1619/82

Объединенный институт ядерных исследований дубна

P8-81-765

5/17-82

Р.Херцог, И.С.Хухарева, Г.П.Цвинева

ТЕПЛОПРОВОДНОСТЬ СПЛАВОВ НИОБИЙ-ТИТАН В НОРМАЛЬНОМ И СВЕРХПРОВОДЯЩЕМ СОСТОЯНИЯХ

Направлено в журнал "Физика низких температур"

введение

⊲

После открытия сверхпроводников второго рода проводились многочисленные измерения теплопроводности этих материалов при низких температурах с целью исследования механизмов взаимодействия электронной и фононной систем, определяющих теплоперенос в образцах, находящихся в нормальном и сверхпроводящем состояниях. Много работ посвящено исследованию ниобия разной чистоты^{/1,2/}, есть измерения на сплавах индия ^{/3/}и свинца^{/4/}, а также на интерметаллических соединениях со структурой A-15, например, на Nb₃Sn^{/5/}, V₃Si^{/6/}.

Большинство исследований теплопроводности сплавов переходных металлов проведено на системах с относительно низкими сверхпроводящими критическими параметрами, таких, например, как Nb-Ta '7', Nb-Mo'2' и др. Из сплавов с высокими критическими параметрами подробно исследована низкотемпературная теплопроводность системы Nb-Zr '8-11'. Для системы Nb-Ti до сих пор известны только данные отдельных измерений, ограниченных узким диапазоном температур и небольшим набором концентраций. При этом результаты отдельных авторов отличаются как по экспериментальным значениям, так и по их теоретической интерпретации '12-14/.

Характер взаимодействия электронов и фононов, определяющий температурное поведение теплопроводности, сильно зависит от области температур, а также степени загрязнения материала. Критерием несовершенства кристаллической решетки в какой-то мере является отношение сопротивлений ho_{300} $/
ho_0$ =r. У сверхпроводников с высоким г /например, у V_3 Si $r=25^{/67}$; у достаточно чистого ниобия г=16-24/1/ / в нормальном состоянии преобладает электронная компонента теплопроводности и только с понижением температуры до $T/T_{c}=0,3-0,5$ начинает играть значительную роль фононная теплопроводность 1,5,8/. В сверхпроводниках второго рода с низким значением г /к ним принадлежат и сплавы переходных металлов с большим содержанием одной из компонент, так, например, у Nb₇₅Zr₂₅ $r = 1,8^{111}$; у Nb₄₀Ta₆₀ $r = 3,6^{12}/1$ из-за сильного рассеяния электронов на многочисленных дефектах, в первую очередь на примесных атомах, электронная компонента теплопроводности столь мала, что уже в нормальном состоянии сравнима с фононной. В сверхпроводящем состоянии при всех температурах фононная компонента дает главный вклад и при-

водит к характерному максимуму, который наблюдается на многих сплавах, в том числе на сплавах переходных металлов /2,7-9/,

Настоящая работа посвящена исследованию теплопроводности сллавов системы ниобий-титан с большим содержанием одной из компонент и с различными структурными дефектами с целью выявления механизмов рассеяния электронов и фононов в образцах, находящихся в сверхпроводящем и нормальном состояниях.

ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ

Мы исследовали температурное поведение теплопроводности сплавов $Nb_{100-x} Ti_x$ с X=20,55,60,65,78 ат.%. Образец $Nb_{80} Ti_{20}$ изучался только в рекристаллизованном состоянии /отжиг при 1000°С в течение 1 ч/, остальные - в холоднодеформированном /В/ и рекристаллизованном /А/ состояниях. измерения проведены в интервале температур от 4,2 до 30 К. Образцы и методика измерений описаны ранее^{/15/}, там же приведены результаты измерения

Рис.1. Температурная зависимость полной теплопроводности (•), а также электронной (K_e) и фононной (K_p) компонент / + обозначает критическую температуру T_c /.

электросопротивления, критической температуры и верхнего критического поля всех названных выше образцов. Характерные температурные зависимости теплопроводности образцов в рекристаллизованном состоянии представлены на рис.1а-в. В исследованном диапазоне концентраций наблюдается уменьшение теплопроводности с увеличением содержания титана. При $\mathbf{T} < \mathbf{T}_{\mathbf{c}}$ /сверхпроводящее состояние/ температурный ход теплопроводности Nb_{ao}Ti_{on} сильно отличается от k(T) образцов с большим содержанием титана: у Nb_{80} Ti_{20} имеет место максимум при T=5~K; теплопроводность остальных образцов неизменно уменьшается с понижением температур, у холоднодеформированных образцов это уменьшение еще более резкое. В сплавах с 65-55 ат.% Ті рекристаллизационный отжиг приводит к увеличению теплопроводности на 10-40% по сравнению с холоднодеформированным состоянием, тогда как в образце Nb₂₂Ti₇₈ теплопроводность уменьшается после рекристаллизационного отжига на 40-50% и качественно изменяется ее поведение при переходе образца в сверхпроводящее состояние /см. рис.1в и г/.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

1. Теплопроводность образцов в нормальном состоянии

В исследованных нами сплавах Nb-Ti при температурах $T_c < T < < 30$ К электросопротивление в пределах точности измерения имеет постоянное значение, соответствующее остаточному ¹⁵⁷. Это свидетельствует о преимущественно упругом рассеянии электронов на примесных атомах. В таких процессах рассеяния средняя длина свободного пробега электронов для теплового и электрического переносов идентична и выполняется закон Видемана-Франца, так что электронная теплопроводность образца в нормальном состоянии $k^{(n)}$ имеет температурную зависимость вида

$$\mathbf{k}_{\mathbf{a}}^{(n)} = \mathbf{T}/\boldsymbol{\beta}, \qquad / \mathbf{1}$$

где

$$\beta = \rho_0 L_0^{-1}, \qquad (2/$$

 ρ_0 – удельное остаточное сопротивление; L₀ – число Лоренца /L₀ = 2,455.10⁻⁸.Вт.Ом.К⁻² /.

Абсолютные значения ρ_0 у данных сплавов очень высоки /соответственно длины свободного пробега электронов $\ell_{\rm B}$ малы/. Согласно формуле /2/ значения коэффициента рассеяния β также высоки и растут с увеличением концентрации титана. Это приводит, в свою очередь, к очень малым величинам электронной и пол-

Таблица 1

Образцы	T _c ,K	Р. мк Ом см	2	B ,10 ² cm K ² /Br	е, 10 ⁻⁸ см	
Nb80 ^{T1} 20(A)	9,35	21,0	1,75	8,6	23,6	
(A)	10,30	58,3	1,31	23,9	8,5	
⁴⁵¹¹⁵⁵ (B)	9,84	63,0	1,37	25,8	7,9	
(A) NbarTicr	9,78	71,3	1,16	29,2	7,0	
(B)	9,39	79,6	1,23	32,6	6,3	
(A) Nb. Ti	8,96	110,9	1,04	45, 5	4,6	
(В)	7,17	117,8	1,04	48,1	4,4	
Nd/1/	9,12	0,68	24,3	0,47	520	
Nb40 ^{Ta60/7/}	5,52	9,07	3,4	3,70	53	
^{1b} 75 ^{Zr} 25/11/ 10,89		28,0	1,8	11,5	-	
	L			· .		

Характеристические параметры образцов в рекристаллизованном /A/ и холоднодеформированном /B/ состояниях

ной теплопроводности по сравнению с другими сверхпроводниками второго рода $^{1-2/}$. ρ_0 , r, β и l_e измерявшихся образцов наряду с литературными данными представлены в табл.1.

Для фононной системы решение кинетического уравнения с учетом всех механизмов взаимодействия можно представить на основании / 16/ следующим образом:

$$k_{p}(T) = k_{B}^{4} (2\pi {}^{2h} {}^{2}v_{s})^{-1} T^{3} \int_{0}^{\infty} e^{x} x^{4} (e^{x} - 1)^{-2} \tau_{eff}(x) dx,$$
 /3/

где $x = \hbar \omega / k_B T$, k_B - постоянная Больцмана, ω - частота колебания фононов, v_s - скорость звука. Эффективное время релаксации фононов r_{eff} определяется из времен релаксации отдельных процессов рассеяния. В частности, для низких температур r_{eff} (x) в нормальном состоянии, если учитывать рассеяние фононов на электронах, дислокациях и точечных дефектах, представляется в виде

$$\tau_{\text{eff}}^{-1} = \mathbf{E}_r \mathbf{x}\mathbf{T} + \mathbf{D}_r \mathbf{x}\mathbf{T} + \mathbf{P}_r \mathbf{x}^4\mathbf{T}^4,$$

/4/

 E_{τ} , D_{τ} , P_{τ} – коэффициенты времени релаксации рассеяния фононов на электронах, дислокациях и точечных дефектах соответственно. В литературе при описании фононной теплопроводности обычно используется приближенное выражение в виде правила Матиссена

$$\frac{1}{k_{\rm D}^{(\rm n)}} = \frac{E}{T^2} + \frac{D}{T^2} + PT, \qquad (5)$$

Е. D. P - коэффициенты теплосопротивления фононов при рассеянии на электронах, дислокациях и точечных дефектах соответственно. При этом механизмы рассеяния фононов рассматриваются как независимые и отдельные теплосопротивления получаются путем интегрирования по формуле /3/ с $r_{\rm eff}$, соответствующим одному из слагаемых формулы /4/.

Экспериментальное значение фононной компоненты теплопроводности $\mathbf{k}^{(n)}$ мы получали из измеряемой величины полной теплопроводности $\mathbf{k}^{(n)}$ путем вычитания электронной компоненты, рассчитанной по формулам /1/ и /2/ с экспериментально определенными значениями ρ_0 :

$$\mathbf{k}_{\mathbf{p}}^{(\mathbf{n})} = \mathbf{k}^{(\mathbf{n})} - \frac{\mathbf{T}}{\boldsymbol{\beta}}.$$

Во всех исследованных сплавах в нормальном состоянии фононная и электронная компоненты по абсолютной величине – одного порядка. Как видно из <u>рис.1</u>, у образца $Nb_{80}Ti_{20}$ фононная теплопроводность в нормальном состоянии составляет примерно 20% полной теплопроводности, у всех холоднодеформированных и рекристаллизованных образцов с 55-65 ат.% Ti – 40-60%. Из сравнения <u>рис.1в</u> и <u>г</u> следует, что различия теплопроводности у Nb ₂₂Ti₇₈ в холоднодеформированном и рекристаллизованном состояния состояниия состоянии состояния состояниях связаны с сильным уменьшением фононной компоненты после отжига /в холоднодеформированном состоянии-60%, а в рекристаллизованном только -30% от полной теплопроводности/.

При анализе фононной теплопроводности сплава в нормальном состоянии невозможно разделить электронный и дислокационный вклады теплосопротивления фононов из-за одинаковой температурной зависимости. В рамках правила Матиссена согласно формуле /5/ фононная теплопроводность может быть записана в виде

$$\frac{1}{k_{p}^{(n)}T} = \frac{E^{*}}{T^{3}} + P, \qquad /7/$$

$$E^{*} = E(1 + D/E). \qquad /8/$$

На <u>рис.2</u> экспериментальные значения фононной теплопроводности, полученные по формуле /6/, представлены в нормирован-

5

/6/

Рис.2. Фононная теплопроводность образца в нормальном состоянии / о - рекристаллизованные, • холоднодеформированные образцы/.

Рис.3. Температурная зависимость фононной теплопроводности образца в нормальном состоянии. 1 – аппроксимация по формулам /3/ и /4/; 2 – аппроксимация по формуле /5/.

ных координатах $1/k_p^{(n)} \cdot t$ и $1/t^{(3)}$, где $t = T/T_c \cdot Cравнение с фор$ мулой /7/ показывает, что приближение в виде правила Матиссена достаточно хорошо описывает экспериментальные результаты. $Полученные отсюда коэффициенты <math>E^*$, P представлены в <u>табл.2</u>. Кривые, рассчитанные с помощью ЭВМ по формулам /3/ и /4/, дали для всех исследованных сплавов хорошее совпадение с экспериментом во всей измерявшейся области температур. В качестве примера на <u>рис.3</u> представлен образец Nb₈₀Ti₂₀. Экспериментальные точки ниже T_c получены из измерений в магнитном поле $H > H_{c2}(T)$. Видно, что для T < 20 К кривые, рассчитанные по формуле /3/ и правилу Матиссена, полностью совпадают. Как будет показано далее, на основании температурного поведения $k_n^{(s)}$.

Таблица 2

	E [#]	Е, 10 ⁴ см К ³ /Вт	Ne atom-I	Р, см/Вт	D 10 ³ см К ³ /Вт	Nd, 1010 _{CM} -2
Nb /1/	8,3	8,3	1,10	-	-	-
NbeoTi20(A)	2,6	2,6	0,83	3,3	σ,4	3
Nb45 ^{Ti} 55 (B)	1,5	1,3 0,8	0,58 0,41	4,6	2,0 9,4	17 75
(A	3,4	3,1	0,86	6,3	2,6	21
^{Nb} 35 ^{T1} 65 (B	3,9	2,5	0,79	7,0	14	114
(A	7,2	7,0	1,23	17	2,0	18
Nb22 ^{Ti} 78 (B	3,0	0,7	0,37	8	23	203

Коэффициенты теплосопротивления фононов

Таблица 3

Коэффициенты времени репаксации рассеяния фононов

Образец Е	c, 10 ⁹ (Kc) ⁻¹	Dc, 10 ⁹ (Kc)	Pc, I0 ⁵ (K ⁴ c) ^{-I}	D _{c/Ec}
Nb80 ^{T1} 20(A)	4,6	0,07	-	0,015
Nb45 ^{T1} 55 (A) 1,6) 0,6	0,20 0,77	0,52 -	0,125 1,28
Nb35 ^{T165} (1	3,2	0,26 1,30	1,39 -	0,082 0,542
Nb ₂₂ ^{Ti} 78 (1	A) 8,2 B) 0,32	0,21 1,08	5,50	0,026 3,38

можно оценить величину E_{τ}/D_{τ} , значения которой для разных образцов приведены в табл.3. Если предположить, что $D/E = D_{\tau}/E_{\tau}$, то по формуле /8/ можно определить коэффициент рассеяния фононов на электронах Е. Соответствующие значения для разных образцов представлены в табл.2. Коэффициент Е связан с плотностью электронов N_{e} , участвующих в процессе рассеяния фононов / 18/,

 $E = 0.224 N_e^2 \theta_D^2 k_{e^{\infty}}^{-1}$,

где $\theta_{\rm D}$ - температура Дебая, $k_{e\infty}$ - электронная компонента теплопроводности при высоких температурах. Как видно из <u>табл.2</u>, у рекристаллизованных образцов концентрационная зависимость Е и N_e имеет минимум при средних концентрациях. Уменьшение Е и соответственно N_e, т.е. эффективности рассеяния фононов на электронах, свидетельствует об изменении электронной структуры при добавлении второй компоненты к чистому переходному металлу. Подобная тенденция концентрационной зависимости и близкие по абсолютной величине значения коэффициента Е наблюдались для систем Nb-Zr^{(8,9,11/}, Nb-Ta^{(2,7/} и Nb-Mo^{(2/}, B <u>табл.2</u> приводятся также значения коэффициента рассеяния фононов на дислокациях D, вычисленные по формуле /8/. Коэффициент D прямо пропорционален плотности дислокаций N_D, участвующих в процессе

/9/

 $D = 0,16 h^{2} k_{B}^{-3} v_{s} \gamma^{2} b^{2} N_{D}, \qquad (10/$

где γ - постоянная Грюнайзена, b - вектор Бюргерса. Как видно из <u>табл.2</u>, значения D и N_D существенно выше у холоднодеформированных образцов, что указывает на большой вклад рассеяния фононов на дислокациях /соответствующее теплосопротивление составляет 40-80% при $\mathbf{T} {=} \mathbf{T}_{\mathbf{c}}$ от полного теплосопротивления фононов/.Большое различие в значениях D для рекристаллизованных образцов с 55-78 ат.% Ті с одной стороны и образца Nb₈₀ Ti₂₀с другой, по нашему мнению, не связано с рассеянием фононов на дислокациях. Высокие теплосопротивления D/T² наблюдались Nb₂₀Zr₈₀ / 10/ также для и для Nb45Ti 55, подвергнутого рекристаллизационному отжигу при 1600 °C. 187, и были объяснены проявлением аномальных рассеяний фононов. Возможной причиной таких аномалий могут быть, например, выделения мелких частиц метастабильной ω -фазы, характерные для сплавов с высоким содержанием Ті или Zr. В качестве механизмов рассеяния рассматриваются, например, туннельные процессы между eta- и ω -фазами $^{\prime}$ 19 $^{\prime}$ или рассеяние фононов на нормальных электронах в *w*-частицах^{/20}/

На <u>рис.4</u> представлена концентрационная зависимость коэффициента рассеяния фононов на точечных дефектах. Если размеры дефектов меньше длины волны фононов $\lambda_{\rm ph}$, то рассеяние происходит по закону Релея. В этом случае коэффициент Р можно представить в виде $P_-N_{\rm p} \cdot {\rm S}^2$, где S - амплитуда рассеяния, $N_{\rm p}$ концентрация точечных дефектов. Для сплавов с большим содержанием одной из компонент, в том числе для исследованных сплавов Nb-Ti, $N_{\rm p}$ выражается через концентрацию легирующей компоненты C: $N_{\rm p} \sim C(1-C)^{2^{1/8/}}$, а S достаточно хорошо определяется из

Рис. 4. Концентрационная зависимость коэффициента рассеяния фононов на точечных дефектах Р для сплавов ниобий-титан в рекристаллизованном (о) и холоднодеформированном (о) состояниях. 1 - кривая, вычисленная по формуле /11/ с θ_D из'24'. 2 - концентрационная зависимость величины ($\Delta M/M$)².

разности масс ∆М легирующих атомов и атомов матрицы:

$$S_{-}^{2} = \frac{1}{12} \left(\frac{\Delta M}{\overline{M}}\right)^{2} ,$$

где 🕅 - средняя масса атомов.

Для исследованных образцов в данной области температур этот механизм рассеяния имеет большое значение из-за высокого содержания атомов легирующей компоненты. Как видно из <u>рис.4</u> и <u>табл.2</u>, в данном диапазоне концентраций коэффициент P растет с увеличением концентрации **Ti**. Концентрационная зависимость коэффициента **P** исследованных образцов хорошо описывается выражением

$$\mathbf{P} = \mathbf{K} \, a \, \theta_{\mathrm{D}}^{-2} \, \mathbf{C} \left(1 - \mathbf{C}\right)^2 \, \left(\frac{\Delta \mathbf{M}}{\mathbf{M}}\right)^2,$$

где K=1,66·10¹⁴К²/Вт.

2. Теплопроводность образцов в сверхпроводящем состоянии

Микроскопическая теория на основе 5КШ была разработана Гейликманом и Кресиным $^{/21/}$ /ГК/ и независимо Бардиным, Рикайзеном и Товардом $^{/22/}$ /БРТ/. Оба варианта теории, описывая электронную теплопроводность, ограничиваются упругим рассеянием электронов на примесях, для фононной компоненты рассматривают только рассеяние фононов на электронных возбуждениях. На основании этих теорий электронную теплопроводность $k_{0}^{(m)}$ можно представить в виде

$$\frac{\frac{k_{e}^{(s)}}{k_{e}^{(n)}} = \phi(y), \qquad /12/$$

$$y = \frac{\Delta(T)}{k_{e}T} = \frac{\Delta(T)}{\Delta(0)} \cdot \frac{\Delta(0)}{k_{e}T}, a \frac{\Delta(T)}{\Delta(0)} - температурная зависимость$$

энергетической щели по теории БКШ. ф(у), являясь универсальной функцией энергетической щели и температуры, монотонно падает

9

/11/

с уменьшением температуры. Таким образом, электронную теплопроводность образца в сверхпроводящем состоянии мы определяли по формулам /1/ и /12/, используя для расчета $\phi(y)$ по теории ГК значения энергетической щели из работы ^{/23/}/для Nb₈₀Ti₂₀ $2\Delta(0) = 3.2 k_{\rm B} T_{\rm c}$, для остальных образцов принимали $2\Delta(0) =$ $= 4.1 k_{\rm B} T_{\rm c}/$. $k_{\rm e}^{(s)}$, как видно на рис.1, сильно уменьшается с понижением температуры, так что для сплава в сверхпроводящем состоянии определяющей становится фононная компонента.

На основании теорий ГК и БРТ фононная теплопроводность с учетом только рассеяния фононов на электронных возбуждениях /т.е. при $D_7 = P_7 = 0$ / представляется в виде

$$k_p^{(s)} = (2\pi^{24}h^3v_s)^{-1}k_B^4T^3\int_0^\infty x^4e^x(e^x-1)^{-2}[E_rg(x,y)xT]^{-1}dx/13/$$

÷

6

g(x, y) выражается в алгебраическом /теория ГК/ или интегральном /теория БРТ/ виде. Отношение $k_p^{(s)}/k_p^{(n)}$ является универсальной монотонно растущей с уменьшением температуры функцией, которая зависит от энергетической щели.

Фононную теплопроводность $k_p^{(s)}$ мы определяли так же, как для образца в нормальном состоянии, путем вычитания электронной компоненты из экспериментальных значений $k^{(s)}$:

$$k_{p}^{(s)} = k^{(s)} - \phi(y) \frac{T}{\beta}$$
. /14/

Как отмечалось выше, различия температурного хода теплопроводности исследованных сплавов в сверхпроводящем состоянии связаны с разным поведением фононной компоненты. Отсутствие максимума на кривых $k_p^{(8)}$ /см. <u>рис.16,г</u>/, очевидно, свидетельствует о более значительной роли рассеяния фононов на точечных дефектах и дислокациях по сравнению с рассеянием на электронных возбуждениях. В связи с этим мы попытались в рамках формализма Каллавай / 16/ расширить формулу /13/, записав $k_p^{(8)}$ в виде

$$k_{p}^{(s)} = k_{B}^{4} (2\pi^{2} h^{3} v_{s})^{-1} T^{3} \int_{0}^{\infty} x^{4} e^{x} (e^{x} - 1)^{-2} [E_{\tau} g(x, y) xT + D_{\tau} xT + P_{\tau} x^{4} T^{4}]^{-1} dx.$$

$$0 \qquad (15)$$

По формуле /15/ и экспериментальным значениям $k_p^{(8)}$ с помощью ЭВМ были определены коэффициенты E_r , P_r и D_r , которые представлены в табл.3. Для некоторых образцов /например, $Nb_{80}Ti_{20}(A)$; $Nb_{45}Ti_{55}(B)$ и др./ такой расчет оказался возможным только при условии $P_r \rightarrow 0$. Вычисленные по формуле /15/ зависимости $k_p^{(8)}(T)$, как видно из рис.5, дали хорошее совпадение с экспериментом. Это позволяет определить соотношение между электронным и дислокационным вкладами в рассеяние фононов по величине D_r/E_r /приведена в табл.3/. Большие значения D_r/E_r для всех холоднодеформированных образцов говорят о существенном вкладе теплосопротивления, обусловленного в первую очередь

Рис.6. Температурная зависимость фононной теплопроводности для образцов в рекристаллизованном (о) и холоднодеформированном (•) состояниях. 1 – аппроксимация по формулам /3,4/; 2 – аппроксимация по формуле /15/. / + обозначает T_e /.

рассеянием фононов на дислокациях - D/T^2 . В этом случае уменьшение рассеяния фононов на электронных возбуждениях при понижении температуры не приводит к возрастанию фононной теплопроводности, как это наблюдается при малых D_{τ}/E_{τ} . Это хорошо видно из <u>рис.6</u> при сравнении кривых, соответствующих разным состояниям образцов. Для рекристаллизованного образца Nb_{22} Ti₇₈, хотя отношение <u>D</u>, $/E_{\tau}$ мало, увеличение $k_{p}^{(8)}$ при понижении температуры не столь значительно, как для образца Nb_{20} Ti₇₈, что на полной теплопроводности это не отражается вовсе /см. <u>рис.1а</u> и в/.Это, по-видимому, объясняется сильным влиянием рассеяния фононов на точечных дефектах, меньших λ_{ph} , т.к. Р у рекристаллизованного образца Nb_{22} Ti₇₈ велико /см. табл.2/.

выводы

Исследования теплопроводности сплавов ниобий-титан, проведенные в данной работе, показали следующее:

1/ Низкие значения теплопроводности и ее концентрационная зависимость объясняются малой величиной электронной компоненты, что связано с сильным рассеянием электронов на примесях. Электронная и фононная компоненты одного порядка по абсолютной величине.

2/ Фононная теплопроводность обусловлена рассеянием фононов на электронах, дислокациях, точечных дефектах и аномальным рассеянием. Она определяет различия температурного хода полной теплопроводности для образца Nb₈₀Tl₂₀ и образцов с 55-78 ат.% Ti, находящихся в сверхпроводящем состоянии. Влияние разных процессов рассеяния на фононную теплопроводность сильно зависит от концентрации и структурного состояния образцов.

3/ Теоретическая температурная зависимость фононной теплопроводности для сплавов как в нормальном, так и в сверхпроводящем состояниях хорошо согласуется с экспериментальными данными.

4/ В холоднодеформированных образцах вклад рассеяния фононов на дислокациях так велик, что уменьшение рассеяния фононов на электронах в сверхпроводящем состоянии не приводит к значительному изменению фононной теплопроводности.

5/ В рекристаллизованных образцах с большим содержанием титана, по-видимому, аномальные процессы рассеяния фононов, связанные с присутствием выделений ω -фазы, ограничивают возрастание фононной теплопроводности в сверхпроводящем состоянии, как наблюдается в образце Nb₈₀ Ti ₂₀.

6/ Повышение теплопроводности в образцах с 55,60 и 65 ат.% Тіпосле рекристаллизационного отжига по сравнению с тепло-

проводностью этих образцов в холоднодеформированном состоянии связано в первую очередь с уменьшением рассеяния фононов на дислокациях. Уменьшение теплопроводности в Nb_{22} Ti₇₈ после отжига объясняется сильным возрастанием рассеяния фононов на точечных дефектах, количество которых возросло из-за выделения других фаз.

ЛИТЕРАТУРА

- Kes P.H., Rolfes J.G.A., de Klerk D. J.Low Temp.Phys., 1974, 17, p.341.
- 2. Sousa J.B. J.Phys., 1969, C2, p.629.
- 3. Lindenfeld P., Rohrer H. Phys.Rev., 1965, 139A, p.206.
- 4. Gupta A.K., Wolf S. Phys.Rev., 1972, B6, p.2595.
- 5. Cody G.D., Cohen R.W. Rev.Mod.Phys., 1964, 36, p.121.
- 6. Hegenbarth E., Schmidt B. phys.stat.sol.(b), 1976, 76,p.307.
- 7. Kobayashi N. et al. J.Low Temp.Phys., 1974; 17, p.575.
- 8. Андерс Э.Е., Сухаревский Б.Я., Шестаченко Л.С. В сб.:
- Физика конденсированного состояния. ФТИНТ АН УССР, Харьков, 1974, с.30.
- Андерс Э.Е., Сухаревский Б.Я., Волчок И.В. В сб.: Физика конденсированного состояния, в.23. ФТИНТ АН УССР, Харьков, 1973. с.63.
- 10. Lou L.F. Solid State Commun., 1976, 19, p.335.
- 11. Morton N. et al. Cryogenics, 1973, 13, p.665.
- 12. Дьячков Е.И. и др. ОИЯЙ, Р8-12945, Дубна, 1979; Cryogenics, 1981, 1, р.47.
- 13. Morton N. et al. J.Phys.F: Metal Phys., 1975, 5, p.2098.
- 14. Flachbart K. et al. phys.stat.sol.(b), 1978, 85, p.545.
- 15. Бычков Ю.Ф., Херцог Р., Хухарева И.С. ОИЯИ, Р8-81-491, Дубна, 1981.
- 16. Callaway J. Phys.Rev., 1959, 113, p.1046.
- 17. Ackermann M.W. Phys.Rev., 1972, B5, p.2751.
- 18. Ikebe M. et al. Solid State Comm., 1977, 23, p.189.
- 19. Anderson P.W., Halperin B.I., Varma C.M. Phil.Mag., 1972, 25, p.1.
- 20. Ziman J.M. Phil.Mag., 1956, 8, p.191.
- 21. Гейликман Б.Т. ЖЭТФ, 1958, 34, с.1042.
- 22. Bardeen J., Rickayzen G., Tewordt L. Phys.Rev., 1959, 113, p.982.
- 23. Сухаревский Б.Я., Щеткин И.С., Фалько И.И. ЖЭТФ, 1971, 60, с.277.
- 24. Савицкий Е.М. и др. Сверхпроводящие сплавы и соединения. Сборник статей. "Наука", М., 1972, с.87.

Рукопись поступила в издательский отдел 10 декабря 1981 года.