B-19

Объединенный институт ядерных исследований дубна

5800 - 81

P8-81-613

23/41-8

П.Г.Василев, И.Н.Гончаров

К ПРОБЛЕМЕ ОПРЕДЕЛЕНИЯ ВЕРХНИХ КРИТИЧЕСКИХ МАГНИТНЫХ ПОЛЕЙ НА ОСНОВЕ РЕЗИСТИВНЫХ ИЗМЕРЕНИЙ

Направлено в журнал "Физика низких температур"

введение

Резистивные методы определения верхних критических магнитных полей сверхпроводников второго рода /СП II / используются многими авторами, особенно при исследовании малогабаритных образцов /пленки, фольги, проволочки/, для которых измерения намагниченности, теплоемкости и т.д. связаны с большими экспериментальными трудностями или не позволяют найти достаточно точно их истинные значения. К сожалению, в настоящее время не существует общепринятого универсального способа отыскания верхнего критического магнитного поля Нев и критического магнитного поля поверхностной сверхпроводиности Н_{св} на основе резистивных измерений, как это видно, например, из работ /1-6/. Сложность выбора такого способа состоит в том, что форма и положение на оси абсцисс обычно используемых кривых типа R(H):/R ", где R - сопротивление, R_n - остаточное электросопротивление в нормальном состоянии, существенным образом определяются плотностью измерительного тока Ј и зависят от структуры и формы образца, а также от состояния его поверхности и ориентации относительно внешнего магнитного поля / 7/.

В случае массивных образцов /однородных или имеющих только локализованные пиннинг-центры /ПЦ/, например, поры или редкие выделения второй фазы/ правильному определению H_{cg} мешает только наличие поверхностной сверхпроводимости /см. обзор ^{/8/}. В магнитном поле $H>H_{cg}$ последняя существует в тонком слое толщиной порядка длины когерентности $\xi(T)$ на участках образца, поверхность которых не строго перпендикулярна вектору магнитного поля. Даже в наиболее простом случае образцов из тонкой фольги /с большим отношением ширины к толщине/ в поле $H_1 > H_{cf}$, перпендикулярном плоскости образца, критический ток поверхностной сверхпроводимости I са обычно оказывается отличным от нуля /особенно для СП II с небольшим параметром Гинзбурга-Ландау κ /.

Проблема определения H_{02} и H_{03} из резистивных измерений усложняется при наличии пространственной неоднородности структуры протяженной природы /возникшей, например, в результате деформации, механической обработки и т.д./, а также если одновременно имеет место сильный поверхностный и слабый объемный пиннинг. Ниже мы покажем, что даже высокотемпературный /при $T_{0.7 \, {\rm mg}}/T_{\rm п.z.}$ 0,6/ отжиг тугоплавких сплавов с целью рек-

ристаллизации холоднодеформированных фольг лишь частично улучшает указанную ситуацию. И в этом случае в образце остается сеть областей /обычно по границам зерен/ с повышенной плотностью дефектов и, следовательно, с повышенным значением H_{o2} по сравнению с верхним полем внутри зерна H stals. На наш взгляд, существуют аполне достоверные методы определения и той и другой величины только на основании резистивных измерений.

В этой работе рассматривается проблема определения верхних критических магнитных полей СП II и на примере экспериментальных данных, полученных на фольгах из сплавов Nb-Ti /к \leq 20/, предлагается способ однозначного отыскания H₆₂ и H₆₃ из резистивных измерений.

образцы и методика эксперимента

В качестве образцов использовались фольги, полученные путем холодной деформации стержней диаметром 9 мм, из сплавов Nb - 3 ат. % Ті /толщиной 0,1 и шириной 1,5 мм/ и Nb-20 ат. % Ті /толжиной 0.05 и жириной 1.5 мм/. Часть из них после рекристаллизационного отжига была равномерно насыщена гелием в результате облучения альфа-частицами. Приготовление образцов. их облучение и микроструктура описаны в работах /9-11/ В таблице приведены режимы отжигов и некоторые характеристики образцов, упоминающихся в настоящей работе. Отметим, что отжиги обычно производились в вакууме ~2.10 -6 Торр, который достигался с помощью диффузионного масляного насоса с азотной ловушкой. Исключения: а/ образец 24 был рекристаллизован в вакууме ~10⁻⁵ Торр /в другой печи/; б/ рекристаллизация образца 51 и послерадиационный отжиг образца 34-1200 проводились в безмасляном вакууме не хуже 10⁻⁷ Торр. Перед рекристаллизацией образцы вырубались с помощью штампа и протравливались для снятия заусенцев в течение нескольких секунд в растворе HF-HC1-HoSO4.

Измерения критических токов I_{ρ} во внешнем магнитном поле проводились всегда так, что $\vec{I} \perp \vec{H}$. За I_{c} принимался ток, при котором электрическое поле равнялось $50 \cdot 10^{-6}$ В/см. Часть образцов измерялась в криостате, позволявшем менять угол ϕ между плоскостью образца и магнитным полем от перлендикулярной ориентации (ϕ_{1}) до параллельной (ϕ_{1}).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

А. Методика определения Н_{с2}и Н_{с3}

На <u>рис. 1</u> показаны характерные зависимости $r(H) = R(H)/R_n$ /при различных плотностях измерительного тока J / и J_r(H)

Таблица

) । ০৩চূঞ্চয়ন্ত্র	Рекристализационный отниг, ^о С / час	с _{Не} • 10 ⁻² ат.%	Послерализитонний откит, ^о С / час	9 . MERCHA.CM	Т _с , К	Her	H ₆₁	H _{c3} / H _{c2}
<u>Nb - 3ar.# Ti</u>								
21 24 25 8(08A) 10(08A) 6-1100	1020/1 1100/1 1150/1 1100/1 1100/1 1080/1	0 0 7 5 8	- - - 1100/1	0,9 2,4 0,9 1,1 1,1 3,0	9,3 9,2 9,3 9,1 9,1 8,9	1,4 2,5 1,4 - - 3,2	2,2 3,7 2,2 1,4 1,4 2,9	$1,70 \pm 0,05$ $1,70 \pm 0,05$ $1,70 \pm 0,05$ $1,70 \pm 0,20$ $1,70 \pm 0,07$ $1,70 \pm 0,10$
ND - 20 at .# T1								
30- <i>XQ</i> . 31 51 34-1200	- 1250/2 1000/1,5 1250/2	0 0 0 5	- - 1200/1	22,1 20,2 20,8 8,8	9,6 9,4 9,5 9,4	20 15 16 7	18 16 16 5	 ▶ 1,2 ▶ 1,2 ▶ 1,2 ▶ 1,2 ▶ 1,3
$\kappa_{\rho\gamma} = 0.8 + 7.5 \cdot 10^{-8} \gamma^{\frac{1}{2}} \rho_{\rm n} \cdot \kappa_{\rm GL} = \left(\frac{dH_{c2}}{dT}\right)_{\rm T_{c}} \cdot \left(\sqrt{2} \frac{dH_{c}}{dT}\right)_{\rm T_{c}}^{-1} = \left(\frac{dH_{c2}}{dT}\right)_{\rm T_{c}} \left(\sqrt{2} \cdot 0.43 \frac{\kappa_{\rm D}}{\kappa_{\rm C}}\right)^{-1} \cdot \left(\sqrt{2} \cdot 0.43 \frac{\kappa_{\rm D}}{\kappa_{\rm C}}\right)^{-1}$								

/при г =0,01; 0,25; 0,50; 0,75 и 0,99/ для двух рекристаллизованных образцов разного состава в перпендикулярном и параллельном магнитном поле. Мы постараемся обосновать предположение, в соответствии с которым: а/ за H_{gg} следует принимать поле, при котором в случае ϕ_{\perp} зависимость J_{g} (H) для заданного малого значения г. например г =0,01, начинает отклоняться вправо от сравнительно протяженного линейного участка /на рис. 1 оно

Рис.1. R(H)/R и J₁(H) для образцов 21 и 31 в перпендикулярном /четыре верхних рисунка/ и параллельном /четыре нижних рисунка/ плоскости образца полях при T=4,2 К. Сплощные стрелки указывают H_{o2}, контурные - H_{c3}.

показано вертикальной штриховой линией и сплошной стрелкой/; б/ для образцов с невысокими к за H_{cS} следует принимать поле, при котором в случае $\phi_{\rm H}$ зависимость $J_{\rm r}$ (H) для заданного значения $\tau \rightarrow 1$, например $\tau = 0,99$, пересекается с осью абсцисс /на <u>рис. 1</u> оно показано вертикальной штрих-пунктирной линией и контурной стрелкой/.

На <u>рис. 2</u> сравниваются определенные указанным выше образом H_{e2} /см. стрелки/ с экстраполяцией к нулю кривых $J_e(H)$ и

 $\sqrt{F_c}$ (H) = const $\sqrt{J_c}$ ·H, полученных при ϕ_{\perp} и ϕ_{\parallel} , где F_c — объемная сила пиннинга. Видно, что для этих образцов в первом случае получается почти полное совпаде-

ние, а экстраполяция $\sqrt{F_o(H)}$ дает значение H $_{OP}$ завышенное на несколько процентов. Однако надо иметь в виду, что иногда /см.,например, 77 / кривые J $_r$ (H) и J $_o$ (H) сильно расходятся и тогда предпочтение надо отдавать J $_r$ (H). Что же касается

экстраполяции $\sqrt{F_{0}(H)}$ /особенно, если за H_{02} принимать поле, при котором только начинается отклонение вправо от линейного участка/, то она должна, по-видимому, приводить к правильному значению H_{02} в частном случае, когда вблизи H_{02} объемная сила пиннинга описывается зависимостью типа

$$F_{c}(H, T) \sim [H/H_{c2}(T)]^{n} [1 - H/H_{c2}(T)]^{2}$$
, /1/

где в может лежать в достатечно мироком интервале значений, например между 0,5 и 1,5. Это будет означать, что объемная сила пиннинга $F_o(H)$ равняется нужо в поле H_{cg} , $\sqrt{F_o(H)}$ приблизительно линейно меняется с полем при $H \leq H_{cg}$.

По нашему мнению, достаточно убедительным доказательством правильности предлагаемого выше способа определения Н_{ле} яв-

<u>PRC.2.</u> J_e (H) и $\sqrt{F_6(H)}$ для образнов 21 и 31 в перпендикулярном (ϕ_{\perp}) и параллельном (ϕ_{\parallel}) магнитных полях.

ляется характерное поведение кри- I_{e1} (H)/ I_{e1} (H) /рис. 3/: в магнитном поле Н < Н., OHH круто поднимаются вверх, а выше Н., выходят на плато, на котором значение анизотропии оказывается несколько больше, чем простое отношение ширины образца к ее толшине /равное в данном случае 15/. To, что I et /I et при Н≥Н с2 превышает 15, не удивительно, если учесть, что вероятность обнаружения близких параллельным Н участков поверхности образца на боковых гранях тонкой фольги, по-видимому, меньше, чем на широких гранях.

Дополнительным свидетельством правильности определения служит также изменение вблизи H_{c2} вида вольтамперных характеристик/BAX/: снижении поля $H \leq H_{c2}$ на них появляются все увеличивающиеся

выгибы /обратимые по току/, как это показано на рис. 4. При этом на линейном участке ВАХ для достаточно больших токов динамическое сопротивление $R_f = \frac{dU}{dT} = R_n$ вплоть до поля H_{c2}^{gtain} начиная с которого наклон линейных участков уменьшается и возникает обычная зависимость $R_f(H)/R_n$ /см., например, рис. 7 и 8/. Мы полагаем, что появление выгибов в данном случае связано с проникновением тока внутрь образца за счет возникновения сверхпроводимости в областях с повышенным значением к. Выход кривой U(I) с выгибом на линейный участок говорит о том, что во всех этих областях достигнуты критические токи. В случае H > H grain весь ток при этом начинает течь только в поверхностном слое. Динамическое сопротивление, измеряемое с точностью 1%, оказывается равным $R_{\rm n}^{}$, как и должно быть, если R_{fs}/R ns > 0,01 /здесь R ns - сопротивление слоя толщиной ξ в нормальном состоянии; R fs - динамическое сопротивление вихревой решетки поверхностной сверхпроводимости/ 181. Заметим.

Рис.4. ВАХ образца 21 в районе Н_{с2}.Черными точками обозначен динамический критический ток. Все кривые – для случая ф₁,кроме двух, отмеченных знаком ф₁.

<u>Рис.3.</u> Анизотропия критического тока образца 21 вблиэи Н_{с2}.

что наклон этого участка с ростом Іменяется мало, несмотря на заметный перегрев образца из-за диссипируемой мощности: мы наблюдали скачкообразные переходы из состояния с R,=R, в нормальное состояние при удельных тепловых потоках от образца к жидкому гелию /при 4,2 К/ порядка /0,2-0,4/ Вт/см², что соответствует перегреву непосредственно перед скачком в несколько десятых градуса. Сам скачок, очевидно, возникает из-за перехода к пленочному кипению гелия, а малая чувствительность наклона к перегреву обусловлена сравнительно большим запасом по температуре. Действительно, если внешнее поле Н (например, порядка $H_{np}/4, 2/$, то требуется нагреть образец на $\Delta T \sim 2$ К для достижения Hes/4,2 + ΔT / =H'. При более низких температурах этот запас еще более возрастает. По мере перехода в смешанное состояние всего объема образца ниже Н grain относительная роль областей с повышенным к уменьшается и выгибы постепенно исчезают. Отметим, что в полях $H > H_{-0}^{grain}$ отношение динамических токов поверхностной сверхпроводимости I_{ds} для Фн и ф, /они определяются пересечением с осью абсцисс экстраполированного линейного участка ВАХ/, как и следовало ожидать, близко к отношению ширины образца к его толщине.

Рис.5. Температурная зависимость верхних критических магнитных полей для нескольких образцов с разными эначениями параметра к.

Обоснуем теперь, почему при определении H_{cg} мы предлагаем строить кривые J_r (H) для малых r /например r =0,01/, а не для более высоких значений, например для r =0,5 /как это обычно принято при определении T_c /. На <u>рис. 5</u> видно, что в случае образцов 21 и 6-1100 с небольшими к экспериментально найденное H_{c3} по $J_{r=0,09}$ (H_I) близко к величине 1,7 H_{c2} , определенной по $J_{r=0,01}(H_{\perp})$ д не к величине 1,7 H_{c2} , полученной из $J_{r=0,50}$ (H_I). Малая величина r при определении H_{c2} использовалась также в работах ^{/5,7,12/}. Отметим, однако, что для образцов с большими к критерии r_{\perp} =0,01 и $r_{\rm H}$ =0,99 приводят к ⁻¹ $H_{c3} < 1,7$, даже если парамагнитный эффект/^{18/}в этих образцах незначителен /см.<u>таблицу</u>/. Этот факт нуждается в дополнительном изучении.

Остановимся немного подробнее на вопросе о влиянии пространственных неоднородностей на резистивное поведение вблизи верхнего критического поля. На <u>рис. 6</u> и <u>7</u> для нескольких образцов хорошо видно, что H_{cg}^{grain} , определенное по экстраполяции кривых $\frac{R_f}{R_n}$ к единице, отражающих движение вихрей во всем объеме образца, на 10-20% ниже H_{cg} , определенного экстраполяцией кривых J_c (H). При этом наибольшее различие, по-видимому, имеется для холодно деформированного /х.д./ образца 30, хотя определить

<u>Рис.7.</u> $R_{f}(H)/R_{a}$, $F_{c}(H) \ge R(H)/R_{a}$ для некоторых образцов с различной микроструктурой.

R в области пика на кривых F, (H) и не удалось: найдено лишь, что по крайней мере для поля $H' < H_{eg}$ R f = R Ha рис. 7 видна также трансформация вида KOMBELX R(H) I при изменении микроструктуры либо за счет отжига /образец 25, отжиг в жидком гелии при переходе образца в нормальное состояние за счет пропускания достаточно сильного тока/, либо за счет облучения альфа-частицами /образцы 10 и 8/. В первом случае характерные ступеньки, заметные при некоторых измерительных токах, исчезли за счет сдвига влево верхних участков

кривых R(H), обусловленного, вероятно, уменьшением к отдельных областей в образце. Во втором случае ступеньки появились за счет сдвига влево нижних участков кривых, связанного с некоторым уменьшением пространственной модуляции свойств образца:^{/10,11/}, при котором прервались пути для непрерывного протекания сверхпроводящего тока /в полях выше 6 к3/.

Наконец, <u>рис. 8</u> иллюстрирует пример, когда ступеньки на $R(H)/R_n$ при некоторых температурах /повышенных/ смазываются, превращаясь в видимость затянутых нижних "хвостов" перехода. Лишь при достаточно низких температурах они проявляются четко. Заметим, что при этом кривая $H_{og}(T)$ правильной формы возникает при построении J, (H_{\perp}) именно для экспериментально определенной величины r_{\perp} =0,01, а не для полученной путем экстраполяции к нулю крутого линейного участка r(H), которая обозначена на <u>рис. 8</u> как r_{3KOTp} . Это говорит о том, что в данном образце при низких температурах области с повышенными значениями к способны нести большие токи, хотя и не образуют сплошной сети /губки/.

Б. Критические токи поверхностной сверхпроводимости

Хороший дополнительный контроль правильности выбора H_{e2} состоит в том, что в районе этого поля плотность критического тока поверхностной сверхпроводимости J_{ea}, рассчитанная на

<u>Рис.8.</u> Изненение формы кривых $R(H)/R_a$ и J_t (H) для образца 24 при разных температурах (ϕ_1)^{*}.

единицу длины участков образца, параллельных магнитному полю, не должна превыжать предельной величины, рассчитанной Абрикосовым /13/для безвихревого состояния поверхностного слоя: $J_{cs}^{A} = 0.94 \kappa^{-2} \rho_{n}^{1/2} H_{c2}(T) \times$

$$\times [1 - H/H_{c3} (T)]^{3/2}$$
, /2/

где ρ_n ~ удельное остаточное сопротивление, выражено в Ом.см; H_{c2} – в эрстедах; J_{c3}^A – в А/см. Следует отметить, что когда $J \perp H$, то эта величина допустимого тока снижается еще на 20% /14/.В случае наших образцов это требование всегда выполнялось.

Эксперименты указывают на то, что практически реализуется вихревое состояние поверхностного слоя /см., например, обзор ^{/8/}/, для которого J_{ся} определяется пиннингом, и в полях H_{c2} <H < H_{c3} оказывается гораздо меньше предельной величины J^A, определяемой токами разрушения куперовских электронных пар. В качестве иллюстрации на рис. 9 приведены кривые J, (H) для двух образцов, один из которых /образец 6-1100/ содержит большое количество гелиевых пор и выделений второй фазы /9/. Видно, что в последнем случае сильный поверхностный пиннинг позволяет течь без диссипации заметным токам вплоть до поля H_{ab} .Как следствие, переходы $r(H) = R(H)/R_{\rm p}$ оказываются в районе этого поля достаточно крутыми для не очень маленьких плотностей измерительного тока. В противоположность этому в случае рекристаллизованного образца 21 поверхностный пиннинг очень мал, и поэтому плотность измерительного тока порядка нескольких А/см 2 уже приводит к появлению резистив-переходы г(Н) оказываются размазанными по полю /их вид легко представить себе, сделав горизонтальные сечения кривых Ј, (Н)/.

Модель динамического поверхностного пиннинга /15/ предсказывает зависимость типа

$$J_{cs} \sim \kappa^{-2} H_{c3}^{3/2} (T) [1 - H/H_{c3} (T)]^{2} .$$
 /3/

Хотя мы не проводили систематических исследований, однако можно отметить существование указанной зависимости по крайней мере в полях, не намного превышающих Н_{ед}.Люболытно, что экстра-

Рис.9. Ј. (Н) для образцов 21 ж 6-1100 при разных температурах.

поляция этой зависимости к оси абсцисс, например для образца 21 в случае ϕ_k при T = 4,2 К и 1,7 К, дает значение поля, близкое к 1,7 H_{02}^{stain} . Этого и следовало ожидать, если учесть, что именно до значения этого поля сверхпроводимость существует на всей площади поверхности, параллельной полю,

а не только вдоль сети участков с повышенным значением κ , как это должно быть для 1,7 H $f_{res}^{rain} < H < H_{res}$.

ЗАКЛЮЧЕНИЕ

На основе результатов работы можно сделать следующие выводы:

1. Обоснован способ определения верхнего критического магнитного поля из резистивных измерений: за H_{c2} вероятнее всего, следует принимать поле, при котором кривая J_r (H) начинает отклоняться вправо от сравнительно протяженного линейного участка. В качестае $r = R(H)/R_n$ выбирается некоторое малое значение, например 0,01.

2. Показано, что в случае тугоплавких сплавов даже высокотемпературный отжиг / $T_{OTM}/T_{ПЛ} \sim 0.6$ / не устраняет полностью заметной неоднородности свойств внутри образца, приводящей к тому, что экспериментально определенное H_{02} на 10÷20% выше верхнего критического поля внутри зерна (H_{02}^{stain}).Последнее определяется экстраполяцией к единице кривой $R_f(H)$:/ R_n .

3. Продемонстрирована устойчивость к перегреву поверхностного слоя а резистивном состоянии /с $I_{ds}\neq 0$ и $dU/dI=R_n$ / при $H>H_{gas}^{gasin}$.

4. Обнаружен факт снижения H_{c8}/H_{c2} ниже величины 1,695, предсказываемой теорией, при к выше 4÷6. Величина снижения не может быть объяснена простым влиянием парамагнетизма /16/.

ЛИТЕРАТУРА

- 1. Powell R.L., Clark A.F. Cryogenics, 1978, 18, No.3, p.137-141.
- Orlando T.P., McNiff E.I. Phys.Rev.B., 1979, 19, No.9, p. 4545-4561.

- 3. Kirshenbaum J. Phys. Rev. B., 1975, 12, No.9, p.3690-3696.
- Lemberger T.R., Ginsberg D.M. Phys. Rev. B., 1978, 18, N11, p.6105-6115.
- 5. Пан В.И., Прохоров В.Г., Каменский Г.Г. Физика низких температур, 1980, 6, №8, с. 968-978.
- Domb E.R., Iohnson W.L. J.Low Temp. Phys., 1978, 33, No.1/2, p. 29-42.
- 7. Ralls K.M. Phys.Lett.A., 1966, 23, No.1, p. 29-30.
- Миненко Е.В., Кулик И.О. Физика низких температур, 1979, 5, №11, с. 1237-1275.
- 9. Василев П. и др. Физика металлов и металловедение, 1981, 51, №2, с. 309-315.
- Василев П.Г. и др. В кн.: XX1 Всесоюзное совещание по физике низ. температур /тезисы докладов/, ч.1. Сверхпроводимость. Изд-во Физ.-техн. института низких температур АН УССР, Харьков, 1980, с. 82-83.
- 11. Василев П.Г. и др. ОИЯИ, Р8-81-182, Дубна, 1981.
- 12. Hake R.R. Physica, 1971, 55, p. 311-316.
- 13. Абрикосов А.А. ЖЭТФ, 1964, 47, №8, с. 720-733.
- 14. Русинов А.И. ЖЭТФ, 1969, 56, №4, с. 1441-1447.
- 15. Trefny J.V. J.Low Temp.Phys., 1977, 26, No. 5/6, p. 545-555.
- I6. Saint-James D., Sarma G., Thomas E.J. Type II Superconductivity. Oxford, Pergamon Press, 1969.
 /См. перевод: Сан-Жам Д., Сарма Г., Томас Е. Сверхпроводимость второго рода. "Мир", М., 1970/.

Рукопись поступила в издательский отдел 23 сентября 1981 года.