94-134

СООБЩЕНИЯ Объединенного института ядерных исследований дубна

P7-94-134

А.Н.Андреев, Д.Д.Богданов, А.В.Еремин, А.П.Кабаченко, О.Н.Малышев, Ю.А.Музычка, Б.И.Пустыльник, Р.Н.Сагайдак, Г.М.Тер-Акопьян, В.И.Чепигин

ИССЛЕДОВАНИЯ СЕЧЕНИЙ ОБРАЗОВАНИЯ ИЗОТОПОВ ПОЛОНИЯ В РЕАКЦИЯХ ²⁷Al+¹⁷⁵Lu и ³¹P+¹⁶⁹Tm

1 Введение

Данная работа является продолжением наших исследований сечений образования испарительных продуктов в области Bi-At в реакциях полного слияния с ионами с A ≤ 40 [1-3]. Достаточно полный набор таких экспериментальных данных и их сопоставление с результатами расчетов по статистической модели девозбуждения составного ядра являются, по нашему мнению, хорошей базой как для уточнения механизма образования и распада составного ядра [4], так и для анализа характеристик возбужденных ядер, в том числе получения численных эначений величин барьеров деления нуклидов с Z=82-85 и данных о характере изоспиновой зависимости жидкокапельных барьеров деления от нейтронного дефицита и Z ядра [5, 6]. Кроме того, двумя группами авторов ранее были детально измерены сечения образования нейтронодефицитных изотопов Ро в реакциях слияния с бомбардирующими ионами ⁴⁰Ar, ⁸⁴Kr и ¹⁰⁰Mo [7, 8]. Возможность провести прямое сравнение закономерностей образования одних и тех же нуклидов при столь различных входных каналах реакций являлась дополнительным стимулом при проведении данной работы.

2 Методика эксперимента и результаты измерений

Эксперименты проводились на выведенном пучке циклотрона У-400 ЛЯР ОИЯИ. Использовались пучки ионов ²⁷ Al с начальными энергиями 180 МэВ и 250 МэВ и ионов ³¹Р с начальными энергиями 178 МэВ и 220 МэВ. Интенсивность пучков на мишени ограничивалась и не превышала $5 \cdot 10^{11} \text{ c}^{-1}$. Изменения энергии бомбардирующих ионов с шагом 3-6 МэВ проводилось с помощью алюминиевых и титановых поглотителей. Энергия пучка бомбардирующих частиц измерялась полупроводниковыми детекторами, расположенными перед мишенью (после поглотителей) и после мишени, по энергии ионов, рассеянных на угол 30°. В качестве рассеивателей использовались тонкая (200 мкг/см²) золотая фольга или вещество самих мишеней. Калибровка детекторов и их трактов осуществлялась с помощью α -источников. Поправки на неионизационные потери не учитывались. В экспериментах использовались неподвижные мишени в виде окислов Lu и Tm, нанесенные на тонкие титановые (1,0 мг/см²) подложки. Средние толщины мишеней измерялись методом рентгено-флюоресцентного анализа и составляли (0,39±0,04) мг/см² и (0,42±0,04) мг/см² по Lu п Tm соответственно. Неоднородность мишеней по толщине определялась методом измерения энергетических потерь для α -частиц с энергией 7,69 МэВ при их прохождении через мишень и оказалась равной ±25% и ±60% от средних эначений толщин для Lu и Tm мишеней соответственно.

Отделение продуктов испарительных реакций от пучка бомбардирующих ионов осуществлялось с помощью кинематического сепаратора ВАСИЛИСА [9]. Детектирующая система, расположенная в фокальной плоскости сепаратора, состояла из двух широкоапертурных времяпролетных детекторов для измерения времени пролета ядер отдачи и полупроводникового ионно-имплантированного кремниевого детектора, разделенного на восемь полос, для измерения энергий ядер отдачи и α-распадов имплантированных в детектор нуклидов [10, 11]. Энергетическое разрешение полупроводникового детектора было не хуже 60 кэВ. Измерение эффективности сепаратора проводилось с использованием рабочих мишеней непосредственно в каждом облучении. Методика измерений подробно описана в работе [3]. При облучении ионами фосфора для измерения эффективности сепаратора использовалась тонкая мишень из окиси эрбия с толщиной 0.35 мг/см² по окислу. Средние эначения эффективностей сепарации в данных экспериментах составляли (5 ± 1) % и $(13, 5 \pm 3, 5)$ % в реакциях с ионами Al и P соответственно. Идентификация нуклидов проводилась по энергиям араспадов и функции возбуждения. Для основных и изомерных состояний изотопов полония энергия α-распадов и значения абсолютных α-вилок брались из работы [12]. Для изотопов висмута использовалась компиляция данных, приведенная в работе [13]. Рассчитанные из экспериментальных выходов эначения абсолютных сечений образования нейтронодефицитных изотопов Ро и Ві приведены в таблицах 1,2.

При расчете энергий возбуждения компаунд-ядра мы использовали экспериментальные значения масс нуклидов из таблиц [14]. Энергии пучка в середине мишени определялись из измерений энергий бомбардирующих частиц до и после мишени. При расчетах потерь энергии в подложке и веществе мишени использовались таблицы [15]. В пределах 1,5 МэВ данные по результатам обоих измерений совпадают во всем диапазоне энергий бомбардирующих ионов. Тем не менее мы считаем,

$E_{Al}^{a)}$	E*	Поперечные сечения, мб								
МэВ	МэВ	3n	4n	5n	6n	7n	8n	Σxn		
110.5	41.0	0.3	0.4					0.7		
115.5	45.5	1.1	2.1	1				3.2		
118.0	47.5	1.8	7.1					8.9		
122.5	51.5	2.2	16.5	1.9				20.6		
127.5	55.5	1.6	17.0	10.1				28.7		
129.0	57.0	1.3	15.3	14.9				31.5		
133.0	60.5	0.5	8.6	25.1	0.4	l		34.6		
137.0	64.0	0.5	4.1	30.0	1.9			36.4		
138.0	65.0	0.3	2.8	23.8	2.9			29.8		
142.0	68.0	0.15	1.4	15.8	6.1			23.6		
146.5	72.0		0.5	6.9	8.4	0.2		16.0		
148.0	73.5		0.2	4.4	7.3	0.15		12.1		
151.0	76.0			3.0	7.1	0.7		11.1		
154.5	79.0			1.2	4.9	1.1		7.2		
159.5	83.5			0.4	2.0	1.6		4.4		
166.0	89.0			0.1	0.6	1.3	0.09	2.1		
169.0	92.0				0.3	0.9	0.16	1.4		
174.5	96.5				0.1	0.5	0.22	0.8		
E _{Al}	E*	Поперечные сечения, мкб								
МэВ	MəB	8n	9n	10n	11n			Σxn		
208	125.5	1.5 ± 1.0	2.5	0.4				4.5		
240	153.0			≤0.1	≤0.1			≤ 0.2		
		p,8n	p,9n	p,10n	p,11n			Σpxņ		
208	125.5	420	180	20				620		
240	153.0		≤20	40	10			≤70		

Таблица 1. Поперечные сечения хп и рхп-каналов реакции ²⁷Al+¹⁷⁵Lu

а)- ширина энергетического распределения по толщине

.

мишени ±1.5 МэВ.

$\mathbf{E}_{P}^{\mathrm{a})}$	E*	Поперечные сечения, мкб					
MəB	МэВ	3n	4n	5n	6n	Σxn	
119.0	32.0	≤1.0	≤0.5			≤1.5	
125.0	37.0	110	6.0			116	
131.5	42.5	835	215			1040	
137.5	47.5	1040	2320	11		3370	
140.5	50.0	640	2460	35		3050	
143.5	52.5	360	2950	175		3485	
146.5	55.5	240	4510	930		6070	
152.0	60.0		1740	2180	10	4250	
156.5	63.5		1070	2620	59	3790	
159.0	66.0		570	2050	146	2890	
		6n	7n	8n	9n	Σxn	
195.0	96.5	4.5	10.0	5.0		20.0	
204.5	104.5	2.0	<0.5	<0.5		<3.0	
211.5	110.5	2.5	<1.0	<0.5		<4.0	
		p6n	p7n	p8n	p9n	Σpxn	
195.0	96.5	800	280	15		1100	
204.5	104.5	200	290	50		540	
211.5	110.5	150	200	100		450	

Таблица 2. Поперечные сечения xn и pxn-каналов реакции ³¹P+¹⁶⁹Tm

^{а)} - ширина энергетического распределения по толщине

мишени ±2.5 МэВ.

что ошибка в измерении энергии возбуждения $\pm 0,75$ МэВ характеризует относительную точность наших измерений. Точность определения абсолютных эначений энергии тяжелого иона при использовании для ее измерения только полупроводниковых детекторов едва ли может может быть лучше $\pm 1,5$ МэВ, что связано с различием удельных ионизаций для ионов и калибровочных α -частиц и существованием неионизационного компонента потерь энергии для тяжелых ионов. В частности, для ионов фосфора они могут достигать величины $\simeq 1$ МэВ.

Относительная ошибка в определении значений сечений (в тех случаях, когда она не определяется точностью, с которой известна вероятность α-распада нуклида) в наших экспериментах составляла ±25% и была обусловлена небольшими изменениями эффективности сепаратора в процессе эксперимента. Вклад статистической ошибки для сечений, больших чем 1,0 мкб, не превышал ±10%. Ошибка в определении абсолютной величины сечений составляет фактор 1,5-2,0 и определяется, в основном, точностью измерений эффективности сепаратора и интенсивности пучка бомбардирующих ионов, прошедших через мишень.

3 Обсуждение результатов

Этот раздел статьи мы условно разделим на две части. В первой рассмотрим возможности без модельного анализа при наличии большого числа экспериментальных данных, полученных в различных комбинациях ион-ядро мишени, но приводящих в конечном канале к одним и тем же испарительным остаткам (в данном случае изотопам полония). Во второй части будут приведены результаты анализа испарительных функций возбуждения с использованием модифицированной программы ALICE, основанной на широко распространенном статистическом подходе к процессу девозбуждения составных ядер.

3.1 Peakuus ${}^{31}P + {}^{169}Tm = {}^{200}Po^*$

Сравнительный анализ сечений для хл-канала компаунд ядра ²⁰⁰Ро, образующегося в реакциях ⁸⁴Kr+¹¹⁶Cd и ⁴⁰Ar+¹⁶⁰Dy, был сделан в работе [7]. Было показано, что для обеих реакций форма функций возбуждения и их положение на шкале энергии возбуждения хорошо совпадают, а отношение величин сечений близко к отношению квадратов приведенных длин волн во входном канале реакций.

Опубликованные недавно данные о сечениях образования изотопов Ро в реакции ¹⁰⁰Mo +¹⁰⁰Mo [8] и результаты наших измерений для реакции ³¹P + ¹⁶⁹Tm = ²⁰⁰Po^{*} позволяют провести такой анализ для более широкой области значений масс-асимметрии во входном канале. На рис.1 приведены зависимости суммарных сечений хл-каналов для этих двух реакций от энергии возбуждения составного ядра. Из рисунка видно, что при энергиях возбуждения, превышающих кулоновский барьер для реакции ³¹P+¹⁶⁹Tm (E^{*} ~ 50МэВ), относительный ход сечений для обеих реакций практически совпадает. Отношение величин суммар-

E*, M₂B

Рис.1. Зависимость полного сечения хп-канала от энергии возбуждения для компаунд-ядра ²⁰⁰Ро, образующегося в реакциях: ¹⁰⁰Мо+¹⁰⁰Мо (∘) и ³¹Р+¹⁶⁹Tm (▲). Стрелками показаны положения максимумов выхода для реакции ¹⁰⁰Мо+¹⁰⁰Мо

ных сечений для этой области энергий составляет 3,5±0,5, что хорошо совпадает с отношением квадратов приведенных длин волн для данных комбинаций мишень-частица $\pi \lambda_P^2 / \pi \lambda_{M_Q}^2 = 3.3 - 3.1$. Такая зависимость для отношений сечений обычно интерпретируется как указание на то, что у образующихся в реакциях компаунд-ядер среднее значение квадрата углового момента остается постоянным и не зависит от массы бомбардирующего иона [4, 7]. Представляется необходимым отметить. что так как этот вывод сделан из исследования закономерностей образования испарительных продуктов, то его можно считать полностью корректным только для набора состояний компаунд-ядра, который дает основной вклад в испарительный канал девообуждения. Для сравнительного анализа формы функций возбуждения и их положения на шкале энергий возбуждения можно воспольвоваться зависимостью от энергии возбуждения отношения сечений реакций, отличающихся на один нейтрон $R = \sigma_{xn} / \sigma_{(x+1)n}$ [7]. Это позволяет, во-первых, существенно ослабить влияние барьерных факторов на результаты анализа и, во-вторых, значительно увеличить чувствительность анализа за счет резкой зависимости отношения сечений от энергии возбужде-

Рис.2. Отношение сечений хп-реакций, отличающихся на один нейтрон для компаунд-ядра ²⁰⁰Ро, образующегося в реакциях : ¹⁰⁰Мо+¹⁰⁰Мо (∘) и ³¹P+¹⁶⁹Tm (▲)

ния. На рис.2 приведены результаты такого анализа. Из рисунка видно, что в пределах точности эксперимента ход кривых для реакций с ионами ³¹Р и ¹⁰⁰Мо совпадает. Небольшое расхождение в положениях кривых (для реакций с ионами фосфора наблюдается смещение на 1,5-2,5 МэВ в сторону меньших энергий возбуждения) не выходит за пределы ошибки в измерении энергий бомбардирующих понов полупроводниковым детектором.Совпадение формы п положения функций возбуждения в реакциях с ионами Р и Мо в области энергий выше кулоновского барьера свидетельствует о том, что вид распределений по угловым моментам для возбужденных состояний компаунд-ядра 200Ро, определяющих канал испарительных продуктов, практически не зависит от массы бомбардирующего иона. Таким образом, мы приходим к заключению, что для этой области ядер основные характеристики испарительного канала не зависят от массы бомбардирующего нона вплоть до полной симметрии во входном канале. Такое заключение в эначительной степени снимает ограничения на использование данных, полученных в реакциях с легкими ионами, для анализа процесса слияния тяжелых ядер вблизи кулоновского барьера.

3.2 Реакция ²⁷Al+¹⁷⁵Lu=²⁰²Po*

На рис. З приведено сравнение величин сечений образования изотопов Ро в максимумах функций возбуждения в реакциях ²⁷Al+¹⁷⁵Lu и ¹⁰⁰Mo+⁹²⁻¹⁰⁰Mo [8]. Значения ошибок приведены в тех случаях, когда они превышают ±25%. Два значения для величины сечения образования изотопа ¹⁹³Po в реакции ²⁷Al+¹⁷⁵Lu связаны с использованием двух способов интерполяции при его вычислении. Первый – по форме экспериментальной функции возбуждения и величине сечения реакции 9n в районе максимума реакции 10n ($E_{Al} \simeq 208$ MэB), второй – по экспоненциальной интерполяции сечений в диапазоне энергий между максимумами реакций 8n и 10n. Расхождение эначений величин сечений, полученных при этих двух способах интерполяции, не превышает фактор два.

Из рисунка следует, что вплоть до изотопа ¹⁹²Ро, несмотря на больщое различие в числе испарительных нейтронов, сечения образования изотопов Ро в реакциях с ионами Мо равны или существенно меньше, чем в реакции Al+Lu. Такая закономерность обусловлена следующими факторами: более медленным ростом сечения слияния в реакциях Мо+Мо при энергиях вблизи барьера слияния и близостью к единице отношения приведенных нейтронной и полной испарительных ширин Γ_n/Γ_{tot} при энергиях возбуждения E* ≥ 40 МэВ. Последнее утверждение для этой области ядер можно считать хорошо экспериментально обоснованным, благодаря большому количеству экспериментальных данных о сечениях образования одних и тех же изотопов в каналах с различным числом испарившихся нейтронов от х до (х+6) [1-3,7,16]. Из анализа этих данных следует, что среднее значение для отношения сечений образования изотопа в реакциях хп и (x+2)n составляет (2±1) при условии $x \ge 4$. Введенное ограничение на число испарившихся нейтронов не является принципиальным и связано с влиянием обычного кулоновского барьера на сечения образования нуклидов в реакциях с ионами с А≤40 вплоть до энергий возбуждения E* = 40 - 50 МэВ.

Доминирующее испарение нейтронов при $E^* \ge 40$ МэВ и, вместе с тем, резкое уменьшение сечений образования изотопов с ростом нейтронного дефицита (см.рис.3) можно объяснить, если считать, что конкуренция со стороны деления становится существенной при малых

Рис.3. Величины сечений образования изотопов Ро в максимумах функции возбуждения для реакций : ²⁷Al+¹⁷⁵Lu (•) и ¹⁰⁰Mo+⁹²⁻¹⁰⁰Mo (▲)

энергиях воэбуждения. В этом случае абсолютная величина сечения образования нуклида в области энергий выше барьера слияния будет в большей мере определяться характеристиками самого нуклида (энергии связи для нейтрона, протона, *α*-частицы, величины барьера деления), чем числом испарившихся нейтронов. Экспериментальные результаты, приведенные на рис.3, находятся в хорошем согласии с такой интерпретацией.

Образование в реакциях с ионами Мо и легкими ионами компаундядер Ро с одинаковыми характеристиками и слабое влияние энергии возбуждения на сечения образования нуклида позволяют предложить чисто эмпирический метод для получения данных о поведении сечения слияния в реакции Мо-Мо в зависимости от энергии бомбардирующего иона. Традиционно для получения такой зависимости используется отношение расчетного эначения сечения образования испарительных продуктов при отсутствии запрета на слияние и экспериментальных данных о сечениях их образования при данной энергии. Также известно, что для области нейтронодефицитных ядер точность расчета даже относительного хода сечений невысока и расхождение расчета и эксперимента может превышать порядок величины [1-3]. Поэтому представляется вполне допустимым использовать вместо рас-

Рис.4. Вероятность слияния в реакциях : ¹⁰⁰Мо+¹⁰⁰Мо и ¹⁰⁰Мо+⁹⁸Мо. Пунктир - результаты из работы [7], ▲ - результаты настоящей работы

четных значений прямые экспериментальные данные о сечениях образования нуклидов, взятые из реакций с легкими ионами. Компиляция сечений, приведенная на рис.3, является, на наш взгляд, хорошим аргументом в пользу такого подхода.

На рис.4 приведены рассчитанные таким способом зависимости вероятностей слияния пля реакций ¹⁰⁰Мо+⁹⁸⁻¹⁰⁰Мо. Точками с приведенными эначениями ошибок на рисунке показаны отношения сечений образования одних и тех же изотопов Ро в максимумах выхода в рес ионами ¹⁰⁰Мо и ⁹⁸Мо и легкими ионами с $A \le 40$. акциях Значения сечений образования изотопов 193-197 Ро в реакциях с легкими ионами взяты из данных, полученных в реакции ²⁷Al+¹⁷⁵Lu, для изотопов ^{198,199}Ро - из данных, полученных в работе [16] для реакции ⁴⁰Ar+¹⁶⁴Dy. Последнее было необходимо, чтобы не учитывать влияние кулоновского барьера на величины сечений образования изотопов ^{198,199}Ро в реакции ²⁷Al+¹⁷⁵Lu. Для того чтобы исключить влияние различий в приведенных длинах волн и систематические ошибки в определении абсолютных значений сечений образования нуклидов, отношения сечений были отнормированы на 1,0 для изотопов 196,197 Ро, образующихся в реакциях ²⁷Al+¹⁷⁵Lu и ⁴⁰Ar+¹⁶⁴Dy, и для изотопов ¹⁹⁵Ро и ¹⁹³Ро, образующихся в реакциях ²⁷Al+¹⁷⁵Lu и ¹⁰⁰Mo+^{98,100}Mo. При вычислении вероятности слияния для реакции 1n мы использовали экспериментальные данные о величинах сечений этой реакции при энергиях возбуждения в районе расчетного максимума (т.е. на 8 МэВ ниже, чем максимум выхода для реакции 2n). Это связано с тем, что из-за сильного влияния кулоновского барьера экспериментальное положение максимума смещено в сторону больших энергий возбуждения. Для сравнения на рис. 4 приведены также зависимости вероятности слияния, рассчитанные в работе [8] традиционным способом. Из рисунка видно, что оба способа расчета дают одинаковые результаты для реакции 100Мо+100Мо. Различие в результатах расчетов для реакции ¹⁰⁰Мо+⁹⁸Мо относительно невелико, и можно считать, что оно находится в пределах ошибок. Однако нельзя исключить и предположение, что наблюдаемое различие отражает более быстрое по сравнению с расчетом уменьшение сечений образования изотопов Ро с уменьшением массового числа в диапазоне $194 \le A \le 197$. К сожалению, имеющихся экспериментальных данных недостаточно, чтобы провести такой анализ для более нейтронодефицитных изотопов Ро.

4 Результаты расчета

Для анализа экспериментальных данных использовалась модпфицированная программа ALICE. Подробно метод расчета описывался нами ранее [1, 17], и поэтому мы лишь кратко напомним основные положения модели и значения параметров, используемых при расчетах. Шприны для испарения частиц (п.р. α) вычисиялись по модели Вайскопфа -Эвинга, делительные ширины-по модели переходного состояния Бора – Уиллера. Энергии связи частиц рассчитывались по массовой формуле Майерса – Святецкого (для исследуемых изотопов полония они близки к экспериментальным). Для описания плотности уровней исиользовались соотношения модели ферми-газа с феноменологическим учетом оболочечных эффектов (ΔW_n) в параметре плотности уровней по Игнатюку [18]. Барьеры деления ядер вычислялись по формуле:

$$B_f(l) = C \cdot B_f^{CPS}(l) + \Delta B_f(Z, A),$$

где $B_f^{CPS}(l)$ - барьер деления в модели вращающейся заряженной капли, С - свободный параметр, B_f - поправка к барьеру деления со-

ставного ядра, равная оболочечной поправке к массе его основного состояния. Величина B_f меняется от -5,9 МэВ для ядра ²⁰⁴Ро до -0,5 МэВ для ¹⁹⁴Ро. Основными параметрами расчета являются : параметр С в формуле для барьера деления, отношение асимптотических эначений илотностей уровней в делительном и испарительном каналах (a_f/a_n) и величина критического углового момента l_{cr} . Целью расчетов являлось оптимальное описание значений сечений в максимумах функций возбуждения. В случае хорошо делящихся ядер сечение в максимуме функций возбуждения обусловлено вкладом парциальных золн с $1 \le 30$, то есть существенно меньшими чем l_{cr} . Для примера на рис.5 приведена зависимость $\sigma_{l(6n)}/\sigma_{max(6n)}$ при Е* =73,8 МэВ (E_{na6} =148 МэВ) для реакции ²⁷Al+¹⁷⁵Lu, где $\sigma_{l(6n)} = \sum_{i=0}^{l} \sigma_{i(6n)}$, $\sigma_{max(6n)}$ - эначение сечения реакции с испарением 6 нейтронов в максимуме функции возбуждения. Как видно из рисунка, $\simeq 95\%$ величины сечения в максимуме выхода достигается при l=26. Поэтому выбор способа определения l_{cr} не имеет

Рис. 5. Зависимость отношения $\sigma_{l(6n)}/\sigma_{max(6n)}$ от величины углового момента

принципиального значения, и мы можем ожидать, что в реакциях с различной асимметрией во входном канале будут получаться достаточно близкие значения сечений в испарительных каналах. Как видно из рис.6, экспериментальные зависимости $\sum \sigma(xn)/\pi\lambda^2$ от энергии возбуждения составного ядра действительно близки друг к другу независимо от асимметрии во входном канале. (Для реакции ²⁷Al+¹⁷⁵Lu был проведен пересчет от ядра ²⁰²Ро к ядру ²⁰⁰Ро с использованием

Рис. 6. Зависимость приведенной величины ∑ σ_{xn} от энергии возбуждения для пяти различных реакций, ведущих к образованию составного ядра ²⁰⁰Ро. Ссылки на источник экспериментальных данных даны в тексте. Произвольная линия иллюстрирует корреляцию и зависимость данных от энергии возбуждения. Первая группа точек соответствует максимуму Зп-реакции и демонстрирует подбарьерность этой области энергий возбуждения для всех взятых реакций

нормировочного коэффициента $\alpha \simeq \lambda_1^2 / \lambda_2^2 (\Gamma_{tot} / \Gamma_x)^2$, который брался из статистического расчета).

Как и ранее [19], было выполнено два варианта расчета: а) в чисто жидкокапельном приближении, когда $\Delta W_{\nu} = \Delta B_f$ и б) с учетом экспериментальных значений ΔW_{ν} и ΔB_f в параметре плотности уровней и барьере деления. Для каждого варианта расчета свободным параметром являлся только параметр С в жидкокапельной части барьера деления. Для простоты, мы считали отношение асимптотических параметров плотности в делительном и испарительном каналах равным $\tilde{a}_f/\tilde{a_{\nu}}=1.0$. Для всех исследуемых реакций мы получили удовлетворительное описание экспериментальных данных при использовании обоих вариантов расчета. В качестве примера рассмотрим реакцию ²⁷AL+¹⁷⁵Lu, где хп-реакции измерены для большого интервала х от 3 до 10 нейтронов.

Рис. 7. Зависимость отношения расчетных значений $\sigma(xn)$ к экспериментальным величинам в максимуме функций возбуждения:

а) для реакции ²⁷Al+¹⁷⁵Lu;

б) для реакции ⁴⁰Ar+¹⁶⁵Ho.

÷

•- результат расчета при $\Delta W_{\nu} = \Delta B_f = 0$.

о- результат расчета с учетом экспериментальных эначений оболочечных поправок ΔW_{ν} и ΔB_f в параметре плотности уровней и барьере деления

На рисунке 7а даны отношения расчетных и экспериментальных эначений сечений $\sigma(xn)$ при x=4-10 в максимуме функций возбуждения. Результаты приведены для C = 0,83 для первого варианта и C = 0,73 для второго варианта расчетов. Видно, что оба варианта удовлетворительно описывают экспериментальные данные. Подобное поведение подгоночных эначений для коэффициента C при жидкокапельном барьере хорошо согласуется с полученными нами ранее эначениями C для изотопов At и Ac - Fr, где максимальная оболочечная поправка по величине приблизительно равна - 5, - 6 МэВ. На рис.76 для примера приведены отношения расчетных и экспериментальных сечений $\sigma(xn)$ при x=4-9 для ²⁰⁵At, полученного в реакции ⁴⁰Ar+¹⁶⁵Ho. Расчеты проведены при C=0,86 для первого варианта и C=0,73 для второго варианта расчетов. C другой стороны, параметр C=0,7 был получен также для нейтронодефицитных изотопов висмута, тория и урана, где оболочечная поправка близка к нулю. Ранее на необходимость сильного уменьшения параметра С вплоть до величины 0.6-0.7 указывал М. Бланн при анализе приблизительно 10 реакций, приводящих к составным нейтронодефицитным ядрам от ⁹⁷ Rh до ¹⁷⁰Os [20].

Таким образом, в качестве заключения можно отметить, что при проведении статистического анализа девозбуждения составных ядер в большом диапазоне Z и A требуется существенное уменьшение жидкокапельной части барьера деления. Эта тенденция наблюдается как для оболочечных ядер, так и для ядер вдали от оболочек. И если в области средних по массе ядер это уменьшение можно существенно ослабить переходом к барьерам деления в модели конечного радиуса действия ядерных сил [21], то в случае более тяжелых ядер требуется дальнейший анализ. В частности, попытка такого анализа была сделана в работе [5], где предложен новый вариант изоспиновой зависимости жидкокапельных барьеров деления от нейтронного дефицита составного ядра.

Авторы благодарны профессору Ю.Ц.Оганесяну за поддержку и большой интерес к работе и Международному Научному Фонду за финансовую поддержку.

Литература

- [1] Андреев А.Н. и др. Ядерная физика, т.52, вып.3(9), 1990, с.640
- [2] Андреев А.Н. и др., Краткие сообщения ОИЯИ 6[45]-90, Дубна, 1990, с.60
- [3] Андреев А.Н. и др. Ядерная физика, т.56, 1993, с.9
- [4] Reisdorf W. et al. Nucl. Phys., A444, 1985, p.154
- [5] Ter-Akopian G.M. et al. Nucl. Phys., A553, 1993, p.735c
- [6] Andreyev A.N. et al. Proc. of Int.Conf.on Exotic Nuclei, Foros, Crimia,1-5 October,1991,World Scient.Publ.Co.Pte.Ltd.,1992,p.191
- [7] Hahn R.L. et al. Phys. Rev., C 36, 1987, p.2132

- [8] Quint A.B., Doktorarbeit, TH Darmstadt, GSI-89-23, 1989.
- [9] Yeremin A.V. et al. Nucl.Instr. and Meth., A274, 1989, p.528
- [10] Yeremin A.V. et al. FLNR Scientific Report 1991-1992, E7-93-57, Dubna, 1993, p.201
- [11] Андреев А.Н. и др. Сообщение ОИЯИ Р13-91-34, Дубна, 1991. Yeremin A.V. et al. Inst. Phys. Conf. Scr. No 132: Section 8, 1993, p.935.
- [12] Westmier W., Merklin A. Catalog of α -particles from Radioactive Decay, Karlsruhe, 1985, Nr.29-1
- [13] Andreyev A.N. et al. Nucl.Instr. and Meth., A330, 1993, p.125
- [14] Wapstra A. et al. Atomic Data and Nuclear Data, 39, 1988, p.274
- [15] Northcliff R.L., Shilling R.F. Nucl.Data Tabl., v.A7, 1970, p.233
- [16] Burkard K.H. et al. Nucl.Instr. and Meth., A139, 1976, p.275.
- [17] Bogdanov D.D. et al. Proc of the Int.Workshop on Dynamical Aspects of Nucl.Fission. Smolenice. 1991, JINR E7-92-95, Dubna, 1992, p 86.
- [18] Игнатюк А.В. и др. ЯФ, т.21, 1975, с.255.
- [19] Andreyev A.N. et al. Nucl. Phys., A568, 1994, p.323.
- [20] Blann M.and Beckerman M. Phys.Rev. C, v17, 1978, p.1615.
- [21] Krappe H.J. et al. Phys. Rev. C, v.20, 1979, p.992.

Рукопись поступила в издательский отдел 14 апреля 1994 года.