

P8-86-859

ПЕРЕХОД Костерлитца - Таулеса в трехмерной системе

Э.Фишер, И.С.Хухарева

Направлено в "Журнал экспериментальной и теоретической физики"

I.BBEJEHNE

При изучении фундаментальных вопросов теории фазоных переходов большое значение имеет детальный анализ взаимоотношения между размерностью системы и характером упорядочения. С особенным вниманием этот вопрос рассматривается на классической модели двумерной решетки обобщенных спинов, локализованных в одной плоскости (2Д-ХУ – модель).

В двумерных системах (тонкие пленки, пленки сверхтекучей жидкости, планарные магнетики и др.) при всех температурах T > 0 невозможно спонтанное упорядочение с возникновением дальнего порядка обичного типа (ДП).

Вместе с тем, Костерлитцем и Таулесом^{/1/} был предсказан новый фазовый переход типа порядок – беспорядок, связанный с установлением квази- или топологического дальнего порядка (ТДП). Такой переход (К.-Т.) характеризуется в двумерной решетке спинов изменением спинспиновой корреляционной функции при конечной температуре Т_{КТ} от экспоненциальной к степенной зависимости от расстояния г :

$$\langle \vec{s}(r) \cdot \vec{s}(0) \rangle \sim \exp\left[-r/\xi(T)\right]$$
 upu $T > T_{KT}$ (Ia)

причем длина корреляции: $\xi(T) \sim s \exp \left[B / (T - T_{KT}) \right]^{1/2}$ определяет размер флуктуации в высокотемпературной фазе, а критический параметр γ (T) – силу взаимодействия при T < T_{KT} , s – параметр решетки обобщенных спинов или размер ядра вихря. Элементарными возбуждениями спиновой системы являются пары связанных вихревых структур противоположного знака. При всех температурах T > 0 концентрация таких квазичастиц отлична от нуля, что и приводит к нарушению ДП при сохранении ТДП.

Критическое поведение вызвано тем, что при T > Т_{КТ} появление свободных вихрей становится энергетически выгодным. Свободные вихри разрушают даже ТДП и стимулируют диссоциацию связанных пар. Это означает качественное изменение отклика всей системы на внешние параметры при T = Т_{кт}, сопровождаемое аномальными эффектами.

Теоретически было показано, что такая модель может быть применима для описания физических свойств тонких сверхпроводящих пленок и плоской сетки слабосвязанных сверхпроводящих элементов/2/.

До настоящего времени большинство экспериментальных работ проведено на тонких высокорезистивных пленках, которые рассматривались аналогично электронейтральной пленке сверхтекучей мидкости. Оказа-

DODESTBERHTT TILTERYT SACHELL IN COORDANIAL SHALL IN COORDANIAL

лось, однако, что этот экспериментальный подход существенно усложняется недостаточной однородностью образцов и целым рядом других проблем при их изготовлении и проведении измерений.

Другая серия экспериментальных работ проведена на больших регулярных 2Д-построениях слабосвязанных сверхпроводящих элементов, что позволяет изучение проблемы в варианте дискретной решетки/3-5/.

Характерной особенностью резистивного поведения таких структур является двухступенчатый переход в сверхпроводящее состояние. При понижении температуры сначала наблюдается скачок сопротивления примерно на 20 ... 70% от значения в нормальном состоянии, соответствующий переходу островов в сверхпроводящее состояние. Дальнейшее плавное уменьшение сопротивления в довольно широком интервале температур обусловлено проявлением эффекта близости. Последующий окончательный скачок сопротивления до нуля во всех этих работах идентифицируется как фазовый переход К.-Т.

Подобного рода двойной переход, но на температурной зависимости переменной магнитной восприимчивости, был обнаружен при исследовании композитного мелкодисперсного сверхпроводящего провода из NbTi в медной матрице^{/6/}.

В свете вышеуказанных проблем такие композитные сверхпроводники представляют собой весьма интересные модельные материалы. Их сечение - это двумерное построение чередующихся сверхпроводящего и нормального металлов, идентичное регулярной плоской решетке S - N - S переходов. Помимо их относительно легкого изготовления (используется выпускаемый промышленностью технический материал), такие образцы отличаются совершенной структурной однородностью вдоль оси Z, перпендикулярной к двумерному сечению в плоскости ХУ. Тем самым исключается влияние разных типов краевых эффектов, трудно контролируемых в пленочных построениях. С другой стороны, практически используемые толщины подобных образцов составляют ≥ 0,1 мм, что значительно превышает длину когерентности в нормальном металле. Следовательно, такие квазидвумерные сверхпроводники можно считать трехмерными построениями (с сильной анизотропией энергии связи вдоль оси Z), экспериментальное изучение которых является крайне актуальной задачей.

Первые прямые измерения поперечного сопротивления в композитном мелкодисперсном сверхпроводнике были проведены на образце, состоявшем из большого числа NbTi нитей и медной матрици/7-9/. Впоследствии было установлено, что поперечное сопротивление и восприимчивость в параллельном нитям магнитном поле меняются с температурой подобным образом, обнаруживая двухступенчатый переход в сверхпроводящее состояние/10/. В данной работе представлены результаты подробного исследования резистивного поведения такого композитного сверхпроводника при пропускании тока перпендикулярно сверхпроводящим нитям. На основе новых экспериментальных данных дается анализ критического поведения системы вблизи низкотемпературного перехода.

2. ИЗМЕРЕНИЯ И РЕЗУЛЬТАТЫ

Измерявшиеся образци изготавливались из технического композитного сверхпроводника. Исходный провод диаметром I мм состоял из IO45 нитей Nb T1 (HT-50) и медной матрицы и имел коэффициент заполнения 0,45 в центральной части. Сечение провода представляло собой кластерную систему. В кластере I9 сверхпроводящих нитей диаметром ~20 мкм каждая, расстояние между соседними нитями внутри кластера – порядка 3-4 мкм, между соседними кластерами – порядка 20 мкм. Кусок такого провода шлифовался с двух сторон в продольном направлении до плоскопараллельных поверхностей, затем вырезался образец в виде узкого бруска поперек провода. Образцы имели в длину ~0,9 мм и сечение ~ 0,5x0,2 мм². В объеме образца помещалось примерно I5 кластеров и соответственно около 300 сверхпроводящих нитей.

Залуженные медные проволочки, которые служили токовным и потенциальными вводами, припаивались к торцам образца таким образом, чтоон измерительный ток протекал перпендикулярно сверхпроводящим нитям. Основные результаты получены при температурах ниже сверхпроводящего перехода припоя, что позволило не делать поправок на сопротивление припоя. Напряжение с образца подавалось на нановольтметр типа P-341 и регистрировалось с помощью цифропечати. Синхронно записывали измерительный ток и температуру. Напряжение менялось от нуля до ~0,7мкВ и регистрировалось с точностью ± 3 нВ. Это соответствовало измерительному току от 0 до ~ 500 мА, который регистрировался с точностью ± 0,1 мА. Вольтамперная характеристика (ВАХ) образца снималась по точкам в отсутствие внешнего магнитного поля при фиксированных значениях температуры. Для исключения влияния термоэдс измерения проводились при двух направлениях тока. Температура менялась в интервале от 15 К но 1,5 К и поддерживалась постоянной с точностью ≥ 0,001 К.

На рис. I приведены примеры экспериментальных ВАХ для одного из образцов. Температура сверхпроводящего перехода ниобий-титановых нитей $T_{CS} = 9,5$ К. По мере понижения температуры меняется вид вольтамперных характеристик: они перестают быть прямолинейными и обнаруживают наличие критического тока. На рис. 2 представлены температурные зависимости поперечного сопротивления ниже T_{CS} для разных значений плотности измерительного тока. Видно, что с повышением

плотности тока ширина нижнего перехода увеличивается, а при $\dot{y} = 3,2 \cdot 10^2$ A/cm² он вообще исчезает.

Отсутствие на ВАХ прямолинейного участка, выходящего из начала координат, ведет к тому, что сопротивление образца, определенное как $R = \underbrace{U}_{-}$, становится функцией не только температуры, но и измерительного тока. Как видно из рис. 3, это сопротивление растет с увеличением тока. Характер зависимости R (I изм.) изменяется по мере понижения температуры. Для самых низких температур измерения R (I изм.) становится линейной. Экстраполяция кривых к R = 0 дает значение критического тока I $\frac{3 \text{ксп.}}{\text{с}}$, которое в пределах ошибки измерения совпадает с определенным из ВАХ при $U \rightarrow 0$.

На рис. 4 экспериментальные ВАХ представлены в двойном логарифмическом масштабе. Видно, что для всех температур можно выделить прямолинейный участок, хорошо описываемый соотношением $\bigcup \sim \prod \alpha(T)$, изм. где $\alpha(T) \ge 1$. Однако, в отличие от экспериментов с пленочными образцами, во-первых, в области низких токов наблюдается отклонение экспериментальных точек в сторону увеличения наклона $\frac{\partial \bigcup}{\partial \prod_{i,i,j}}$ (для сравнения см., например, $\frac{4}{2}$). Во-вторых, в области больших токов, как правило, можно выделить второй линейный участок с более низким значением α .

3. OECYMIEHNE PEBYILTATOB

З.І. Определение критического тока

Предположим, что основные свойства нашего образца связаны с его двумерной симметрией. Тогда имеем планарную сетку сверхпроводящих ост-

4

Рис. 4. Экспериментальные ВАХ в двойном логарифмическом масштабе I) 7, I K; 2) 5, 7 K; 3) 4, 2 K; 4) 3,0 K; 5) 2,0 K; 6) 1,5 K.

ровов, взаимодействующих друг с другом с энергией связи/11/

$$E = -E_{\eta}(T) \cos \Delta \psi_{1,2}, \qquad (2a)$$

где $\Delta \psi_{1,2}$ - разность фаз параметра порядка двух островов. Такой контакт характеризуется сверхтекучим током/11,12/

$$i = i_c(T) \sin \Delta \varphi_{1,2}$$
 (2B)

где i_c(⊤) = 2 е Ед (⊤) ∕ ћ

является критическим током при отсутствии тепловых флуктуация/13/.

Волизи Т_{с5} критический ток через 5 – N – S щины d следует зависимости^{/14/}: контакт тол-

$$i_{c}(T) \sim \xi_{N}(T) (1 - \frac{1}{T_{cs}})^{2} \exp \left[- \frac{d}{2} \xi_{N}(T) \right],$$
 (3a)

где б - длина когерентности в нормальном металле и

d/2 5 >> 1. (Зв) На основании экспериментальных значений критического тока I_с (T) получим температурную зависимость l_c (T) для нашего образца. С этой целью представим (3) в виде:

$$\chi(T) = \frac{I_o(T) T}{(1 - T/T_{cs})^2} = exp[-d/2\xi_N(T)]$$

где $I_0 = N_{10}$ (N – количество сверхпроводящих нитей в попереч-ном сечении образца), $\xi_N = \hbar U_F / 2\pi K_B T / IO/$. Соответствую-щие экспериментальные значения X(T) представлены на рис. 5 в полулогарифинческом масштабе, где принято $I_0 = I_0^{3KCII}$. Обнаруживается, что $X(T) = X_0 = const при T \lesssim 4 K, т.е. в области температур, где$ перенормированный критический ток Is приближается к I, не учитывающему вихревые флуктуации. Следовательно:

$$I_{c}(T) = \frac{X_{0}}{T} (1 - T/T_{cs})^{2} , \text{ rge } X_{0} = 0,252, \text{ AK}$$
(4)
 $I_{c}(T) = \frac{X_{0}}{T} (1 - T/T_{cs})^{2}$

Рис. 5. Определение температурной зависимости критических токов I_{c} и $I_{s}(n_{o}nn_{s})$ • Υ [I^{9KCII} (T)]; × - X [I₀(\widetilde{T})], где \widetilde{T} определяется из эксперимента согл. ур. (9):

— – приближение для $X(I_c)$ и $\Delta X(T)$ (или n₅ /n₀) в верхней и нижней части рисунка соответственно:

 $----X_{\bullet}(T); \circ - \Delta X(T)$ определяется из эксперимента.

3.2. Определение критической температуры

Температуру перехода К.-Т. можно оценить из соотношения/15/:

$$\frac{i_{c}(T_{KT})}{T_{KT}} = I,542 \cdot 10^{-8} \text{ A/K}.$$
 (5)

Сравнение (4) и (5) дает для наших образцов $T_{KT} \simeq T_{CS}C$ другой стороны, наши экспериментальные ВАХ обнаруживают сильно нелинейные эффекты аналогично пленочным системам в широком интервале температур $T < T_{cs}$.

Для выяснения этого противоречия анализируем результаты относительно существования корреляционной длины типа (Ic) в виде:

$$\boldsymbol{\xi}_{c}(\boldsymbol{T}) = \boldsymbol{c}_{1} \cdot \boldsymbol{s} \cdot \exp[\boldsymbol{\beta}(\boldsymbol{\widetilde{T}}/\boldsymbol{\widetilde{T}}_{c} - 1)^{-\frac{1}{2}}], \quad (6)$$

где ожидается, что С, и 6 – величины порядка единицы /17,16/ а температура определяется следующим образом /5/:

$$\widetilde{T} = \frac{I_c(T_c)}{I_c(T)} \cdot T \qquad (\textbf{r.e. HOPMUPYEM} \qquad \widetilde{T}_c = T_c). (7)$$

Такое определение Т идентично изменению масштаба параметра Т'. Для данного образца

Если сопротивление образца в первом приближении зависит только от концентрации свободных вихрей n_f , а $n_f \sim \xi_c^{-2}$, то на основании (6) получим²:

$$R = R_{\infty} \exp \left[-2B(\tilde{T}/T_c - 1)^2\right], \ 2\partial e \ R_{\infty} = \lim R(I) \quad (8)$$

Уравнение (8) позволяет определить Т_с непосредственно из экспериментальных значений R (I, T) в виде:

$$\mathfrak{S}_{\mathsf{R}}(\widetilde{\mathsf{T}}) \equiv \Delta \widetilde{\mathsf{T}} / (\mathfrak{B}_{o}^{2} \mathsf{T}_{c}) = [\mathfrak{l}_{\mathsf{n}} (\mathsf{R} / \mathsf{R}_{\infty})]^{-2} \Delta \widetilde{\mathsf{T}} = \widetilde{\mathsf{T}} - \mathsf{T}_{c}, \mathfrak{g}_{\varepsilon} = 2\mathfrak{g}_{\varepsilon}$$
(9a)

Рис. 6. (а) температурная зависимость величины S_R волизи T_C для разных значений тока: + - I = 0,25 A; • - I = 0,20 A; \Box - I = 0,15 A; × - I = 0,10 A. (в) зависимость параметра b_o от тока: • - T = 2,5 K; • - T = 3,5 K; \triangle - T = 4,2 K; + - T = 4,5 K; × - T = 7,1 K; ---- $b_o \sim 1/I$.

c yystom toro, yto $\frac{\ell_{im}}{\tilde{T}-T_c} \delta_{R}(\tilde{T}) = 0.$ (9b)

Для разных уровней измерительного тока S_R (\tilde{T}) приведены на рис. 6а. Несмотря на обнаруженную сильную зависимость $S_R = S_R$ (I), все кривые сходятся в одну точку, $T = T_c = I$,71 К.

Таким образом, T_{C} представляет собой критическую температуру перехода типа К.-Т., корреляционная длина которого является функцией тока. Температуру, в которой $\tilde{T} = 0$, назовем критической температурой T_{CI} (ркс. 7). При \tilde{T} -0 (Δ T' - 0) E_{J} -----, что означает спонтанное упорядочение всей системы с возникновением дальнего порядка, который уже не зависит от величины тока. Фазовый переход при T_{CI} связан с тем, что при $I \ge 0$ и T < T_{CI} образец ведет себя как однородный, трехмерный сверхпроводник, а выше T_{CI} - как двумерная система. Следовательно, для идеальной 2Д-системы $T_{CI} = 0$. Экспериментальные данные указывают на то, что для наших образцов такой переход имеет место при $T_{CI} \simeq I$ К (ркс. 7). Этот результат согласуется с оценкой длины когерентности

 $2\xi_{N}(T_{cI}) \cong d,$

т.е. при Т_{СІ} замыкаются утолщенные эффектом близости сверхпроводящие пилинари.

Из (9 а, в) следует $b_o = \sqrt{\Delta \widetilde{T} / (T_c \ \delta_R)}$. Экспериментальные данные (рис. 6в) показывают, что $b_o \sim 1/I$. (9c)

Рис. 7. Зависимость \widetilde{T} (и $\bigtriangleup \widetilde{T}$) от температуры Т: • — \widetilde{T} определяется согл.ур. (4)и(7). **х** — \widetilde{T} определяется из эксперимента согл. ур. (9); --- приближение $\widetilde{T}(T)$ при $T \ll T_c$.

Уравнения (9) определяют температурную зависимость $\triangle \widetilde{T}(T)$ и $\widetilde{T}(T)$, что позволяет проверить ур. (4) посредством (7). Как показывают рис. 5 и 7, ур. (4) является хорошим приближением для I_{C} во всей области температур.

Помимо этого, как видно из рис.5, выше T_{C} наблюдается систематическое отклонение величины I_{C} от I_{C}^{3KCI} (~ I_{S}), которое монотонно растет с повышением температуры. Этот факт иллюстрируется в виде $\triangle X(T)$ на рис. 5, причем

 $\triangle X = X (I_c^{R}) - X(I_c^{3KCII}) = G(T - T_c), где$ (IOa) I_c^{R} - определено из (7) и (9) и G = 0,073 А. $T_c < T < T_{co}$. Тогда аналогично (4) определим:

$$I_{s} = -\frac{X_{s}}{T} (1 - \frac{T}{T_{cs}})^{2}, \qquad (IO_{B})$$

где X_S = X_O - \triangle X. Используя (4) и (IO), нетрудно убедиться, что

$$I_{s} = G (1 - \frac{T}{T_{cs}})^{2} \cdot (\frac{T_{co}}{T} - 1), rge$$
 (IOc)

$$T_{co} = \frac{X_0}{G} + T_c = 5.2 \text{ K}.$$

Если представить концентрацию сверхтекучей компоненты, которая была бы при отсутствии вихрей, как $n_o(T) = -\frac{\sqrt{3}m}{\hbar^2} E_J(T) = ;$ = $-\frac{\sqrt{3}m}{2e\hbar} i_c(T)$, то с учетом (4) получим:

$$n_{o}(T) = \frac{\sqrt{3} \text{ m} \chi_{o}}{\hbar e N T} \left(1 - \frac{T}{T_{cs}}\right)^{2}, \qquad (IIa)$$

8

а соответствующая концентрация при наличии вихревых возбуждений бу-

$$\begin{array}{l} \text{ger} & & & \\ \Pi_{S}(T) = \frac{\sqrt{3} \text{ m G}}{\text{ heN}} \cdot (\frac{T_{\text{co}}}{T} - 1)(1 - \frac{T}{T_{\text{cs}}})^{2} & (\text{IIB}) \\ (\dot{\text{m}} - \text{ масса электрона}) \text{ м} & \\ \frac{n_{S}}{n_{o}} - (T) = G_{o}(T_{\text{co}} - T) & (\text{IIc}) \\ G_{o} = G/X_{o} = 0,29 \text{ K}^{-1} (\text{рис. 5}). \end{array}$$

Следовательно, n_S(T) = 0 при T > T_{CO}, и мы определим Т_{CO} как темиературу сверхпроводящего перехода всей системы.

3.3. Влияние тока на вихревую структуру

Если I \neq 0, связанные пары вихрей могут диссоциировать не только под влиянием термического возбуждения, но также под влиянием сил Лорентца. Для уточнения характера зависимости R = R (I) представим наши результаты в соответствии с (8) и (9с) в виде $\ell \cap R \sim I^{-1}$ (рис.8). При этом обнаруживаются следующие характерные особенности:

I) Все результаты хорошо описываются формулой

 $R(I) = R_{\infty} \exp(-\delta_R / I).$ (I2)

2) При $T_C < T < T_C$ параметр \hat{b}_R (T) с увеличением тока меняет свое значение от \hat{b}_R° при некоторой средней величине I до \hat{b}_{∞} таким образом, что R_{∞} = const в этой области температур.

Рис.8. Зависимость ln R от I⁻¹для разных значений температуры

 $(--- \ln R \sim I^{-1}).$

3) При Т = Т_с наблюдается заметный скачок величины R ∞ и исчезает перелом $\mathfrak{S}_{\mathsf{R}}^{\circ} \neq \mathfrak{S}_{\infty}$. Изменение с температурой параметров R ∞ и \mathfrak{S}_{∞} представлено на рис. 9.

Рис. 9. Температурная зависимость параметров $R_{\infty}(\bullet)$ и $\delta_{\infty}(+)$, — $\delta_{\infty}(T)$ из ур. (I3).

a,

Такие результаты становятся понятными, если представить общую концентрацию свободных вихрей ∩_г в виде

$$n_{f} = \frac{1}{2}(n_{fI} + n_{fT})$$
, (I3a)

$$\begin{array}{c} n_{fI} = exp(-a_1/I), \quad (I3B) \\ \mu n_{fT} = exp(-a_2/I) \quad (I3c) \end{array}$$

где n_f , n_{fI} и n_{fT} нормируем так, чтобы $max n_f = 1$. Величины a_1 и a_2 определим следующим образом: из общих соображений следует, что новые эффекты (9c, II и I3 a-c) являются следствием некоего процесса токостимулированной активации свободных вихрей.

В условиях сильной связи ($T' \ll I$) это единственная возможность возбуждения

заметной концентрации квазичастиц $n_{\rm f}$. Вляяние электрического тока сводится к тому, что обусловленный им градиент фаз резко уменьшает эффективный энергетический барьер для возникновения флуктуаций. В модели кулоновского газа (КГ) этому соответствует диссоциация дипольных пар под воздействием электрического поля (18). Возможно представить себе два процесса – прямое возбуждение током (I3в) и косвенное (I3с). Можно тогда ожидать, что второй процесс ($n_{\rm fT}$) характеризуется аналогичной корреляционной длиной как в случае перехода К.-Т. (6) с учетом (9с). Следовательно $a_2 \sim \tau$, где τ

$$\mathcal{T} = \left(\frac{\widetilde{T}}{T_{c}} - 4 \right)^{-1/2}.$$

С другой стороны, эффект приложенного поля $\tilde{\epsilon}$ должен зависеть от энергии связи $E_{\mathcal{F}}$ (T), т.е. a_{I} и $a_{2} \sim E_{J}(T) \sim I_{c}$ (T). Такое же предположение следует из соображения масштабной инвариантности $K\Gamma^{I9}$, где $|\tilde{\epsilon}| = I_{T}$. Суммируя вышесказанное, получим:

$$= \mathbf{a}_{\mathsf{O}\dagger}\mathbf{I}_{\mathsf{C}} (\mathsf{T})$$
 (I3g)

$$\mathbf{z} = \mathbf{a}_{02}\mathbf{I}_{c} \quad (\mathbf{T})\mathcal{T}. \tag{13e}$$

Тогда $\cap_{fI} \ll \bigcap_{fT}$ при $\widetilde{T} \gg T_{C}$, что позволит непосредственно проверить (13c) на основе экспериментальных данных и определить параметр a_{02} , учитывая только значения R (I) для малых I: a_2 (T) = I $\ell n(R_{\infty}/2R)$. Результаты такого анализа представлены на рис. IO в виде $a_2(T)/\tau \sim I_C$

•- a₂/т ; x - а₁ ; ---- приближ. согл. ур. (I3).

и подтверждают предположение (13с). Используя этот результат и (13 а-с), определим а, (I_). Рис. 10 показывает, что (13) выполняются во всей области температур (или I_c) с большой точностью и (13_f) $a_{01} = a_{02} = a_0$

$$R = \frac{1}{2} R_{\infty} \left[\exp\left(-\frac{\alpha_{o} I_{c}}{I}\right) + \exp\left(-\frac{\alpha_{o} I_{e}}{I}\tau\right) \right], T_{c} < T < T_{co}. \quad (I3g)$$

$$N_{3} (I2) \text{ следует: } \delta \approx \frac{\delta \ln R}{\delta (1/I)} \Big|_{I} = \infty$$

 $\boldsymbol{\beta} = \begin{cases} \frac{\mathbf{a}_0}{2} \mathbf{I}_c(\mathbf{T}) & (\mathbf{1} + \mathbf{\tau}) \\ \mathbf{a}_0 \cdot \mathbf{I}_c & (\mathbf{T}) \end{cases} , \ \mathbf{T} > \mathbf{T}_c \\ \mathbf{T} < \mathbf{T}_c \\ \mathbf{T}_c \end{cases}$ (14)

Ур. 13-г подчеркивает сходство этих двух процессов активации, причем а = 4,6. Другой интересный результат связан со скачком величины $R_{\infty} \rightarrow R_{\infty}^{c}$ при T = T_c (рис. 9 и 8), так что $R_{\infty}^{c} > R_{\infty}$. Нетрудно убедиться, что этот эффект является следствием качественной перестройки в энергетическом спектре связанных пар вихрей и соответствующего увеличения эффективного химпотенциала $R_{\Delta \sigma}^{\prime} = \frac{R_{\Delta \sigma}}{2} e^{\kappa} \rho (\Delta_{\sigma} / \kappa \tau).$

3.4. Критический параметр 12

По аналогии с/20/ определим критический параметр системы γ :

$$2 = \frac{1}{2} \left[\frac{d\ln n_{f}}{d\ln I} \right]^{-1}$$
(15a)

и с учетом (13):

Поведение n (I,T) | I = constoбразца при разных значениях тока представлено на рис. II. Видно, что при Т_{со} γ (0,T) - ~, что соответствует фазовому переходу Зд-системы. Зависимость η (I_c.T), представленная в нижней части рисунка, указывает на качественные

Рис. II. Температурная зависимость критического параметралдля разных значений тока I и отношения $2a_2/2a_1(I_0).(\Delta - I =$ = 0.10 A; - I = 0.05 A).

изменения в топологическом порядке системы ниже Т,, т.к. там параметр порядка перестает быть функцией температуры.

В соответствии с двумя процессами активации (13) введем два критических параметра ? а, и ?а, которые характеризуют систему при пренебрежении другим процессом:

Видно, что при Т_с наблюдаем скачок

 $\frac{\frac{2a_2}{2a_1}(T_c^+) - \frac{2a_2}{2a_1}(T_c^-) \simeq 0,4.$ Из того же рис. следует, что $\frac{2a_2}{2a_1} = I$ при $T = T_{cT} \simeq 2,2$ К. Следовательно, выше T_{cT} топологический порядок нарушается главным образом из-за термической активации (т.е. о_{гт}) свободных вихрей. Определящие разбуждения - это новый тип квазичастиц, термическая активация которых должна быть токостимулирована, что их качественно отличает от топологических дефектов в теории К.-Т. Дефекты, связанные с п_{тт}и сверхтекучая компонента могут сосуществовать в широкой области температур ($T_c < T < T_{co}$) точно так же, как и \cap_{fI} при Т > Тсі. Характерной чертой теории К.-Т. является скачок критического параметра р (и \mathcal{A}) при T = T_{кт}. Анализируем с этой точки врения положение в T_{CO}. Представим для этого (I5в) в виде

Рис. 12. Зависимость критического пара-E(uEo) при метра от величины Т = Т_{со} (— ропределена из ур. 15в; --- р предположение для 2Д - системы согл. ур.17 д ; ŋ^o = 1/4).

 $\gamma_{co} = \gamma (T_{co}, \xi)$, рис. 12. Конкретное поведение γ_{co} определяется параметром $\tau (T_{co}) = \tau_{co}$, в частности:

$$\mathcal{V}_{co} = \frac{\mathcal{E}_o}{2\mathcal{T}_{co}} \qquad (\mathcal{E}_o \to 0) \qquad (16a)$$

$$\mathcal{V}_{co}^{+} = \frac{\mathcal{E}_{o}}{1+\mathcal{V}_{co}} \qquad (\mathcal{E}_{o}^{-\infty}) \qquad (I6B)$$

Для средних значений ε найдем широкий интервал, где:

1

 $\gamma_{co}^{a} = \gamma_{KT}^{a} + \frac{\varepsilon_{o}}{1 + \tau_{co}} \qquad ((1 - \tau_{co}) < \varepsilon_{o} < \infty),$ (I6c) $\mathcal{D}_{KT}^{o} = \mathcal{D}_{KT}$ (\widetilde{C}_{CO}) = $\frac{1}{4}$ с большой точностью, что совпадает со значением, полученным в /21/ для двумерной системы при T = T_{KT} в приближении нулевого тока. Как следует из (16), величина $\eta_{\rm km}^{\sigma^2}$ зависит от параметра \mathcal{T}_{co} , который определили из эксперимента. Если предположить, что результат (I6c) не случайный, то ур. (I6c) представляет собой выражение для универсального скачка с учетом $I \neq 0$ для 2Д-систем. Тогда γ_{co} не должно зависеть от конкретных свойств образца, т.е. должно быть $a_0 (1 + \tau_{co}) = const$. (I6d) С учетом экспериментальных данных найдем: $a_0(1 + \tau_{co}) = \tau_{co}^{-1}$. Следовательно, (16а, в)можно записать в виде:

$$\mathcal{V}_{co}^{-} = \frac{1 + \mathcal{V}_{co}}{2} \in (\varepsilon - 0)$$
 (I6e

$$\gamma_{co}^{-} = \tau_{co} \epsilon \qquad (\epsilon - - -). \qquad (I6f)$$

Используя результат (16с) найдем по аналогии с (15), (16) при любых ε и $\tau > \tau_{co}$ для 2Д-систем:

$$\gamma_{a_1}^{2D} \in {}_0, T) = \gamma_{a_1}^{3D} = \frac{\varepsilon_0}{2}$$
 (I7a)

$$\gamma_{a_{2}}^{2D} \in \mathcal{E}_{o}, T = \gamma_{KT}(T) + \gamma_{a_{2}}^{3D} = \gamma_{KT} + \frac{\varepsilon_{o}}{2T}$$
(17b)

рит (Т) - определяется в модели К.-Т. для 2Д- систем.

$$\gamma^{2D}(\mathcal{E}_{0}, T) = \gamma_{KT}(T) + \frac{\mathcal{E}_{0}}{1 + \mathcal{T}}$$
(17c)

$$\pi \gamma^{2D}(\varepsilon_{o}, T_{co}) = \gamma^{o}_{KT} + \mathcal{T}_{co} \varepsilon, \qquad (17d)$$

т.е. универсальный скачок является линейной функцией 🗧 и характеризуется двумя параметрами $2^{\circ}_{\kappa\tau}$ и \mathcal{T}_{co} . Соответствующие (17) концентрации свободных вихрей для 2Д-систем найдем с помощью (15). решая обратную задачу относительно Пс :

$$n_{fI}^{2D} = exp(-1/\epsilon_0) = n_{fI}^{3D}$$
(I7e)

$$n_{fT}^{2D} = \left(1 + \frac{22\kappa_{T} \cdot \tilde{\zeta}}{\epsilon_{o}}\right)^{-\frac{1}{2}} \frac{1}{22\kappa_{T}} \neq n_{fI}^{3D}$$
(17f)

Сильное отклонение в поведении наших образцов при T-►0 (рис. I2) от поведения двумерной системы демонстрирует очевилно характерные свойства ЗД-системы, которые обнаруживают спонтанное $(\eta^{3}(T_{co})|_{T_{co}})$ упорядочение с установлением ДП при Т

Для непосредственного сравнения с экспериментальными данными зависимость (15в) представлена на рис. 13 в пересчете на величину \mathcal{A} ($\mathcal{A} = 1 + 1/2\eta$), в виде $\mathcal{A} = \mathcal{A}(X_{cO})$ для разных значений \mathcal{E} , где $X_{cO} \equiv \frac{T'}{T_{cO}} = \frac{T}{T_{cO}} \cdot \frac{I_c (T_{CO})}{I_c (T)}$ - масштабноинвариантная

величина. (При Т > Т_{со}, ~ определяется посредством (I5a) и $\Pi_{f} = \Pi_{fo} + (1 - \Pi_{fo}) \cdot \Pi_{fI}$). Рис. I3 показывает, что в T_{co} ($\Delta X_{co} = 1$) поведение $\measuredangle (T, I)$ наших образцов аналогично пленоч-

14

ным системам с той принципиальной разницей в величине универсального. скачка ($\mathcal{A}^{20}(X_{CO}^{-}) = 3$), которая отличает 3Д-от 2Д-системы.

3.5. Поведение сопротивления

£

Рассмотрим общее сопротивление системы, вызванное движением свободных вихрей/I3/: $R = -\frac{L}{W}$ $\frac{h \ln f}{2}$ $\frac{1}{1t}$, (I8a) где L - длина, W - ширина образца, t - среднее время прохождения флоксоидом расстояния S, а 1 = I/N . Для определения подвижности носителей тока it необходимо оценить величину $\delta = -\frac{2}{T'}$. В нашем случае $\chi = \frac{2}{T} \cdot \frac{10^5}{T}$, $K \gg 10^3$ при $T \ll T_{co}$. Это позволяет не делать поправку на изменение эффективного потенциального барьера в композите, а пользоваться результатом 22 в виде:

 $1/it = \frac{e r_n}{\hbar \pi} \sqrt{1 - (\frac{Ic}{I})^2}$ (І8в) где r_n – сопротивление одного S – N – Sконтакта в нормальном состоянии.

Суммируя (13) и (18 а, в), получим: $R = \frac{L}{2W} \left(\Gamma_{n} \sqrt{1 - (\frac{1c}{L})^{2}} + C_{2} \right) e^{\Delta_{0} / KT} \left[e \propto \rho \left(- 1/\epsilon_{0} \right) + e \propto \rho \left(- \tau/\epsilon_{0} \right) \right].$ (18c) C₂ характеризует возможные дополнительные процессы рассеяния вихрей. Используя экспериментальные данные и преобразуя (18c) соответ-Используя экспериментальные данные и преобразуя (18c) соответ-

ствующим образом, определим С₂ (рис.14). Для сравнения на рис. 14 в том же масштабе представлено $C_1 = r_n \sqrt{1 - (\frac{T_c}{I})^2}$. Заметный вклад

Рис. 14. Зависимость коэффициентов C_4 (—) и C_2 от тока. (C_2 : о - T = 2,5 K; • - T = 2,0 K; × - T = 1,5 K; --- - $C_2^{\sim \exp(1/\epsilon_0)}$). от C₂ обнаруживаем только вблизи T_c (на рис. для T = 2 К). Для I/I_c выше максимума C₂(I) с хорошей точностью выполняется зависимость: C₂~exp(1/ ε_0). Следовательно, C₂ и n_{fI} представляют собой конкурирующие процессы активации вихрей с насыщением на больших токах. Эти результаты указывают на то, что C₂ характеризует процесс резонансного рассеяния свободных вихрей на связанных парах.

При T > T_{со} эффективный энергетический барьер резко уменьшается, поэтому вместо (I7 в-с) получим^{2, I3/}:

$$\mathbf{x} \quad \mathbf{R} = -\frac{\mathbf{L}}{\mathbf{W}} \quad \mathbf{r}_{n} \left[\mathbf{n}_{f^{0^{+}}} \left(1 - \mathbf{n}_{f^{0}} \right) \mathbf{n}_{f^{\mathrm{I}}} \right]$$
(I8)
$$\mathbf{n}_{f^{0}} \sim \exp\left[-\mathbf{B}_{1} \left(\tilde{\mathbf{T}} / \tilde{\mathbf{T}}_{c^{0}} - 1 \right)^{-1} \right].$$

Экспериментальные результаты дают оценку: $\beta_1 = 2,5$ 3, что хорошо соответствует теории К.-Т./16/. Для более точного описания поведения сопротивления в этой области температур, однако, необходимо учитывать эффект близости/13/.

3.6. Общая картина

Общая картина наших результатов представлена в виде фазовой диаграммы на рис. 15. Вертикальные линии разделяют области температур, в которых ДП или ТДП нарушаются (в первую очередь) разными квазичастицами:

$T > T_{cs}$	- нормальные электроны в островах
$T_{co} < T < T_{cs}$	- термически активированные свободные вихри (n _{fT})
$T_{c} < T < T_{co}$	- токостимулированные свободные вихри (n _{fl} , n _{fl})
• ••	сосуществуют с вихревыми парами.
$(T_{C} < T < T_{CT})$	- переходная область)
$T_{cI} < T < T_{c}$	– возбужденные током свободные вихри (n _{fl})
•- •	сосуществуют с вихревыми парами.
$T < T_{ot}$	- имеет место ДП.

При T < T_{CI} образец является однородным 3Д-сверхпроводником. Тот же результат получим при T > T_{CI} для I < I_m. Здесь, однако, поведение системы зависит от размера образца ℓ , который определит критический ток I_m, характеризующий появление первых свободных вихрей. Сопоставляя с соответствующей длиной корреляции (I3), найдем оценку:

С учетом флуктуаций n_{fT} эффективный критический ток системы . I_S отличается от своего неренормированного значения I_c в

широком интервале температур $T_{c} < T < T_{co}$ и обращается в нуль при температуре T_{co} .

Интервалы токов $I_m < I < I_S, I_S < I < I_C$ и $I > I_C$ характеризуются разной подвижностью свободных вихрей.

Качественное изменение в поведении системы при T_{cI} , T_{c} и T_{cO} назовем топологическими фазовыми переходами (ТФП) типа К.-Т., которые обусловлены своими квазичастицами n_{fI} , n_{fT} и n_{fO} соответственно.

Рассмотрим сначала ТФП около Т_{СО}. В соответствии с результатами (I5),(I6), универсальный скачок при Т = Т_{СО} является функцией тока и качественно отличается для 3 Д системы при I -- 0 тем, что критический параметр Ω стремится к нулю (рис. I2).

Таким образом, в T_{CO} наблюдаем ТФП, который в приближении I—О очень похож на общчный фазовый переход с установлением ДП при I < I_C. ТФП при T = T_{CI} связан с тем, что с уменьшением энергии связи $E_{\mathcal{T}}(T)$ ДП системы становится нестабильным относительно флуктуаций, вызванных электрическим током. Соответствующая корреляционная длина $\xi_{fI}^{-1} \gamma_{fI}^{-\frac{1}{2}}$ характеризует максимальное расстояние между связанными вих-

Рис. 15. Температурная зависимость сопротивления $R_o = R (I - 0)$ и фазовая диаграмма, характеризующая поведение системы в разных областях температур и тока. Намеченные параметры объяснены в `тексте. рями при наличии этих флуктуаций и определит критический параметр (\mathcal{Q}_{Cl4}) для ТДП при отсутствии токостимулированных тепловых флуктуаций \mathcal{N}_{FT} . Последние являются результатом интерференции токового и термического шумов, устойчивость к которой с ростом температуры теряется при T = T_c. Соответствующий ТФП при T = T_c характеризуется корреляционной длиной $\xi_{FT} \sim \mathcal{N}_{FT}^{-\frac{1}{2}}$. При T > T_c появляется сильная чувствительность к температуре критического параметра \mathcal{Q}_{cl2} , который становится определяющим для ТДП всей системы при T > T_c.

4.Выволы

Представленные результаты показывают, что ТФП, аналогичные переходу К.-Т., и связанные с ними двумерные топологические дефекты наблюдаются также в трехмерных образцах и существенно меняют их макроскопические свойства в широком интервале температур (для наших образцов T' ≥ 10⁻⁵).

Обнаруженные три типа ТФП характеризуются появлением соответствующего механизма возбуждения свободных вихрей n_{ft}, n_{ft} и n_{fo}.

Все найденные нами эмпирические закономерности масштабноинвариантны относительно величины $\mathcal{E} = I/I_{c}$, в соответствии с моделью 2Д – КГ. Универсальный скачок проявляет новые характеристические свойства в зависимости от эффективной размерности образца и приложенного поля \mathcal{E} .

Установлены конкретные взаимосвязи между характерными эффектами в 2Д-и ЗД-системах.

Показано, что в измерениях, подобных нашим, степень корреляции и тем самым критический параметр плавно регулируется током. Это, в частности, позволит прямое экспериментальное изучение физических свойств веществ в зависимости от топологического порядка и непосредственную проверку теоретических моделей.

ЛИТЕРАТУРА

- 1. J.M.Kosterlitz and D.J.Thouless J.Phys. C6 (1973), 1181.
- 2. B.I.Halperin, D.R.Nelson, J.Low Temp.Phys. V36 (1979), 599.
- 3. D.H.Sanchez, J.L.Berchier, J.Low Temp.Phys. 43 (1981), 65.
- 4. D.J.Resnick, J.C.Garland et al. Phys.Rev.Lett., V47 (1981),1542.
- 5. David W.Abraham et al. Phys.Rev.B, <u>V26</u> (1982), 5268.
- 6. Yasukage Oda et al. Jpn. J.Appl. Phys., <u>V21</u> (1982), L37-L39.
- 7. В.М.Дробин, Е.И.Дьячков, В.Г.Луппов, А.Никитиу, И.С.Хухарева. Препринт ОИЯИ Р8-81-490, Дубна, 1981.

Cryogenics, (1982), 115.

8. В.Г.Луппов, И.С.Хухарева, М.Полак - Тезисы докладов XXII Всесоюз-

ного совещания по физике низких температур", Изд. института прикладной физики АН МССР, Кишинев, 1982 г., С80.

9. Н.М.Владимирова, В.М.Дробин, Д.Лазэр, И.С.Хухарева. Препринт ОИЯИ Р8-84-261, Дубна, 1984; Cryogenics, <u>V26</u> (1986),152.

10. Н.М. Владимирова, Д.Лазэр, Э.Фишер, И.С.Хухарева Препринт ОИЯИ P8-85-654, Дубна, 1985.

Proceeding of ICEC-11, Berlin-West, 696 (1986).

11. M. Tinkham, Introduction to Superconductivity (MC Graw - Hill,

- New York , 1975).
- 12. B.D.Josephson, Phys.Lett., <u>V1</u>, (1962), 251.
- 13. C.J.Lobb, D.W.Abraham, M.Tinkham, Phys.Rev. <u>V27</u> (1983), 150.
- 14. P.G. De Gennes, Rev. Mod. Phys. <u>V36</u>, (1964), 225 .
- 15. R.F.Voss, R.A.Webb, Phys.Rev. B <u>V25</u>, (1982), 3446.
- 16. J.M.Kosterlitz, J.Phys. <u>C7</u>, (1974), 1046.
- 17. J.Tobochnik, G.V.Cherter, Phys.Rev. B <u>V20</u> (1979), 3761.
- 18. P.Minnhagen, Phys.Rev. B V32, (1985), 3088.
- 19. P.Minnhagen, LUTP 83-5 (1983).

1.

- 20. A.M.Kadim, K.Epstein, A.M.Goldman. Phys.Rev. B <u>V27</u> (1983), 6691.
- 21. D.R.Nelson, J.M.Kosterlitz, Phys.Rev.Lett., V39 (1977), 120.
- 22. V.Ambegaokar, B.I.Halperin, Phys.Rev.Lett., V22, (1969), 1364.

Фишор Э., Хухарева И.С. Пореход Костерлитца — Таулеса в трехмерной системе

Представлены результаты экспериментального исследования резистивного поведения композитного сверхпроводника при пропускании тока перпендикулярно сверхпроводящим нитям. Сопротивление образцов в этом случае обнаруживает ряд особенностей в зависимости от температуры и измерительного тока, в частности, двухступенчатый переход в сверхпроводящее состояние. Проводится анализ полученных закономерностей, на основании которого развивается модель топологических фазовых переходов типа перехода Костерлитца — Таулеса в трехмерных системах. Рассмотрен новый тип топологических дефектов: токостимулированные возбуждения. Найденные эмпирические закономерности являются масштабно-инвариантными относительно величины $\epsilon = I/I_0$. Установлена взаимосвязь между характерными величинами в двух- и трехмерных системах.

P8-86-859

P8-86-859

Работа выполнена в Лаборатории высоких энергий ОИЯИ

Преприят Объединскиого института ядерных исследований. Дубна 1986

Перевод О.С.Виноградовой

Fischer E., Khukhareva I.S. Transition of the Kosterlitz — Thouloss Typo in Bulk System

Results of measurements on the transverse resistance of a multifilamentary superconductor are presented. When passing a current flow perpendicular to the filements the resistivity behaviour reveals some peculiarities depending on the temperature and magnitude of the current and a two-step transition to a superconducting state. An analysis of the experimental results leads to a model of topological transitions of the Kosterlitz — Thouless type for bulk-systems. The obtained new types of topological excitations are modiated by finite current effects and scale with $\epsilon = I/I_{0}$.

The investigation has been performed at the Laboratory of High Energies, JINR.

Рукопись поступила в издательский отдел • 31 декабря 1986 года.