

Объединенный институт ядерных исследований дубна

5123 2-81

19/x-81 7-81-478

В.Д.Дмитриев, Х.Зодан, А.М.Калинин, С.М.Лукьянов, Ю.Ц.Оганесян, Ю.Э.Пенионжкевич, Т.С.Саламатина

МАССОВЫЕ РАСПРЕДЕЛЕНИЯ ОСКОЛКОВ ДЕЛЕНИЯ ЯДЕР ТРАНСУРАНОВЫХ ЭЛЕМЕНТОВ *а* -ЧАСТИЦАМИ

Направлено в ЯФ

¹Радиевый институт им. В.Г.Хлопина, Ленинград. ²ЦИЯИ, Россендорф, ГДР.

Регулярная структура флюксоидов с нормальной фазой в сердцевине, возникающая в смешанном состоянии сверхпроводников второго рода, является дополнительным объектом рассеяния для электронов и фононов. Механизмы теплопереноса в этом случае определяются соотношением между характерными параметрами электронного и фононного взаимодействий, такими, как длина свободного пробега электронов ($\ell_{\rm e}$) и фононов ($\ell_{\rm p}$). длина волны фономи состоянии сильной когерентности и d-расстоянием между флюксоидами. Поэтому поведение теплопроводности в смешанном состоянии сильно зависит от области измеряемых магнитных полей и температур, а также от степени чистоты образцов. Зависимость теплопроводности и температур, а предельных случаев чистых ($\ell_{\rm g} \gg \xi$) и грязных ($\ell_{\rm g} \ll \xi$) сверхпроводников в ряде работ $^{(1-3)}$.

Экспериментальные исследования теплопроводности в смешанном состоянии в основном сделаны на сверхпроводниках второго рода с относительно низкими значениями критического поля /В $_{\rm c2}$ < 0,5 Тл/. Это измерения на образцах чистого и сверх-чистого ниобия и тантала $^{4-6}$, сплавов индий-свинец $^{7.9.}$ и индий-висмут $^{(10,11)}$, а также сплавов переходных металлов системы ниобий-тантал и ниобий-молибден $^{(12,13)}$.

Для жестких сверхпроводников с высокими критическими параметрами / B_{c2} > 10 Тл/ до настоящего времени не проводилось измерений теплопроводности в широком интервале магнитных полей, что объясняется экспериментальными трудностями измерения тепловых свойств при наличии сильных магнитных полей.

Дубек и Зетти $^{'14'}$ в холоднодеформированном ${\rm Nb}_{\,33}{\rm Ti}_{67}$ при температуре $T/T_c=t<0,4$ и Коди и Коен $^{'15'}$ в ${\rm Nb}_3{\rm Sn}$ при $t\ge0,4$ в магнитном поле до 0,6 Тл не обнаружили зависимости теплопроводности от магнитного поля.

Данная работа посвящена экспериментальному исследованию поведения теплопроводности жестких сверхпроводников с высокими критическими параметрами /сплавы системы ниобий-титан/ при наличии высоких магнитных полей и определению механизмов рассеяния электронной и фононной систем в смешанном состоянии.

ОБРАЗЦЫ И ТЕХНИКА ИЗМЕРЕНИЯ

Исследование магнитного поведения теплопроводности проведено на образцах с 45 ат.% Nb в холоднодеформированном и рекрист таллизованном /отжиг 1000 °С - 1ч./ состояниях и с 80 ат.% Nb в рекристаллизованном состоянии. Сплав Nb₄₅Ti₅₅ обладает максимальным в этой системе критическим полем / B_{e2} ~11 Tл при t ~ 0,5/. Изготовление образцов, результаты измерения электрических свойств и критических параметров, а также низкотемпературное поведение теплопроводности этих сплавов описаны ранее'^{16/}. Характерные параметры /измеренные и расчетные/ данных образцов приведены в табл. 1.

Измерение теплопроводности проводилось в приборе, изображенном на рис. 1. Магнитное поле до 7 Тл создавалось сверхпрово-

дящим соленоидом и было направлено параллельно тепловому потоку.Интервал температур измерения $t = 0,45 \pm 0,65$. Датчиками температуры служили сопротивления фирмы Allen-Bradley, калиброванные в магнитном поле.Для стабилизации температуры использовали автоматический мост CSC - 400 фирмы Intermagnetics с емкостным датчиком температуры. Ошибка в определении теплопроводности не превышала 3%.

Рис.1. Установка для измерения теплопроводности в магнитном поле. V - вакуумный насос; A - тепловой мост для подводящих проводов; P - образец; H₁ - нагреватель образца; H₂ - нагреватель, задакщий температуру образца; G - германиевый термометр; C - емкостной датчик для регулирования температуры; AB - термометры сопротивления Allen-Bradley, E - тепловой экран.

ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ

Образец Nb₈₀ Ti₂₀

На <u>рис. 2</u> приведены зависимости теплопроводности от магнитного поля этого образца для разных температур. Из-за слишком малого значения нижнего критического поля $/B_{c1} \simeq 10^{-2} Tn/$ невозможно четко зафиксировать изменение теплопроводности вблизи B_{c1} -В смешанном состоянии с увеличением магнитного поля теплопроводность резко падает на 45-60% до характерного минимума, после чего $k^{(m)}$ растет до значений, соответствующих

Таблица 1

Характерные параметры исследуемых сплавов в рекристаллизованном (А) и холоднодеформированном (В) состояниях.

Образцы	T _c , K So		(dB _{c2} /dT) _T		e, HM	Е , нм	
		10 ⁻⁶ ом см	Тл/К с	r l	i	(t=0,5)	(t=0,5)
Nb ₈₀ Ti ₂₀ (A)	9,35	21,0	1,25	16	2,4	1800	8,5
Nb45 ^{T1} 55(A)	10,30	58,3	1,80	45	0,9	300	5,0
Nb45 ^{T155(B)}	9,84	63,0	2,20	49	0,8	210	4,8

Таблица 2 Наклоны линейных участков в зависимости теплопроводности от магнитного поля.

Образец	Nb80 ^{T1} 20(A)	Nb45 ^{Ti}	.55 ^(A)	Nb45 ^{T155(B)}	
Температура	t=0,50	t=0,58	t=0,45	t=0,58	t=0,45	t=0,50
$(dk^{(m)}/dH)^{exp}$	0,347	0,229	0,0236	0,0218	0,0450	0,0323
$(dk_{e}^{(m)}/dH)_{c2}^{c2}$	0,766	0,641	0,106	0,0810	0,0894	0,0817

<u>Рис.2.</u> Зависимость теплопроводности от магнитного поля рекристаллизованного образца Nb_{80} Ti₂₀. о • - соответствуют вводу и выводу магнитного поля, ι - верхние критические поля.

нормальному состоянию $k^{(n)}$. В полях, меньших 0,5 Тл, наблюдается гистерезис теплопроводности /можно видеть в левом верхнем углу рис. 2/.

Образец Nb 45 Ti 55

На <u>рис. 3</u> представлены зависимости теплопроводности от магнитного поля образца с 45 ат.% Nb в рекристаллизованном (A) и холоднодеформированном (B) состояниях при нескольких температурах.

Поведение теплопроводности рекристаллизованного образца в смешанном состоянии аналогично образцу $Nb_{80}Ti_{20}$. однако глубина минимума значительно меньше - всего 6-10%. Кроме того, для выбранных температур измерений в данном приборе не могли достигнуть верхнего критического поля /8,5-11,5 Тл/, так что значение $k^{(n)}$ получали путем экстраполяции. У холоднодеформированного образца минимум в зависимости $k^{(m)}(B)$ отсутствует, и во всем интервале магнитных полей наблюдается линейный рост теплопроводности с увеличением магнитного поля. Гистерезиса теплопроводности на образце $Nb_{45}Ti_{55}$ не наблюдалось.

Рис.3. Зависимость теплопроводности от магнитного поля образца Nb₄₅Ti₅₅. а/ После рекристаллизационного отжига. б/ Холоднодеформированный образец. о • - обозначают соответственно ввод и вывод магнитного поля.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Исследуемые образцы ниобий-титана имеют крайне низкие значения длины свободного пробега электронов, так что при всех температурах и магнитных полях выполняются условия $\ell_{\perp} \ll d$. $\ell_{\rm s} << \xi$. и, следовательно, появление флюксоидов в смеш ${
m \ddot{a}}$ анном состоянии не добавляет эффективных центров рассеяния для электронов. Иначе обстоит дело с фононами. Ввиду того, что расстояние между флюксоидами быстро уменьшается с ростом магнитного поля: d _ B^{-1.2} /например, при В =10⁻²Тл d =470 нм, при В =10⁻¹ Тл - 150 нм, а при В=1 Тл - 47 нм/, для данных сплавов уже при B>0,05 Тл выполняется соотношение $\ell_{\rm p}>$ d. Так что наблюдаемый в смешанном состоянии провал теплопроводности можно объяснить только резким уменьшением фононной компоненты, которая составляет в нашем случае значительную долю полной теплопроводности 17. Необходимо отметить, что в отличие от сплава Pb-In. на котором также наблюдали характерный минимум теплопроводности 8 для наших образцов выполняется условие $\lambda_{
m nh}>2\xi$ так что флюксоиды не являются эффективными геометрическими центрами рассеяния фононов. Более вероятной причиной уменьшения фононной компоненты теплопроводности является уси-

ление фонон-электронного взаимодействия за счет роста числа электронных возбуждений с увеличением поля. В случае холоднодеформированного образца Nb_{45} Ti $_{55}$ подобного провала в зависимости $k^{(m)}(B)$ не наблюдается, по-видимому, из-за большого рассеяния фононов на дислокациях, возникающих в процессе изготовления образца.

Наряду с уменьшением фононной теплопроводности увеличение числа электронных возбуждений с ростом магнитного поля приводит в то же время к возрастанию электронной компоненты теплопроводности в смешанном состоянии. Комбинация этих двух конкурирующих процессов приводит к наблюдаемому минимуму теплопроводности.

Поведение теплопроводности "грязных" сверхпроводников второго рода в непосредственной близости к H_{e2} было описано теоретически Кароли и Сиро⁻¹. Авторы при этом исходили из нескольких упрощающих предположений. Во-первых, рассматривалась только электронная компонента теплопроводности; во-вторых, учитывалось рассеяние электронов только на примесях. Теория в этом случае дала линейную зависимость теплопроводности от магнитного поля вблизи

$$\frac{dk_{e}^{(m)}}{dH} i_{H_{c2}} = \frac{ck_{B} \phi(t)}{2e \ 1.16 (2\kappa_{2}^{2}(t)-1)}, \qquad (1/$$

где $\phi(t) = x \left[1 + x \frac{\psi^{(1)}(1/2 + x)}{\psi^{(2)}(1/2 + x)} \right]$ является универсальной функ-

цией температуры, а х можно определить из уравнения: $\ln(T/T_c) = = \psi(1/2) - \psi(1/2 + x)$. Для наших образцов ни одно из упрощающих условий не выполняется, однако, как следует из <u>рис. 4</u> /экспериментальные результаты представлены в относительных единицах/, линейная зависимость теплопроводности от поля наблюдается во всех случаях и занимает довольно значительный интервал магнитных полей. Для холоднодеформированного образца линейная зави-симость сохраняется вплоть до H=0.

В табл. 2 приведены значения $dk^{(m)}/dH$, полученные на линейном участке экспериментальных кривых, а также $dk^{(m)}/dH \mid_{H_{c2}}$, рассчитанные по формуле /1/. В расчетах принимали, что $\kappa_2(t) = \kappa(1)$, и использовали значения, приведенные в табл. 1. Видно, что теоретические наклоны в 2 ÷ 4 раза выше экспериментальных. Такое положение можно объяснить следующим образом. Определенная в эксперименте теплопроводность состоит из двух компонент – электронной и фононной, вклады которых по абсолютной величине – одного порядка. Поэтому можно написать:

$$\frac{dk^{(m)}}{dH}\Big|_{H_{c2}} = \frac{d}{dH}(k_{e}^{(m)} + k_{p}^{(m)})_{H_{c2}}$$

Тогда из рис. 4 и табл. 2 следует, что, во-первых, фононная теплопроводность вблизи $B_{\rm c2}$ также линейно зависит от поля, и, во-вторых, знак производной $dk^{\rm (m)}/dH$ должен быть отрицательным. Наличие минимума на кривой $k^{\rm (m)}\left(B\right)^{\rm p}$ тоже говорит о противоло-ложном знаке изменения электронной и фононной компонент с магнитным полем. К подобному выводу приходят в работе 12

ЗАКЛЮЧЕНИЕ

На основании вышеизложенного можно сделать следующие выводы:

1. На зависимости теплопроводности от магнитного поля рекристаллизованных образцов в смешанном состоянии наблюдается характерный минимум. У образца $Nb_{80}Ti_{20}$ глубина минимума составляет 45÷60% от $k^{(s)}$ и он расположен вблизи $B/B_{c2} \simeq 0.5$. В случае $Nb_{45}Ti_{55}$ минимум сдвинут с $B/B_{c2} \simeq 0.2$ -0.3 и его глубина не превосходит 6÷10% от $k^{(s)}$

2. Предсказанная теорией ¹ для электронной теплопроводности линейная зависимость от магнитного поля вблизи В_{с2} обнаружена у всех образцов. Однако в измеряемой теплопроводности большую часть составляет фононная компонента. Кроме того, в экспери-

менте линейная зависимость k^(m)(B) наблюдается в широком интервале магнитных полей. Так, для образца $Nb_{80}Ti_{20}$ до $B/B_{c2} \simeq 0,6 \pm 0,7$, для рекристаллизованного образца $Nb_{45}Ti_{55}$ до $B/B_{c2} \simeq 0,2 \pm 0,3$, а у холоднодеформированного образца $Nb_{45}Ti_{55}$ она сохраняется вплоть до $B/B_{c2} = 0$.

3. Сравнение с теорией ¹ дает основание предположить, что фононная компонента теплопроводности у исследовавшихся образцов линейно изменяется с магнитным полем вблизи В_{с2}. Но производная по полю фононной теплопроводности имеет отрицательный знак.

Авторы искренне благодарны Е.И.Дьячкову за постоянный интерес к работе и Г.П.Цвиневой за помощь в обработке экспериментального материала.

ЛИТЕРАТУРА

- 1. Caroli C., Cyrot M. Phys.Kondens.Materie, 1965, 4, p. 285.
- 2. Ambegaokar V., Griffin A. Phys.Rev., 1965, 137A, p. 1151.
- 3. Maki K. Phys.Rev., 1967, 158, p. 397.
- 4. Schmidbauer E. et al. Z.Physik, 1970, 240, p. 30.
- 5. Noto K. J.Phys.Soc.Japan, 1969, 26, p. 710.
- 6. Lowell J., Sousa J. Phys.Lett, 1964, A25, p. 469.
- 7. Gupta A.K., Wolf S. Phys.Rev., 1972, 86, p. 2595.
- Van der Veeken J.P.M. et al. In: Proc. LT-15, Grenoble, 1978, p. 673.
- 9. Lindenfeld P. et al. In: Proc. LT-10, Moscow, 1967, p. 396.
- 10. Del Vecchio L.V., Lindenfeld P. Phys.Rev., 1970, B1,p.1097.
- 11. Dubeck L.et al. Rev. Mod. Phys., 1964, 36, p. 110.
- 12. Kobayashi N. et al. J.Low Temp.Phys., 1974, 17, p. 575.
- 13. Lowell J., Sousa J.B. J.Low Temp.Phys., 1970, 3, p. 65.
- 14. Dubeck L., Setty K.S.L. Phys.Lett., 1968, 27A, p. 334.
- 15. Cody G.D., Cohen R.W. Rev.Mod.Phys., 1964, 36, p. 121.
- 16. Дьячков Е.И., Херцог Р., Хухарева И.С. ОИЯИ, P8-12945, Дубна, 1979.
- 17. Дьячков Е.И., Херцог Р., Хухарева И.С. В кн.: Труды XXI Всесоюзного совещания по физике низких температур, Харьков, 1980, с. 80.

Рукопись поступила в издательский отдел 10 июля 1981 года.