

Объединенный институт ядерных исследований

дубна

13/x-81

P8-81-491

Ю.Ф.Бычков, Р.Херцог, И.С.Хухарева

ТЕПЛОПРОВОДНОСТЬ И ЭЛЕКТРОСОПРОТИВЛЕНИЕ СПЛАВОВ НИОБИЙ-ТИТАН ПРИ НИЗКИХ ТЕМПЕРАТУРАХ

Направлено в "Cryogenics" и на XX Международную конференцию стран-членов СЭВ по физике и технике низких температур /Вроцлав, 1981/

Сплавы системы ниобий-титан до настоящего времени являются. самым распространенным материалом в техническом использовании. сверхпроводимости, в первую очередь для создания мощных сверхпроводящих магнитных систем. Это обстоятельство способствовапо тому, что на сплавах ниобий-титан в последние годы были сделаны многочисленные металлографические исследования, а также измерены некоторые параметры сверхпроводящего состояния, такие, как критическая температура^{/1-3/}, верхнее критическое поле ^{/4-8/}, критическая плотность тока ^{/9,10/}. Исследования теплопроводности при низких температурах описаны в литературе только для отдельных составов Nb-Ti ^{/11-15/}, причем экспериментальные данные некоторых авторов сильно различаются между собой ^{/13/}.

and the second second second

Настоящая работа посвящена исследованию закономерностей Настоящая работа посвящена исследованию закономерностей связи между низкотемпературным поведением теплопроводности, электросопротивления и критическими параметрами сверхпроводяэлектросопротивления и критическими параметрами сверхпроводяцих твердых растворов системы ниобий-титан в широком диапазоне концентраций и в различных структурных состояниях - холоднодеформированном и рекристаллизованном.

ОБРАЗЦЫ И ТЕХНИКА ЭКСПЕРИМЕНТА

Использовались сплавы ниобий-титана с концентрацией ниобия: 22, 32, 35, 40, 45, 80 ат. &. Образцы первых пяти сплавов представляли собой проволоки диаметром 0,3 или 1 мм (Nb₂₂Ti₇₈). Подученные путем холодной деформации до ~99,9% /волочение в меди/. После измерения в холоднодеформированном состоянии они были подвергнуты рекристаллизационному отжигу при 1000°С -1 ч. и затем измерены в рекристаллизованном состоянии: Образец Nb₈₀Ti₂₀, представляющий собой пластинку с сечением 0,1 ммх4 мм, после холодной деформации до ~98% был отожжен при 1000°С -1 ч. и исследовался только в рекристаллизованном состоянии. Измерения

Измерения производились в приооре, описанных рысской тросопротивления образцов измеряли по обычной четырехконтактной схеме при T=300 K и 30 K до критической температуры /ошибка измерений ±1%/. Измерение критической температуры производилось нестационарным методом /17/; непосредственно в области перехода регистрировали с помощью X-Y -самописца паде-

1

(1) (1)

ние напряжения на образце как функцию температуры при протекании постоянного тока. В качестве термометра в этом случае использовался калибровочный диодный датчик, показания которого линейно меняются с температурой. Значение критической температуры T_c соответствует сопротивлению $R(T_c)=0,5~R_0~/R_0$ - остаточное сопротивление/ и имеет ошибку измерения $\pm 0,01~K$. Определение верхнего критического поля $B_{c2}(T)$ производилось по измерению T_c в постоянном магнитном поле до 7T, направленном

Измерения теплопроводности проведены в интервале температур 4,2-30 К классическим стационарным методом. Для этих измерений исследовались образцы длиной 2,5 см, состоящие из N соединенных параллельно кусков / Nb₈₀Ti₂₀-N =6; Nb₄₅Ti₅Nb₄₀Ti₆₀ Nb₃₅Ti₆₅-N =40; Nb₂₂Ti₇₈-N =3/. Температуру измеряли термометром сопротивления фирмы Allen - Bradley. Для измерения градиента температуры использовались термопары / Au +0,03 ат.% Fe - хромель. Ошибка измерения теплопроводности не превышает 3%.

ЭЛЕКТРОСОПРОТИВЛЕНИЕ И КРИТИЧЕСКИЕ ПАРАМЕТРЫ

Электросопротивление исследованных образцов в области температур от 30 К до Т_с не зависит в пределах ошибок от темпе~ ратуры и соответствует остаточному сопротивлению R₀. На рис. 1-3 представлены результаты измерения критической температуры \overline{T}_{c} . верхнего критического поля B_{c2} при T =4,2 К, остаточного удельного сопротивления ρ_0 и отношения ρ_{300}/ρ_0 в зависимости от состава сплавов. Наряду с нашими представлены также и литературные данные. На рис. 1 видна четкая корреляция между \mathbf{T}_{c} и плотностью состояний электронов $\mathbf{N}(\mathbf{E}_{\mathbf{F}})$ при изменении концентрации. В районе 70 ат.% Ті происходит резкое уменьшение этих величин, связанное с изменениями электронного и фононного спектров. В сплавах ниобий-титан с повышенным содержанием титана наряду с основной фазой – eta-твердым раствором с ОЦК-решеткой, возможно присутствие других фаз: равноа-фазы с ГПУ-решеткой или метастабильной Так, повышение T_e на 1,8 К в образце $Nb_{22}Ti_{78}$ после отжига *ω* -фазы ^{3,20}/ /рис. 1/ можно объяснить наличием второй фазы с пониженным содержанием ниобия, за счет чего повышается его концентрация в матрице, которая определяет T_c.

В таблице, кроме экспериментально определенных величин, для исследуемых образцов приведены расчетные фундаментальные параметры, полученные по формулам /1/-/5/ теории сверхпроводимости второго рода 21,22 . Верхнее критическое поле $B_{c2}(0)$ при $T_{\pm}0K$,

 $B_{c2}(0) = 0.69 T_{c} (dB_{c2}/dT)_{T = T_{c}}$

/1/

Рис.1. Зависимость критической температуры от концентрации сплавов ниобий-титан. 0 • - соответственно рекристалли-зованные и холоднодеформи-рованные образцы данной работы; $+ -\frac{1}{x} - \frac{3}{x}$. Плотность состояний электронов на поверхности Ферми N(E_F) получена из литературных дан-ных /3.18.19/.

Рис.2. Зависимость верхнего критического поля $B_{c2}/T =$ =4,2 К/ от концентрации сплавов ниобий-титан. о – соответственно рекристаллизованные и холоднодеформированные образцы данной работы;

Рис.3. Зависимость остаточного удельного сопротивления ρ_0 и отношения сопротивлений ρ_{300} к ρ_0 , от концентрации сплавов ниобий-титан. 0, Δ и •, \blacktriangle - соответственно рекристаллизованные и холоднодеформированные образцы данной работы; + - данные^(4/), • - данные^{/31/}.

3

Таблица

.

1

4

-

Фундаментальные параметры образцов в рекристаллизованном /А/ и холоднодеформированном /В/ состояниях

1														
	Парамет]	р Ед.изм	ND 80 ^{T1} 20 A	NЪ ₄₅ А	- Ti ₅₅ B	Nb40 A	- 1160 B	Nb ₃₅ -	Ti ₆₅	N ^b 32 -	^{Ti} 68	NP25	- 11 ₇₈	
7 (q 8	$\frac{T_{c}}{P_{0}}$ $\frac{P_{300}/P_{o}}{B_{c2}/dT}$ $\frac{B_{c2}/dT}{B_{c2}}$ $\frac{P_{c2}}{P_{c2}}$	К 10 ом.см Тл/К Тл 10 ⁻⁸ см	9,35 21,0 1,75 1,25 7,8 16 23,6	10,30 58,3 1,31 1,8 12,7 45	9,84 63,0 1,37 2,2 15,3 49	10,47 60,6 1,29 - 47	10,09 64,5 1,32 - 50	9,78 71,3 1,16 2,2 15,0 54	9,39 79,6 1,23 2,3 14,9 61	10,06 87,2 1,20 - 75	в 9,82 9I,0 I,2I - 78	A 8,96 110,9 1,04 2,3 14,1 81	B 7,17 117,8 1,04 2,6 13,3 86	
	E(0) (0)/E(0) E ₀ /P _e	10 ⁻⁷ см - 2	6,I 25,8 7 9,7 2	0,5 3,4 3,5 1,2	7,9 3,3 80,6 24,1	8,2 3,3 76,7 22,8	7,7 3,3 83,1 25,2	7,0 3,2 88,8 28,6	6,3 3,1 98,7 33,3	5,8 2,9 10,4 33,6	5,5 2,8 II4,3 36,4	4,6 2,8 131,4 50	4,4 3,0 141,0 63,6	

параметр Гинзбурга-Ландау к_į.

длина своюдного просега электропостер. $l_{e} = 0.87 \, h \, e^{-2} \, (n_e^{2/3} \rho_0 \, S_k / S_f)^{-1}$,

 ξ_{e} окола се о с длина когерентности Гинзбурга-Ландау $\xi(0)$ при T=0 К,

 $\xi(0) = 0.85 \left(\xi_0 \ell_e\right)^{1/2} ,$

$$\xi_0 = 0.58 k_B n_e^{2/3} (S_k/S_f)(\gamma T_c)^{-1},$$
 (40/

глубина проникновения λ(0) при Τ=0 К,

 $\lambda(0) = 0.64 \lambda_{\rm Lo} (\xi_0 / \ell_e)^{1/2}$,

$$\lambda_{1,0} = 4.4 \cdot 10^{-2} h c (ek_{B})^{-1} y^{1/2} (n_{e}^{2/3} S_{K} / S_{f})^{-1}$$
(56)

где с – скорость света, е – элементарный заряд, k_B – постоянная Больцмана, h – постоянная Планка, n_e – плотность электронов в модели свободных электронов, S_k – поверхность Ферми в пространстве волнового вектора, S_f – поверхность Ферми свободных электронов /в расчетах отношение $S_k/S_f = 0,6^{/22/}$ /, у – коэФфициент электронной компоненты теплоемкости /в расчетах у

Как следует из <u>рис. 2,3</u> и <u>таблицы</u>, высокие критические поля B_{c2} и большие значения наклонов $(dB_{c2}/dT)_{T=T}$ в сплавах с повышенной концентрацией титана и соответственно высокие значения κ_{ℓ} и $\lambda(0)/\xi(0)$ непосредственно связаны с необычно высокими значениями остаточного сопротивления. Длины свободного пробега электронов при этом становятся соизмеримыми с атомными расстояниями /параметр решетки ОЦК- ниобий-титана $a \simeq 3 \cdot 10^{-8}$ см^{/23/} /. Низкое значение отношения ρ_{300}/ρ_0 в исследованных образцах показывает, что электропроводность в первую очередь ограничивается рассеиванием электронов на примесных атомах, т.е. на атомах легирующей компоненты. Снижение ρ_0 после рекристаллизованного отжига объясняется уменьшением плотности дислокаций, вызванных холодной деформацией.

теплопроводность

Теплопроводность исследованных сплавов ниобий-титана сильно зависит от их концентрации. На <u>рис. 4</u> приведена температурная зависимость теплопроводности для рекристаллизованных образцов разного состава. С увеличением концентрации титана теплопроводность падает. В поведении теплопроводности в сверхпроводя-

121

13/

/4a/

1.01

/5a/

Рис.4. Температурная зависимость теплопроводности рекристаллизованных сплавов. Стрелка обозначает Т.

щем состоянии наблюдается значительное различие между Nb 80Ti 20 и образцами с вы~ сокими критическими параметрами /45÷22 ат.% Nb/. Теплопроводность исследованных образцов ниобий-титана по абсолютному значению на 1-2 порядка ниже, чем у чистых ниобия и титана 24.25 По сравнению с другими сверхпроводящими сплавами переходных металлов, теплопроводность исследованных

венно ближе всего к соответствующим значениям в системе сплавов качественно и количести имеет более низкие значения, чем в системах Nb-Таи Nb-Mo /28,29/ зультатами Флахбарта и др. 14, полученными на холоднодеформиной величине от значений, приведенных в работе Мортона и но сильно отличаются по абсолютдля холоднодеформированного и отожженного /550°C - 1ч./ сплава $Nb_{35}Ti_{65}$. Ввиду того, что данные последней работы /для обоих состояний образца/ превышают не только полученные нами /на два порядка при T ≃ 10 K/, но даже выше значений для

чистых Nb и Ti, возникает серьезное сомнение в их правильности. Низкие значения теплопроводности и наблюдаемая зависимость от концентрации исследуемых сплавов ниобий-титана связаны с малой величиной электронной компоненты теплопроводности $X_{
m e},$ соответственно высоким ρ_0 , что определяется сильным рассеянием электронов на примесных атомах. В нормальном состоянии ${
m K}_{
m e}$, согласно закону Видемана-Франца, пропорционально ${
m T}/
ho_0$ и одного порядка с фононной компонентой теплопроводности Кр. Можно предполагать, что К_р в данных сплавах определяется рассеянием фононов на электронах, точечных дефектах, дислокациях и аномальным рассеянием фононов, связанным с присутствием **Аругих** фаз^{/15,27/}

Для сплавов с концентрацией Nb: 45,40 и 35 ат.% температурный ход теплопроводности рекристаллизованных и холоднодеформированных образцов качественно совпадает. Рекристаллизационный отжиг приводит только к повышению абсолютных значений теплопроводности от 10 до 40%. На <u>рис. 5</u> приведены зависимости

Рис.5. Температурная зависимость теплопроводности сплавов NbTi. о – рекристаллизованный образец; • – холоднодеформированный образец. Стрелки обозначают T_c . a/ Nb₄₅Ti₅₅ б/Nb₄₀Ti₆₀ B/Nb₃₅Ti₆₅ г/ Nb₂₂Ti₇₈.

теплопроводности от температуры для холоднодеформированного и рекристаллизованного состояний образцов. Как видно из рис. 5г, поведение теплопроводности Nb₂₂Ti₇₈ имеет некоторые особенности. Теплопроводность рекристаллизованного образца лежит на 40-50% ниже холоднодеформированного, в сверхпроводящем состоянии наблюдается качественное различие в температурной зависимости теплопроводности рекристаллизованного и холоднодеформированного образцов.

Повышение теплопроводности в рекристаллизованных сплавах с концентрацией 45,40 и 35 ат. % Nb по сравнению с холоднодеформированным состоянием объясняется повышением электронной (K_e) и фононной(К_р) компонент теплопроводности из~за уменьшения плотности дислокаций после отжига. В образце Nb₂₂Ti₇₈ уменьшение теплопроводности после отжига, очевидно, связано с выделением второй фазы, что привело к дополнительным точным дефектам и сильному уменьшению фононной компоненты. В сверхпроводящем состоянии с понижением температуры К_е сильно падает /30/, что связано с уменьшением электронных возбуждений, так что для исследуемых сплавов температурный ход теплопроводности в сверхпроводящем состоянии определяется в первую очередь поведением К.

Подробное исследование вклада различных механизмов рассея~ ния в поведение электронной и фононной компонент теплопроводности данных сплавов в нормальном и сверхпроводящем состояниях будет представлено в последующих публикациях.

В заключение авторы сердечно благодарят Е.И.Дьячкова за постоянный интерес к работе и ценные обсуждения, а также А.Никитиу и В.М.Дробина за помощь в проведении экспериментов и оформлении публикации.

ЛИТЕРАТУРА

- 1. Hulm J.K., Blaugher R.D. Phys.Rev., 1961, 123, p. 1569.
- 2. Roberts B.W. National Bureau of Standards Technical Note, Washington, 1972, No. 724.
- 3. Савицкий Е.М. и др. Сверхпроводящие сплавы и соединения /сборник статей/, "Наука", М., 1972, с. 87.
- 4. Berlincourt T.G., Hake R.R. Phys.Rev., 1963, 131, p. 140. 5. Jones C.K., Hulm J.K., Chandrasekhar B.S. Rev.Mod.Phys., 1964, 36, p. 74.
- 6. Shapira Y., Neuringer L.J.Phys.Rev., 1965, A140, p. 1638.
- 7. Coffey H.T. et al. J. Appl. Phys., 1965, 36, p. 128.
- 8. De Sorbo W. Phys.Rev., 1965, A104, p. 914.
- 9. Read D.T. Cryogenics, 1978, 18, p. 579.
- 10. Скворцова И.Л. и др. Сверхпроводящие сплавы и соединения /сборник статей/. "Наука", М., 1972, с. 101.

8

1111.00

A DEPART OF A PROPERTY AND

11.	Dubeck L., Setty K.S.L. Phys.Letters, 1960, 427, p. 5
12.	Morton N. et al. J.Phys.F: Metal Phys., 1979, J,
	p. 2098.
13.	Льячков Е.И. и др. ОИЯИ, Р8-12945, Дубна, 19/9.
	Cryogenics, 1981, 1, p. 47.
14	Flachbart K. et al. Phys.A, Phys.Stat.Sol.(b), 1978, 05, p. 545.
10	Ikebe M. et al. Solid State Commun., 1977, 23, p. 189.
12.	Хориос Р. Малюк В.А. ОИЯИ, 8-12120, Дубна, 1979.
10.	Jergel M., Jansak L., Blahova M. Acta Phys.Slov., 1977,
1/.	27 0 73
. 0	Estermann L. Friedherg S.A., Goldman J.E.Phys.Rev., 1952,
18.	$97 \sim 582$
	Van der Hoeven I Phys. Rev., 1964, A134, p. 1320.
19.	Van der hoeven offisjst der , Dannon 10. A. JAH CCCP, 1955,
20.	Елютин В.Д., Бернштейн М.М., Павлов коло н
	104, C. 540.
21.	Can-Waw J., tapma I., Tomac L. thephilpedod.
	рода. "Мир", М., 1970.
22.	Hake R.R. Phys. Rev., 1967, 150, p. 555.
23.	Киршенина И.И., Федотов И.Н. Сверхпроводищие списов 115.
	динения /сборник статеи/, "наука", 1, 1972, с. 191
24.	Kes P.H. Rolfes J.G.A., de Klerk D., J.Low Temp. Thys.,
	1974, 17, p. 341.
25.	American Institute of Physics Handbook, Mc Graw-Hill book
	Co., 2nd ed., 1963.
26.	Андерс Э.Е., Сухаревский Б.Я., Шестаченко Л.С. Физика кол
	денсированного состояния. ФТИНТ АН УССР, Харьков, 1974,
	30, c. 65.
27.	Lou L.F. Solid State Commun., 1976, 19, p. 335.
28.	Sousa J.B. J.Phys. C, 1969, 2, p. 629.
29.	Kobayashi et al. J.Low Temp.Phys., 19/4, 17, p. 575.
30.	Гейликман Б.Т., Кресин В.З. Кинетические и нестационарные
	явления в сверхпроводиках. "Наука", М., 1972.
31.	Прекул А.Ф., Рассохин В.А., Волкенштейн Н.В. ЖЭТФ, 1974,
	67, c. 2286.

Рукопись поступила в издательский отдел 16 июля 1981 года.

.