

Объединенный институт ядерных исследований дубна

4600/9-81

¥/9-81 P8-81-367 +

1981

Я.Бишоф,* П.Г.Василев, И.Н.Гончаров

НИЗКОТЕМПЕРАТУРНАЯ ТЕПЛОЕМКОСТЬ Nb-79,6 BEC.% Zr, Nb-38 BEC.% Ti и мелкодисперсных проводов на основе сплава нт-50

Направлено в журнал "Cryogenics", и на XX Международную конференцию стран-членов СЭВ по физике и технике низких температур, Вроцлав, /ПНР/, 1981 г.

Институт сильноточной электротехники, Прага

введение

В последние годы интенсивно исследовались различные свойства сверхпроводящих сплавов разного состава системы Nb-Zr и Nb-Ti. Выпускаемые в СССР провода, кабели, шины и т.п. на основе сверхпроводящего сплава HT-50 ^{/1/}/Nb -50 вес. % Ti / широко используются в физике и технике. В некоторых случаях важно знать температурную зависимость их теплоемкости С(T), например, для расчетов по нагреву в результате энерговыделения /от прохождения излучения, от скачков потока, от диссипации запасенной в обмотках магнитной энергии и т.д./.

1. 1. 2

В этой работе представлены результаты измерения удельной теплоемкости образцов из сплавов Nb -79,6 вес.% Zt и Nb-38 вес.% Ti, а также мелкодисперсных проводов на основе HT-50 в медной матрице. Для одного из этих проводов вычислены значения удельного энерговыделения, при котором текущий по проводу ток становится равным критическому току. Проанализированы данные других авторов. Наряду с этим проведено сравнение результатов, полученных двумя принципиально разными методами определения C(T).

ОБРАЗЦЫ И МЕТОДИКА ИЗМЕРЕНИЙ

Исследованы четыре различных образца.

а/ Массивный образец из Nb-79,6 вес.% Zr был выточен из слитка, полученного в высокочастотной печи в результате многократного переплава исходных компонентов /электронно-лучевого ниобия и иодидного циркония/. Готовый образец подвергся рекристаллизационному отжигу при 750°C в течение часа в вакууме ~10⁻⁶ Торр /далее обозначен как образец "НЦ 79,6"/.

б/ Массивный образец из Nb-38 вес.% Ті получен из слитка путем горячего прессования. Экспериментальное определение состава данного образца, выполненное двумя независимыми методами, показало, что содержание титана в сплаве составляет /38+1/ вес.% /обозначение "НТ 38"/.

в/ Неизолированный провод Ø1,5 мм, содержащий 61 сверхпроводящую нить Ø140 мкм из сплава НТ-50 в медной матрице с коэффициентом заполнения 47% /обозначение "НТ50/61/"/.

г/ Неизолированный провод 0,5 мм, содержащий 1046 сверхпроводящих нитей 010 мкм из сплава НТ-50 в медной матрице с коэффициентом заполнения 50% /обозначение_"НТ50/1045/"/.

Объедина. институт пнершах эссислования

1

Теплоемкость образцов измерялась двумя методами. В адиабатическом калориметре^{/2/} были исследованы образцы НЦ 79,6, НТ38, НТ50 /1045/ достаточно большой массы / >10 г./. В приборе для определения С(Т) методом измерения времени релаксации^{/3/} исследовались малые по массе образцы НТ38 /100,3 мг/, НТ50/61/ /155,5 мг/ и НТ50/1045/ /51,8 мг/. Для этих измерений микронагреватель из константана и спай дифференциальной калиброванной термопары крепились к образцам с помощью клея 5Ф-2, теплоемкость которого была измерена специально. Характерное время изменения температуры после включения /выключения/ тока микронагревателя составляло 10 ÷ 50 с. Точность определения теплоемкости не хуже +6%.

Критическая температура T_c определялась резистивным методом, причем $R(T_c) = 0.5 R_n$.

РЕЗУЛЬТАТЫ ИЗМЕРЕНИЯ И ИХ ОБСУЖДЕНИЕ

А/ Массивные образцы

На <u>рис. 1 и 2</u> представлены экспериментальные кривые C(T) образцов HU79,6 и HT38, причем в последнем случае использованы оба метода независимо друг от друга. Хорошее совпадение результатов указывает на высокую надежность получения данных методом измерения времени релаксации. По этим результатам

релаксации (•).

Таблица

Результаты измерения теплоемкости образцов НЦ 79,6 и НТ 38

Образец		НЦ 79,6	HT 38
мДж/моль•К ² у*,		16,94	10,16
мДж/моль • К ⁴ β.		0,305	0,137
θ _D , K		185	224
мДж/моль • К ⁴ , а		0,66	0,39
т _{пик} . к	n e estadores de la composición de la c	6,9	8,5,
Т _{мин} , к	an an an an Arthur An Arthur Anna Arthur	7,8	9,4
T _c , K	en al service de la composition de la c Recentra de la composition de la composit	n an an trainn an trai	9,4

были определены коэффициенты в выражениях, описывающих теплоемкость в нормальном ($C_n(T) = \gamma^* T + \beta T^3$) и сверхпроводящем ($C_s(T) = \alpha T^3 + \beta T^3$ при T>0,5 T_c)состояниях, а также температура Дебая θ_D /см. <u>таблицу</u>/.

Кроме того, мы проанализировали данные для системы Nb-Ti, имеющиеся в литературе^{/4-9/}, и представили их в обобщенном виде на <u>рис. 3</u>. В тех случаях, когда авторы сами не привели значений величин T_c , γ^* , β , θ_D и a, мы оценивали их на основании опубликованных кривых C(T). Несмотря на различие методов приготовления образцов, все эти величины /за исключением γ^* / монотонно меняются с увеличением концентрации титана. Следует отметить особенности:

а/ наличие минимума θ_D /максимума β / при концентрациях титана 40 \div 50 вес.%, а также максимума θ_D при ~10 вес.%; б/ монотонный рост а с концентрацией титана;

в/ практическое совпадение T_c , определенное, резистивным или магнитным методами с температурой, при которой на кривой C(T) имеется минимум.

Зависимость у* от концентрации титана трудно обсуждать ввиду большого разброса экспериментальных точек, по-видимому, связанного главным образом с ошибками при экстраполяционной процедуре его отыскания.

количества клея GE7041, использованного для приклеивания проволочного нагревателя по всей длине образца, точность измерений этим методом была ниже, чем в случае массивных образцов. С точностью не хуже <u>+6%</u> температурные зависимости теплоемкости этих двух образцов описываются следующими эмпирическими формулами:

 $\begin{array}{l} C_{\rm HT \ 50(61)}^{\rm (T)} = \begin{cases} /0,04 \ T \ + \ 0,00147 \ T^3/\underline{-MA}_{F\cdot K}^{\rm MA} & \text{при } T > T_{\rm MuH} \\ 0,0032 \ T^3 \underline{-MA}_{F\cdot K}^{\rm MA} & \text{при } T < T_{\rm пиK} \end{cases} \\ \begin{array}{l} C_{\rm HT \ 50(1045)}^{\rm (T)} = \\ HT \ 50(1045) \end{array} \begin{cases} /0,04 \ T \ + \ 0,00147 \ T^3/\underline{-MA}_{F\cdot K}^{\rm MA} & \text{при } T > T_{\rm MuH} \\ 0,0037 \ T^3 \underline{-MA}_{F\cdot K}^{\rm MA} & \text{при } T < T_{\rm IIIK} \end{cases} \end{cases}$

ной матрице

Рис.3. Зависимость Т пик (•)/соответ-

ствует пику теплоемкости/, Т_{МИН} (0)

/соотв.минимуму теплоемкости/, Т.(Δ)

β, θ_ри a. от концентрации титана

лоемкости образцов НТ 50 /61/ и

рения времени релаксации. Образец

НТ 50/1045/ длиной 600 см был также

с приведенными на рис. 4 /особенно

в сплавах Nb-Тi по данным работ 14-9/

/определенной резистивным методом/, у*,

Б/ Провода на основе НТ-50 в мед-

На рис. 4 приведены данные по теп-

НТ 50/1045/, полученные методом изме-

измерен в адиабатическом калориметре.

причем результаты неплохо согласуются

в области T_c > T > 7 K /. Ввиду большого

где T_{MUH} и $T_{\Pi UK}$ соответствуют температурам минимума и максимума на кривых C(T). Следует отметить, что при $T < T_{\Pi UK}$ не удалось выделить линейный по температуре член в C(T), отвечающий вкладу электронной теплоемкости меди, по-видимому, из-за малости.ee γ^{*T} по сравнению с общим кубическим членом.

Для образца НТ 50/1045/ по измеренной теплоемкости было найдено графически изменение энтальпии $\Delta E(\Delta T) = {T_B^{+} \Delta T \over T_B} C(T) dT;$ на <u>рис. 5</u> оно представлено для трех значений $T_B/4,2,4,5$ и 4,8 К/ при B=0. Учитывая, что наличие внешнего магнитного

Рис.4. Теплоемкость проводов НТ 50/61/ и НТ 50 /1045/, измеренная по методу определения времени релаксации.

Рис.5. Изменение энтальпии ΔE в зависимости от ΔT для HT 50/1045/при T_B=4,2; 4,5 и 4,8K/B=0/ и T_B=4,2K/B = =5T/. Для сравнения приведена расчетная кривая $\Delta E(\Delta T)$ /при T_B=4,2K,B=0/из работы/10 поля В /меньшего, чем критическое/повышает теплоемкость сверхпроводящих сплавов, мы сделали оценку его влияния на ΔE для HT 50 /1045/, используя данные работы ⁷⁷ Кривая $\Delta E / \Delta T$, B=5 T/ при T_B =4,2 К также приведена на <u>рис. 5.</u> С целью сравнения на этом же рисунке воспроизведена и кривая $\Delta E / \Delta T$, B=0/

при $T_B = 4,2$ К, рассчитанная ^{/10} для аналогичного провода на основании имевшихся литературных данных по теплоемкости меди и сплавов Nb-Ti. Отметим, что расчетные данные Маслова и Мохова ^{/10} ложатся несколько ниже, чем полученные нами.

Для обоих проводов были измерены критические температуры T_c резистивным методом. Для HT 50 /61/ получено $T_c = 9,4$ K. Измерения проводились на участке этого образца с вытравленной медью при токе 10 мА. Для HT50 /1045/ в меди обнаружено, что снижение измерительного тока от 50 до 20 мА сдвигает T_c , определенную по середине перехода, с 9,05 до 9,18 K, а экстраполяция к нулевому току дает $T_c = = 9,25$ K.

Для провода HT50 /1045/ были сняты зависимости критического тока от магнитной индукции и температуры, $I_c(B,T)$, причем для B=5 T в районе 4,2 К $[\Delta I_c(T)/I_c(4,2) \cdot \Delta T] = 0.3 K^{-1}$, где $I_c/4,2/=144$ А. На основании этих данных и по соответствующей кривой $\Delta E(\Delta T)$ на <u>рис. 5</u> мы смогли построить для этого образца /несущего ток I при T=4,2 К и B=5 T/ зависимость удельной энергии $W(I/I_c)$ /адиабатический

Рис.6. Зависимость допустимого энерговыделения W от подкритичности I/I_с /сплошная кривая/. Для сравнения показаны экспериментальные результаты ^{/11}, полученные при импульсном прохождении через провод HT 50/1045/ пучка частиц высоких энергий /7,3 ГэВ дейтроны(А) и 6,4 ГэВ протоны (■)) при t_{имп.}=1 мс.

случай/, необходимой для того, чтобы ток I стал равен критическому току перегретого образца /см. <u>рис. 6/</u>. Для сравнения на <u>рис. 6</u> приведены также экспериментальные данные по допустимому энерговыделению в проводе при прохождении через него пучка частиц высоких энергий *, полученные в работе ^{/11} с помощью специального криогенного стенда ^{/12}.

ЗАКЛЮЧЕНИЕ

6

На основании проведенных в настоящей работе исследований можно сделать следующие выводы:

1. Метод измерения теплоемкости образцов малой массы /вплоть до 10 мг/, в котором определяется время изменения температуры образца после включения /выключения/ тока нагревателя позволяет получать надежные результаты, если точно измерять массу нанесенного на образец клея с известной теплоемкостью.

2. Получены кривые C(T) для образцов двух составов системы Nb-Zr и Nb-Ti; вычислены величины, характеризующие электронную и фононную части теплоемкости.

3. Проведено сравнение результатов измерения C(T) разными авторами для важной в практическом отношении системы Nb-Ti

4. Проведены измерения теплоемкости двух разных мелкодисперсных проводов на основе сплава НТ-50 в медной матрице. Для одного из них, содержащего 1045 сверхпроводящих нитей

* Следует заметить, что при облучении дейтронами провод HT 50 /1045/ был слегка подогрет с помощью намотанного на него нагревателя для локализации места перехода в нормальное состояние. По-видимому, при этом проникший к образцу по микротрещинам в замазке "Апиезон" жидкий гелий превращался в пар, вследствие чего этот случай был ближе к адиабатическому, чем при облучении протонами, когда нагреватель не включался.

В заключение авторы выражают благодарность Р.Херцогу за помощь в наладке установки для измерения теплоемкости методом определения времени релаксации и Н.Владимировой за помощь в измерениях критического тока образцов.

ЛИТЕРАТУРА

- Никулин А.Д. и др. Многожильные сверхпроводящие материалы для технического использования. В сб.: Сверхпроводимость /Труды конференции по техническому использованию сверхпроводимости/. Т. 1У. Сверхпроводящие материалы. М., Атомиздат, 1977, с. 5-14..
 - Bjschof J. Bath Inserted Cryostat for Measurements in the Temperature Range from 4.2-40 K in the Magnetic Field, Cz. J.Phys., 1979, A29, pp. 599-602.
 - Bachman R. et al. Rev. Sci. Instr., 1972, 43, N. 2, p. 205.
 - Ferreira da Silva J., Burgemeister E.A., Dokoupil Z. Low Temperature Specific Heat of Annealed High-Purity Niobium in Magnetic Fields, Physica, 1961, 41, pp. 409-439.
 - 5. Савицкий Е.М. и др. В сб.: Сверхпроводящие сплавы и соединения /труды 6 Всесоюзн. совещания по проблеме сверхпроводящих материалов/, М., "Наука", 1972, с. 87-101.
 - 6. Щеткин И.С., Харченко Т.Н. ЖЭТФ, 1973, 64, вып. 3, с. 964-969.
 - 7. Леяровски Е. и др. В кн.: Тезисы докладов XVIII Всесоюзн. совещания по физике низких температур. Киев, 1974, с. 93.
 - Iwasa Y. et al. Prediction of Transient Stability Limits for Composite Superconductors Subject to Flux Jumping, J.Appl.Phys., 1969, v. 40, N.5, pp. 2006-2009.
 - 9. Василев П.Г. и др. ОИЯИ, Р8-81-182, Дубна, 1981.
- 10. Маслов М.А., Мохов Н.В. Препринт ИФВЭ, ОРИ 79-135, Серпухов, 1979.
- 11. Василев П.Г. и др. ОИЯИ, Р8-81-114, Дубна, 1981.
- 12. Гончаров И.Н., Дробин В.М. ОИЯИ, Р8-81-115, Дубна, 1981.

Рукопись поступила в издательский отдел 2 июня 1981 года.

7

a second and second and second a second s

and the second second the second s