф должна соответствовать минимуму суммарной энергии, которая складывается из механической энергии диссипации W и кинетической энергии потока E.

Рассмотрим величины W и E для отмеченных режимов течения двухфазных потоков.

Для дисперсно-кольцевого режима течения механическую энер-

гию диссипации $W = u' \frac{SL}{A} r_w^{-6/2}$ можно выразить через величину относительного гидравлического сопротивления Δp :

$$W = N_{AK} \frac{m(u')^2}{2} (1 - x_1)(1 - k), \qquad (4/4)$$

где

$$N_{gK} = \frac{Lf'}{D_{g}} \frac{1-\phi'}{(1-x_{1})^{2}(1-k)^{2}} [1+\overline{\Delta p}(\frac{f''\rho'}{f'\rho''}-1)], \qquad (5/$$

$$\overline{\Delta \mathbf{p}} = \left[\left(\frac{\mathrm{dP}}{\mathrm{dL}} \right)_{\mathbf{q}\mathbf{\theta}} - \left(\frac{\mathrm{dP}}{\mathrm{dL}} \right)' \right] / \left[\left(\frac{\mathrm{dP}}{\mathrm{dL}} \right)'' - \left(\frac{\mathrm{dP}}{\mathrm{dL}} \right)' \right].$$
 /6/

При выводе соотношения /4/ учитывалось, что

$$\frac{\mathbf{r}_{wS}}{A} = \left(\frac{dP}{dL}\right)_{AB} = \mathbf{f}' \frac{m^2}{2\rho' D_{\mathbf{s}}} \left[1 + \overline{\Delta p} \left(\frac{\mathbf{f}'' \rho'}{\mathbf{f}' \rho''} - 1\right)\right], \qquad (7/$$

а средние скорости обеих фаз определялись как /6/

$$u' = \frac{m(1-k)(1-x_1)}{\rho'[1-\phi(1+\frac{1-x_1}{x_1}-\frac{\rho''}{\rho'}k)]} = \frac{m(1-k)(1-x_1)}{\rho'(1-\phi')}; \ u'' = \frac{mx_1}{\rho''\phi}, /8/$$
rge

$$\phi' = \phi(1 + \frac{1 - x_1}{x_1} - \frac{\rho''}{\rho'} k).$$

Суммарная энергия определяется как

$$E + W = -\frac{m}{2} [(u')^{2} (1 - x_{1})(1 - k) (1 + N_{qk}) + (u'')^{2} x_{1} (1 + \frac{1 - x_{1}}{x_{1}} k)]. /9/$$

Минимизируя суммарную энергию потока, т.е. приравнивая нулю производную $\frac{\partial(E+W)}{\partial\phi}$, определим общее скорректированное соотношение для величины ϕ :

$$\phi = \{1 + k \frac{1 - x_1}{x_1} \frac{\rho''}{\rho'} + (1 + \frac{1}{2}N_{\rm dK})^{1/3} (1 - k) \frac{1 - x_1}{x_1} (\frac{\rho''}{\rho'})^{2/3} \times$$

$$\times \left[\frac{1+k\frac{1-x_1}{x_1}}{1+k\frac{1-x_1}{x_1}} \right]^{1/3} \left\{ \frac{-1}{x_1} \right\}^{-1}.$$

Соотношение /10/ по своей структуре такое же, как и /2/, однако первые сомножители третьих слагаемых в /2/ и /10/ отличаются друг от друга. Это связано с тем, что величины N и N _{дк} определены по-разному -формулы /3/ и /5/, и дифференцирование по ϕ приводит к соответствующему различию^{*}. Полученное соотношение /10/ применимо для каналов как круглого сечения /труб/, так и кольцевого сечения, поскольку учет геометрии не оказывает влияния на вид полученных уравнений.

Сопоставляя выражения /2/ и /10/, можно получить четкое определение величины ⁽, входящей в /3/:

$$f = \frac{f'}{8} \frac{A}{SD_{9}} \frac{(1-\phi')(1-\phi)}{(1-x_{1})^{2}(1-k)^{2}} [1 + \overline{\Delta p}(\frac{f''\rho'}{f'\rho''} - 1)].$$
 /11/

<u>Для расслоенных режимов течения</u> величину W можно записать в общем виде:

/12/

$$= \operatorname{Lu}'\left[\left(\frac{\mathrm{dP}}{\mathrm{dL}}\right)_{AB}\left(1+\frac{u''}{u'}\right)+r_{i}\frac{\mathbf{S}_{i}}{A_{i}}\left(1-\frac{u''}{u'}-\frac{A'}{A''}\right)\right],$$

где ^{/10/}

W = L(" S' S'

$$r'_{\mathbf{w}} = \left(\frac{\mathrm{dP}}{\mathrm{dL}}\right)_{\mathbf{ge}} \frac{\mathbf{A}'}{\mathbf{S}'} + r_{\mathbf{i}} \frac{\mathbf{S}_{\mathbf{i}}}{\mathbf{S}'}; \quad r''_{\mathbf{w}} = \left(\frac{\mathrm{dP}}{\mathrm{dL}}\right)_{\mathbf{ge}} \frac{\mathbf{A}''}{\mathbf{S}''} - r_{\mathbf{i}} \frac{\mathbf{S}_{\mathbf{i}}}{\mathbf{S}''}$$

Для каналов кольцевого сечения величину $r, \frac{S_1}{A_1}$ можно принять равной нулю, что подтверждается выводами работы /10/. В этом случае /12/ преобразуется к виду

$$W = N_p \frac{m(u')^2}{2} (1 - x_1)(1 - k), \qquad (13)$$

где

$$N_{p} = \frac{Lf'}{D_{9}} \frac{1-\phi'}{(1-x_{1})^{2}(1-k)^{2}} [1+\overline{\Delta p}(\frac{f''\rho'}{f'\rho''}-1)][1+\frac{x_{1}(1-\phi')\rho'}{(1-x_{1})\phi(1-k)\rho''}].$$

Для каналов круглого сечения учет второго слагаемого в со-

отношении /12/, содержащего $r_i \frac{S_i}{A_i}$, приводит к выражению N $_1$ =

= $N_p + \Delta N_p$, где величина ΔN_p учитывает силовое взаимодействие на межфазной границе. Опуская выкладки, можно показать, что в широком диапазоне массовых скоростей, давлений и геометрических размеров отношение $\Delta N_p / N_p$ находится в пределах 0,07÷ ÷0,17 соответственно при $x_i = 0,8\div0,2$, а соответствующее влияние величины ΔN_p на значения ϕ не превышает 1%. Это дает основание пренебречь вторым слагаемым в /12/ и для канала круглого сечения.

Минимизируя суммарную энергию потока, получим соотношение для величины ϕ , которое по своей структуре полностью соответствует выражению /10/, с той лишь разницей, что вместо величины $N_{\rm gK}$ в него входит величина $N_{\rm p}$.

Таким образом, на основе предложенной методики можно рассчитать величины $\phi = \phi(x_1, k, N)$ для дисперсно-кольцевых и расслоенных режимов течения двухфазных потоков. Для этого необходимо определить относительные гидравлические сопротивления Δp , коэффициенты трения f', f'' и долю жидкости в газовом ядре k.

При оценке величины Δp , входящей в /5/ и /13/, нужно учитывать ориентацию канала и режимы течения двухфазного потока. Не останавливаясь подробно на всех возможных комбинациях, отметим, что для труб данные по Δp и соответствующим режимам течения двухфазного гелия взяты из /10-12,18/. Для каналов кольцевого сечения экспериментальные данные по Δp получены лишь для горизонтальной ориентации при относительно низких величинах $m = 25 \div 53$ кг·м $^{-2} \cdot c^{-1} / 10/$, а для вертикальной ориентации этих каналов данные, видимо, отсутствуют. В связи с этим в расчетах для кольцевых каналов использовались соответствующие данные по Δp для труб /11,12/, поскольку по крайней мере при расслоенных режимах течения зависимости $\Delta p(x_1, m)$ для кольцевых каналов и труб довольно сходны как в качественном, так и в количественном отношении /10/.

Как показано в ^{/11-13/}, величины ť и f" рекомендуется рассчитывать по эмпирической формуле Кольбрука и Уайта, приведенной, например, в ^{/13/}. Для аналитических расчетов эта формула весьма неудобна, поэтому были опробованы другие известные соотношения. Так, предварительный анализ показал, что для оп-

4

5

ределения величин ϕ на основе предложенной модели можно пользоваться известной формулой Блазиуса ^{/19/}. При этом расчеты ϕ с помощью /10/ различаются не более чем на 1% соответственно при использовании соотношений Блазиуса и Кольбрука. С учетом этого отношения f'/D, и f''/f' в выражениях /5/ и /13/ примут вид

$$\frac{f'}{D_{s}} = \frac{0.3164}{D_{s}^{5/4}} \left(\frac{\mu'}{m}\right)^{1/4}; \quad \frac{f''}{f'} = \left(\frac{\mu''}{\mu'}\right)^{1/4}.$$
 (14)

Конкретные экспериментальные данные о величине k для двухфазных потоков гелия в литературе отсутствуют. Однако анализ экспериментальных данных для пароводяных потоков при относительно высоких давлениях P > 14,0 МПа показал, что, например, их относительные гидравлические сопротивления описываются практически такими же соотношениями, как для двухфазного гелия^{/14/}. Кроме того, коэффициенты скольжения фаз ДФГ из^{/1,2/} удовлетворительно согласуются с расчетной зависимостью из ^{/15/}, полученной для пароводяных потоков в вертикальных трубах при адиабатных условиях. Поэтому в первом приближении для определения величины k в уравнении /10/ нами использованы данные для пароводяных потоков ^{/16/} с соответствующей коррекцией по величине массовой скорости, обсуждаемой ниже.

На основе экспериментальных данных из /16/ при р = 10 МПа и m = $500 \div 4000$ кг·м⁻²·с⁻¹ нами получена^{*}) зависимость доли жидкости x₃ по отношению ко всей жидкости в смеси (x₂+x₃) от обобщенного параметра z :

$$k = \frac{x_{3}}{x_{2} + x_{3}} = 1 - 0.65^{2^{0.64}}, \qquad (15)$$

где /17/

$$z = \left(\frac{\mu' \, u''}{\sigma}\right)^2 \, \frac{\bar{\rho}}{\rho'} \cdot 10^4 , \quad \bar{\rho} = \frac{x_1 + x_3}{x_1/\rho'' + x_3/\rho'}$$

Параметр z в принципе тоже является функцией ϕ , и применение выражения /15/ даст в общем случае сложную неявную зависимость $k = z(\phi) \cdot \phi(x_1, m)$. В связи с этим для определения величины был применен метод последовательных приближений. Этот метод показал, что если в первом приближении подставить в выражение для z величину ϕ , входящую в u'' и определенную по гомогенной модели, то соотношение для z можно представить в пригодном для практических расчетов виде

$$z = \frac{\rho''}{\rho'} \cdot \frac{k + x_1(1 - k)}{x_1(1 - k \rho''/\rho') + k \rho''/\rho'} \cdot \left(\frac{\mu'}{\sigma \rho''}\right)^2 \left[\frac{\rho''}{\rho'} + (1 - \frac{\rho''}{\rho'})x_1\right] m^2 \cdot 10^4 \cdot /16/$$

Необходимую зависимость k от m и x_1 можно получить, решая уравнение /15/ с учетом /16/ итерационным методом.

Здесь следует оговорить, при каких величинах m для гелия может быть справедливо соотношение /15/, полученное для пароводяной смеси.

Из соотношения /16/ можно видеть, что

$$z \sim \left(\frac{\mu'}{\sigma \rho''}\right)^2 \frac{\rho''}{\rho'} m^2.$$
 (17/

Сравнивая сомножители /17/ при приблизительно одинаковых отношениях ρ''/ρ' /при 13÷14 МПа для воды и 0,1÷0,12 МПа для гелия/, можно отметить, что параметры z для двух сред будут примерно равны тогда, когда

$$m_{H_0O} \approx 10 m_{He^*}$$
 /18/

Это связано с тем, что динамическая вязкость и коэффициент поверхностного натяжения гелия намного меньше, чем для воды. Следует отметить, что именно при выполнении условия /18/ наблюдается соответствующее сходство гидравлических сопротивлений гелия и пароводяной смеси, отмеченное в $^{14/}$. Следовательно, выражения /15/ и /16/ могут быть справедливы для гелия при m $\approx 50 \div 400$ кг.м⁻².с⁻¹ и p $\approx 0,12\div 0,13$ МПа. Что касается диапазона m <50 кг.м⁻².c⁻¹, то в первом приближении для него применялась та же зависимость /15/, которая при m ≈ 0 не противоречит физическому смыслу - k $\Rightarrow 0$ при m $\Rightarrow 0$.

Следует также отметить, что методом последовательных приближений должны рассчитываться величины N_{gK} и N_p , зависящие от искомой величины ϕ . При этом в качестве первого приближения использовались значения, полученные с помощью /1/, а расчеты заканчивались при достижении заданной точности 10⁻³.

Прежде чем перейти к расчету конкретных характеристик на основе предложенной методики, необходимо оценить влияние на величину ϕ геометрических размеров каналов круглого и кольцевого сечений, т.е. отношения $L/D^{5/4}$, входящего в выражения /5/ и /13/. Так, для известных датчиков истинного объемного паросодержания с каналами кольцевого сечения это отношение состав-

7

^{*}Соотношения из /16/ не совсем удобны для анализа процессов в двухфазном гелии, т.к. точка их излома приходится на наиболее интересующую нас область.

ляло около 200 для датчика из 12 и около 150÷450 для датчика из 11 . Используя выражения /10/, /5/ и /13/, можно показать, что изменение $L/D_5^{5/4}$ в пределах 150÷450 может приводить к соответствующему изменению величины ϕ примерно на 2%, что не противоречит экспериментальным данным 11 . Поэтому в расчеты закладывалось значение $L/D_5^{5/4} = 200$, характерное для обоих датчиков. При одинаковых длинах измерительных участков труб и кольцевых каналов сравниваемые отношения эквивалентных диаметров в степени 5/4 более чем на полпорядка больше для труб, поэтому в расчеты для труб закладывалась величина $L/D_5^{5/4} = 50$.

Для оценки границ применимости предложенной методики были проведены предварительные расчеты величины ф. результаты которых сравнивались с экспериментальными данными /1-3/ при относительно высоких / m > 100 кг·м⁻²·с⁻¹/ и сравнительно низких / m ≈ 10÷40 кг·м⁻²·с⁻¹/ массовых скоростях. При m≥100 кг·м⁻²·с⁻¹ расчеты свидетельствуют о хорошем согласии результатов - расхождения не превышают 3%. При m ≈ 10÷40 кг·м -2. с-1 расчеты показали, что для $x_1 \leq 0, 4$ согласие результатов тоже хорошее максимальные расхождения не превышают 3:6%. Вместе с тем при х 1 ≥ 0,4 расхождения между расчетами фи экспериментальными значениями могут достигать 8 и 18% соответственно для трубы и кольцевого канала, например при $x_1 = 0, 8$. Этот факт свидетельствует о превышении рассчитанных значений коэффициентов скольжения u = u''/u' над величинами u, определенными на основе экспериментальных данных, что может быть связано с неточностью определения доли уноса жидкости в газовое ядро k в соответствии с /15/÷/17/, а следовательно, и средней скорости жидкости u' на основе /8/. В связи с этим для расчетов в диапазоне $x_1 > 0, 4$ величина u' была увеличена и определена как $u' = m(1 - x_1) / \rho'(1 - \phi').$ При этом в предлагаемой методике изменяются лишь величины N_{пк} и N_р, которые принимают вид

$$N_{gK1} = \frac{Lf'}{D_{g}} \frac{1 - \phi'}{(1 - x_{1})^{2}} [1 + \Delta \overline{p} (\frac{f'' \rho'}{f' \rho''} - 1)],$$

$$N_{p1} = N_{gK1} [1 + \frac{x_{1}(1 - \phi') \rho'}{(1 - x_{1}) \phi \rho''}].$$
(19)

В результате проведенной корректировки величины u' отмеченные максимальные расхождения расчетов и экспериментов, касающихся величины ϕ , снизились до 3 и 6% /вместо 8 и 18%/. Это иллюстрирует рис.1, на котором в качестве примера представлены результаты расчетов величины ϕ на основе /10/ с использованием

Рис.1. Зависимость истинного объемного паросодержания ϕ от массового расходного паросодержания x_1 при p = 0,12 МПа и m == 35 кг·м^{-2.}с⁻¹. 1 – расчет по /10/ с использованием /13/; 2 – расчет по /10/ с использованием /19/; 3 – экспериментальные данные из /10/: 4 – аппроксимирующая зависимость инженерной методики.

соотношений /5/, /13/ и /19/ соответственно для диапазонов 0 < x₁ < 0,4 и 0,4 < x₁ < 1.

Остановимся теперь на влиянии массовой скорости как на отдельные составляющие соотношения /10/, так и на величину истинного объемного паросодержания.

Зависимости, иллюстрирующие влияние массовой скорости на величины k и N_{p1} , N_{gk1} , представлены на рис.2. Из этого рисунка видно, что с возрастанием m доля уноса жидкости увеличивается, причем в диапазоне до $m\approx80~{\rm kr\cdot m}^{-2}\cdot{\rm c}^{-1}$ возрастание довольно крутое, а при m $\gtrsim100~{\rm kr\cdot m}^{-2}\cdot{\rm c}^{-1}$ практически вся жидкость уносится в газовый поток. Из рис.2 также видно, что для труб влияние эффекта трения относительно мало во всем диапазоне m как

Рис.2. Зависимости доли жидкости в газовом потоке k и параметров эффекта трения N_{p1} и $N_{дк1}$ от массовой скорости m при p == 0,12 МПа и $x_1 = 0,3.1$ для канала круглого сечения / L /D^{5/4} = 50/ горизонтальной ориентации, 1' для канала круглого сечения вертикальной ориентации, 2 и 2' - то же, что 1 и 1' соответственно для каналов кольцевого сечения / L/D^{5/4}= = 200/.

Рис. З. Зависимости истинного объемного паросодержания ϕ от массовой скорости 🕅 для кольцевого канала при р = 0,12 МПа и х 1 = 0,3. 1 - учитывает только эффект уноса жидкости в газовый поток, 2 - учитывает только эффект трения, 3 - учитывает совместное влияние обоих эффектов. 4 и 5 - расчеты соответственно по гомогенной модели и соотношению Зиви /1/, цифры без штриха и со штрихом относятся соответственно к горизонтальной и вертикальной ориентации.

для горизонатльной, так и для вертикальной ориентаций. Вместе с тем для каналов кольцевого сечения в интервале $m < 40 \text{ кг} \cdot \text{м}^{-2} \cdot \text{c}^{-1}$ эффект трения довольно значителен, что особенно характерно для горизонтально ориентированного канала. Следует отметить, что для вертикальных каналов оценки могут носить лишь качественный характер, что связано с возможной некорректностью применения выражения /13/ при m < 80÷100 кг \cdot \text{м}^{-2} \cdot \text{c}^{-1}.

На рис.3 в качестве примера показано, как отражается на истинном объемном паросодержании ф изменение величин k и N в зависимости от массовой скорости m. Так, при k = 1 и N = 0, когда вся жидкость уносится в газовое ядро и трением можно пренебречь, для зависимости $\phi(x_1)_m > 100$ должна быть справедлива гомогенная модель, поскольку соотношение /10/ преобразуется

к виду $\phi = [1 + \frac{1 - x_1}{x_1} \frac{\rho''}{\rho'}]^{-1}$. При k = N = 0 и $m \to 0$, т.е. когда

обоими эффектами можно пренебречь, величина ϕ сводится к значению, определяемому по /1/.На рис.3 эти предельные случаи и промежуточные состояния между ними отражает кривая 1.

В случае отсутствия уноса жидкости в газовое ядро /k = 0/ эффект трения приводит к уменьшению величины ф, полученной по формуле /1/, что иллюстрируют кривые 2 и 2'. Так, снижение массовой скорости в диапазоне 40 < m < 100 кг·м⁻² ·c⁻¹ характеризуется слабым влиянием эффекта трения на величину. Однако при m < 40 кг·м⁻² ·c⁻¹ это влияние проявляется уже существенно. Общее влияние эффектов уноса жидкости и трения на величину

ф характеризуют кривые 3 и 3'.

Полученные и прокоментированные выше соотношения для определения истинного объемного паросодержания позволяют проанализировать влияние эффектов трения и уноса жидкости в газовый поток в зависимости от массовой скорости для различных диапазонов величины \mathbf{x}_1 . Однако эти соотношения не всегда удобны для практического применения. В связи с этим была разработана инженерная методика, суть которой заключается в следующем. На основе зависимостей, полученных по формуле /10/ с использованием /5/, /13/ и /19/ для диапазонов $\mathbf{x}_1 < 0,4$ и $\mathbf{x}_1 > 0,4$,

Рис.4. Зависимости величины ϕ от массового расходного паросодержания x_1 при p = 0,12 МПа и различных массовых скоростях m для каналов круглого сечения /a/ и кольцевого сечения /6/. 1,2,3,4,5 - соответствуют m = 200, 100, 60, 40 и 20 кг·м⁻²·с⁻¹; 6 - расчет по уравнению /1/; 7 - экспериментальные данные для вертикальной трубы ^{/8/} при $m = 6\div12$ кг·м⁻²·с⁻¹; 8 и 9 - экспериментальные данные для горизонтального канала кольцевого сечения ^{/2/} при m = 109,5 и 35,5 кг·м⁻²·с⁻¹; 10, 11 и 12 экспериментальные данные для вертикальных каналов кольцевого сечения ^{/1/} при m = 160, 100 и 8 кг·м⁻²·с⁻¹; 13 - экспериментальные данные настоящей работы для горизонтального канала кольцевого сечения при m == 20.2 кг·м⁻²·с⁻¹; 14 - расчет по формуле /20/.

11

по методу наименьших квадратов были построены общие кривые $\phi(x_1)_m$. В качестве примера такая кривая для m=35 кг·м $^{-2}$ ·с $^{-1}$

показана на рис.1 /позиция 4/.

Сопоставление результатов расчета $\phi(\mathbf{x}_1)_{\mathbf{m}}$ на основе предла-

гаемой методики с экспериментальными данными представлено на рис.4. На рис.4а показаны результаты для труб в диапазоне массовых скоростей от 20 до 200 кг·м⁻²·с⁻¹. Из этой части рисунка видно, что мри изменении массовой скорости в указанных пределах расчетные зависимости располагаются между кривой для гомогенной модели и кривой, полученной по уравнению /1/. Сравнительно малочисленные экспериментальные данные из^{/3/} хорошо согласуются с расчетом по /1/ как при низких, так и при высоких расходных массовых паросодержаниях x_1 . В пределах принятых предпосылок влияние ориентации канала практически не отражается на зависимостях $\phi(x_1)_m$.

Результаты расчетов для каналов кольцевого сечения в диапазоне массовых скоростей 20÷200 кг·м -2.с-1 показаны на рис.4б. на котором дано также сопоставление с экспериментальными данными из /1,2/. При относительно больших массовых скоростях т≥100 кг⋅м -2⋅с -1 наблюдается хорошее согласование с расчетом по гомогенной модели, как это характерно и для труб. Однако при сравнительно низких массовых скоростях $m \approx 20 \text{ кг} \cdot \text{m}^{-2} \cdot \text{c}^{-1}$ величины ϕ заметно меньше соответствующих значений для труб. что связано с рассмотренным выше влиянием эффекта трения. В свою очередь коэффициенты скольжения фаз для кольцевых каналов заметно больше таковых для труб при прочих равных условиях. Тек, при $x_1 = 0,5$, $m = 20 \ \kappa \Gamma \cdot M^{-2} \cdot C^{-1}$ и p = 0,12 МПа эта разница может достигать 30%. Сравнение экспериментальных данных для $m = 35.5 \div 160 \ \mathrm{kr} \cdot \mathrm{m}^{-2} \cdot \mathrm{c}^{-1}$ с расчетами свидетельствует об их хорошем согласии - максимальные расхождения не превышают величины $\pm/5 \div 10/\%$. При массовых скоростях ниже величины $m = 40 \ \text{кг·м}^{-2} \cdot \text{c}^{-1}$ влияние ориентации кольцевых каналов может выражаться в том, что соответствующие значения для горизонтальной ориентации располагаются на 2÷4% ниже, чем для вертикальной ориентации. Причины этого рассматривались выше.

Из-за отсутствия в литературе экспериментальных данных для горизонтальных каналов кольцевого сечения при относительно низких массовых скоростях двухфазного гелия /около 20 кг·м⁻²·с⁻¹/ нами были проведены экспериментальные исследования с помощью высокочастотного датчика "аналогичного описанному в^{/2/}, со следующими параметрами: длина измерительного участка 80 мм, диаметры внешнего и внутреннего электродов соответственно 13 и 11 мм, рабочая частота около 215 МГц. Экспериментальные данные для m = 20,2 кг·м⁻²·с⁻¹ хорошо согласуют-

ся с расчетом для $m = 20 \ {\rm kr} \cdot {\rm m}^{-2} \cdot {\rm c}^{-1}$ /кривая 5/, а также с зависимостью

$$\phi = \left[1 + \frac{1 - x_1}{x} \left(\frac{\rho''}{\rho'}\right)^{4/7} \left(\frac{\eta'}{\eta''}\right)^{1/7}\right]^{-1}, \qquad /20/$$

полученной в $^{/10/}$ на основе уравнений сохранения импульса для каждой фазњи расслоенных двухфазных потоков в кольцевых кана-лах.

Аппроксимирующие соотношения разработанной инженерной методики расчета зависимостей $\phi(x_1)_m$ для гелия при $p \approx 0,12 \div 0,13$ МПа имеют вид

$$\phi = \left[1 + \frac{1 - x_1}{x_1} \left(\frac{\rho''}{\rho'}\right)^{1 - y}\right]^{-1}, \qquad (21/$$

где y = 0 при $m \ge 200 \ \kappa \Gamma \cdot M^{-2} \cdot C^{-1}$,

у = 0,457. m -0.16 при 10 < m <200 кг·м-2·с⁻¹ для каналов круглого сечения и

$\mathbf{y} = 0$,	m ≥ 200 кг•м ⁻² .с ⁻¹
$y = 3,43.10^{6} \cdot m^{-3,82}$	100 <u><</u> m < 200 кг•м ⁻² •с ⁻¹
$y = 155, 6 \cdot m^{-1, 66},$	40 < m < 100 кг·м ⁻² ·с ⁻¹
$y = 1, 0 \cdot m^{-0, 26},$	$20 \leq m < 40 \text{ km}^{-2} \cdot \text{c}^{-1}$

для каналов кольцевого сечения.

Максимальные расхождения в расчете величин ϕ с помощью соотношения /21/ не превышают 3% относительно вычислений на основе предложенной методики.

ОБОЗНАЧЕНИЯ

 ϕ - истинное объемное паросодержание; x_1 - массовое расходное паросодержание; x_3 - массовая доля жидкости в газовом потоке по отношению ко всей массе смеси; $x_2 = l - x_1 - x_3$ - массовая

доля жидкости в. потоке; $k = \frac{x_3}{x_2 + x_3}$ - доля жидкости в газовом

потоке по отношению ко всей доле жидкости; ρ - плотность, кг/м³: μ - динамическая вязкость, Па·с; σ - коэффициент поверхностного натяжения, $H \cdot M^{-1}$; m - массовая скорость, кг·м⁻²·c⁻¹; P - давление, Па; $\Delta \overline{p}$ - безразмерный перепад давления; f - коэффициент трения; u - средняя скорость, м·c⁻¹: W - механическая энергия диссипации /плотность потока/, Вт-м⁻²; z - параметр Палеева-Филипповича; E - кинетическая энергия /плотность потока/, Вт·м⁻²; τ - касательное напряжение, $H \cdot M^{-2}$; N – фактор трения; L – длина, м; S – смоченный периметр, м; A – площадь сечения, M^2 ; $\bar{u} = u''/u'$ – коэффициент скольжения; индексы: ' и '' – относятся к насыщенным жидкости и пару, A^{κ} – дисперсно-кольцевой, p – расслоенный, дв – двух-фазный, i – относится к межфазной границе, э – эквивалентный, W – стенка.

ЛИТЕРАТУРА

- 1. Khalil A., McIntosh G. Cryogenics, 1981, v.21, p.411.
- 2. Данилов В.В. и др. В сб.: Краткие сообщения ОИЯИ, № 15-86, Дубна, 1986, с.42.
- 3. Zust H.K., Bald W.B. Cryogenics, 1981, v.21, p.657.
- Пригожин И. Введение в термодинамику необратимых процессов.
 М.: ИЛ, 1960.
- 5. Поломик Е.Е. Теплопередача, 1966, т.88, № 1, с.8.
- 6. Zivi S.M. J. of Heat Transfer, 1964, v.86, p.247.
- 7. Агеев А.И. и др. Препринт ИФВЭ, ОУНК 80-138, Серпухов, 1980.
- Hirabayashi H., Tsushiya K. ICFA Proc.of Workshop on Superconducting Magnets and Cryogenics, BNL, May 12-16, 1986, p.19.
- Studygroup Superconducting Magnets for HERA. Hamburg, June, 1981. DESY HERA 81/82.
- 10. Мамедов И.С., Селюнин С.Ю., Филиппов Ю.П. Инженерно-физический журнал, 1987, т.52, № 1, с.154.
- 11. Селюнин С.Ю., Филиппов Ю.П. Препринт ОИЯИ Р8-86-489, Дубна, 1986.
- 12. Subbotin V.I., Deev V.I. et al. Cryogenics, 1985, v.25, p.261.
- Nakagawa S. et al. Proc. ICEC X, 1984, Helsinki. Guildford, 1984, p.570.
- 14. Сон Зун Ган, Филиппов Ю.П. Теплоэнергетика, 1984,№3,с.19.
- 15. Миропольский З.Л., Шнеерова Р.И., Карамышева А.И. Теплоэнергетика, 1971, № 5, с.60.
- 16. Нигматулин Б.И., Милашенко В.И., Шугаев Ю.З. Теплоэнергетика, 1976, № 5, с.77.
- 17. Paleev I.I., Filippovich B.S. Int.Journal of Heat' and Mass Transfer, 1966, v.9, p.1089.
- 18. Мамедов И.С., Салимов С.Е., Филиппов Ю.П. Сообщение ОИЯИ, P8-84-156, Дубна, 1984.
- 19. Справочник по физико-техническим основам криогеники /под ред. М.П.Малкова/. М.: Энергоатомиздат, 1985.

Рукопись поступила в издательский отдел 3 июля 1987 года.

НЕТ ЛИ ПРОБЕЛОВ В ВАМЕЙ БИБЛИОТЕКЕ?

Вы можете получить по почте перечисленные ниже книги,

если они не были заказаны ранее.

	Д3,4-82-704	Труды IV Международной школы по нейтрон- ной физике. Дубна, 1982.	5	p.00	к.
	Д7-83-644	Труды Международной школы-семинара по физике тяжелых ^ф ионов. Алушта, 1983.	6	p.55	к.
•	Д2,13-83-689	Труды рабочего совещания по проблемам излучения и детектирования гравитационных волн. Дубна, 1983.	2	p.00	к.
	Д13-84-63	Труды XI Международного симпозиума по ядерной электронике. Братислава, Чехословакия, 1983.	4	p.50	ĸ.
	Д2-84-366	Труды 7 Международного совещания по проблемам квантовой теории поля. Алушта, 1984.	4	p.30	к.
	Д1,2-84-599	Труды VII Международного семинара по проб- лемам физики высоких энергий. Дубна, 1984.	5	p.50	к.
	Д10,11-84-818	Труды V Международного совещания по проб- лемам математического моделирования, про- граммированию и математическим методам решения физических задач. Дубна, 1983.	3	p.50	к.
	Д17-84-850 -	Труды III Международного симпозиума по избранным проблемам статистической механики. Дубна,1984./2 тома/	7	p.75	к.
	Д11-85-791,	Труды Международного совещания по аналити- ческим вычислениям на ЭВМ и их применению в теоретической физике. Дубна, 1985.	4	p.00	к.
	Д13-85-793	Труды XII Международного симпозиума по ядерной электронике. Дубна, 1985.	4	p.°80	к.
	Д4-85-851	Труды Международной школы по структуре ядра. Алушта, 1985.	3	p.75	к.
Д	3,4,17-86-747	Труды V Международно́й школы по нейтронной физике. Алушта, 1986.	4	p.50	к.
	•	Труды IX Всесоюзного совещания по ускори- телям заряженных частиц. Дубна, 1984. /2 тома/	13	p.50	к.
	Д1,2-86-668	Труды VIII Международного семинара по проблемам физики высоких энергий. Дубна,1986. /2 тома/	7	p.35	к.

Заказы на упомянутые книги могут быть направлены по адресу: 101000 Москва, Главпочтамт, п/я 79. Издательский отдел Объединенного института ядерных исследований.

ТЕМАТИЧЕСКИЕ КАТЕГОРИИ ПУБЛИКАЦИЙ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Индекс	Тематика
1.	Экспериментальная физика высоких энергий
2.	Теоретическая физика высоких энергий
3.	Экспериментальная нейтронная физика
4.	Теоретическая физика низких энергий
5.	Математика
6.	Ядерная спектроскопия и радиохимия
7.	Физика тяжелых ионов
8.	Криогеника
9.	Ускорители
10.	Автоматизация обработки экспериментальных данных
11.	Вычислительная математика и техника
12.	Химия
13.	Техника физического эксперимента
14.	Исследования твердых тел и жидкостей ядерными методами
15.	Экспериментальная физика ядерных реакций при низких энергиях
16.	Дозиметрия и физика защиты
17.	Теория конденсированного состояния
18.	Использование результатов и методов фундаментальных физических исследований в смежных областях науки и техники
19.	Биофизика

Ко Гым Сек, Мамедов И.С., Филиппов Ю.П. Р8-87-505 Влияние массовой скорости на истинное объемное паросодержание потока двухфазного гелия

На основе принципа минимума прироста энтропии проведен анализ влияния массовой скорости на истинное объемное паросодержание /ИОП/ адиабатных двухфазных потоков. При этом показана роль эффектов трения и уноса жидкой фазы в газовое ядро потока. Представлены результаты расчетов для потоков двухфазного гелия /ДФГ/, дано сопоставление с имеющимися экспериментальными данными. Предложена инженерная методика расчета ИОП ДФГ для каналов круглого и кольцевого сечения.

Работа выполнена в Отделе новых методов ускорения ОИЯИ. Сообщение Объединенного института ядерных исследований. Дубна 1987

Перевод О.С.Виноградовой

Ko Gym Sek, Mamedov I.S., Filippov Yu.P. P8-87-505 Mass Flow Rate Influence on Void Fraction of Two-Phase Helium Flow

Based on the minimum entropy production principle an analysis of mass flow rate influence on void fraction of two-phase adiabatic flows is made. The friction factor role and fraction of liquid entrained into vapour steam ones are demonstrated. The results of helium two-phase flow calculations as well as the comparison with analogous reference data are presented. The engineering calculation technique for void fraction of helium two-phase flows is suggested.

The investigation has been performed at the Department of New Acceleration Methods, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna 1987

>