

Объединенный институт ядерных исследований

дубна

P7-87-482

1987

А.В.Тараканов, В.М.Шилов

ТУННЕЛИРОВАНИЕ ПРИ РАСПАДЕ И СЛИЯНИИ СЛОЖНЫХ ЯДЕР

Направлено в журнал "Ядерная физика"

*Саратовский государственный университет

I.Введение

Туннелирование заряженных частиц под кулоновским барьером является важной составной частью теорий подбарьерного слияния тяжелых ионов, деления ядер и \mathcal{A} - распада. До недавнего времени для расчетов проницаемости использовали WKB - приближение^{/I/} или его упрощенные варианты. Неадекватность WKB - проницаемости для описания очень малых сечений подбарьерного слияния в настоящее время ясно продемонстрирована во многих экспериментальных и теоретических работах^{/2-5/}.Учет возбуждения коллективных уровней в сталкивающихся ядрах увеличивает проницаемость кулоновского барьера для тяжелых ядер на порядок и выше. Этот же эффект проявляется и в реакциях спонтанного испускания тяжелых кластеров, что было показано недавно оценочными расчетами в рамках теории возмущений в работе^{/6/}.

Проницаемость кулоновского барьера при одной и той же энергии должна быть различной при распаде и слиянии ядер. На это нарушение симметрии проницаемости при прохождении сложной частици через несимметричный барьер впервые было обращено внимание в работе /⁷⁷. Там же были проведени расчеты для потенциалов простейшей формы в одномерном двухканальном случае. В данной работе мы избавимся от этих ограничений и численные расчеты проведем для физически интересного случая распада ядра $^{122}R\alpha$ на ^{17}C и $^{209}P\delta$ и слияния последних двух ядер. Анализ будет проводиться на основе многоканальной модели граничных условий ⁵,⁸.

2. Детали расчетов и обсуждение результатов

Мы начинаем с известной системы уравнений метода сильной связи каналов для радиальных волновых функций относительно движения ядер ¹⁴С и ²⁰⁸ рв :

$$\left[\frac{d^{2}}{dz^{2}} + \frac{2M}{\hbar^{2}}\left(E - \xi_{\mu} - V_{\mu}(z) + \frac{\lambda(\lambda+l)}{z^{2}}\right]R_{\mu}(z) = \frac{2M}{\hbar^{2}}\sum_{\beta}V_{\mu\beta}(z)R_{\beta}(z).$$
(I)

Здесь ℓ_{d} – энергия возбуждения в канале d, λ –спин возбуждаемого уровня, $V_{d}(i)$ – диагональная часть потенциала взаимодействия двух ядер, $V_{d,b}(i)$ – потенциал связи между основным и возбужденным каналами, \mathcal{M} – приведенная масса системи. В данной работе мы будем

٩

учитывать только каналы с неупругим возбуждением одного из сталкивающихся ядер.

Систему уравнений (I) будем решать с разными граничными условиями для реакций распада и слияния. В случае слияния для β -волны мы полагаем на больших расстояниях

$$R_{2}(2) = (G_{o} - iF_{o}) \delta_{o} - S_{1}(G_{\lambda} + iF_{\lambda}), \qquad (2)$$

где $F_{\lambda}(x_{\lambda})$ и $G_{\lambda}(x_{\lambda})$ – регулярная и нерегулярная кулоновские функции,

 k_{a} -волновой вектор в канале a. На расстоянии $2 = R_{\mu\rho}$, совпадащем с минимумом центрального потенциала, мы выбираем граничное условие в виде

$$\mathcal{R}_{\lambda}(z) = \mathcal{A}_{\lambda} h_{\lambda}^{(2)} (\kappa_{\lambda}' z), \qquad (3)$$
$$\kappa_{\lambda}' = \int \frac{2\mathcal{M}}{4^{2}} (E - V_{\lambda} (\mathcal{R}_{\kappa \mu})) \int_{z}^{y_{\lambda}}$$

где

и $h_{\lambda}^{(\ell_2)}$ – функция Ханкеля 2-го рода. Граничное условие (3) предполагает, что на расстоянии $2 = R_{KP}$ мн имеем только сходящуюся волну⁵.

Поток частиц, дошедних до расстояния 2: ℓ_{μ} , определим как вероятность туннелирования при слиянии :

$$F = \sum_{a} F_{a} = \sum_{b} \frac{\kappa_{a}}{\kappa_{b}} \left| A_{a} \right|^{2}.$$
 (4)

В реакциях распада граничные условия возьмем в следущем виде . На больших расстояниях мы имеем расходящиеся волны во всех каналах:

$$Q_{a}(z) = \int_{a}^{z} \left(G_{\lambda}\left(K_{a} z \right) + i F_{\lambda}\left(K_{a} z \right) \right), \tag{5}$$

а на расстоянии $2 = 2_{\mu \mu}$ мы имеем выходящую волну в основном канале и сходящиеся волны во всех каналах:

$$R_{1}(2) = h_{\lambda}^{(1)}(\kappa_{1}'2) \delta_{0} + A_{\lambda} h_{\lambda}^{(2)}(\kappa_{1}'2). \qquad (6)$$

Часть полного потока, прошедшая через барьер, определяет вероятность туннелирования при распаде

$$\Gamma = \sum_{\mu} T_{\mu} = \sum_{\mu} \frac{\kappa_{\mu}}{\kappa_{\mu}^{2}} \left| S_{\mu} \right|^{2}.$$
(7)

В качестве центрального потенциала мы используем потенциал типа "proximity" /9/, а для потенциала связи используем стандартное выражение макроскопической модели/10/:

$$V_{\mu j}(z) = \delta_{\mu} \left[-\frac{d V_{34}(z)}{d z} + V_{\mu j \Lambda} \log^{-1}(z) \right]. \tag{8}$$

Второе слагаемое в формуле (8) описывает кулоновское возоуждение, которое на расстояниях больших кулоновского барьера ведет себя как $2^{-\lambda-\prime}$.

В численных расчетах для реакции ${}^{14}C + {}^{208}P_{\ell} = {}^{222}R_{a}$ мы будем учитывать четыре возбужденных состояния ядра ${}^{208}P_{\ell}$: 3⁻, 5⁻, 2⁺ и 4⁺ с энергиями возбуждения \mathcal{E}_{a} , равными 2,6; 3,2; 4,1 и 4,3 МэВ и параметрами динамической деформации δ_{a} , равными 0,835; 0,49; 0,42 и 0,49 соответственно.

На рис.І показани центральный потенциал и потенциал связи для рассматриваемых ядер. В верхней части этого рисунка показано расположение радиусов половинной плотности $C_i = R_i - 4/R_i$, где $R_i = I.28 A_i''^3 + 0.8 A_i''^3 - 0.76$) на расстояниях между центрами ядер $z = R_{\mu\rho}$ и $z = R_6$ (R_6 - радиус кулоновского барьера). Видно, что уже при $z = R_{\mu\rho}$ ядра практически отделены друг от друга. Таким образом, предположение о том, что туннелирование определяется спектром разделенных ядер, является оправданным.

На рис.2 показаны энергетические зависимости полных проницаемостей и проницаемостей в различных каналах при распаде T_d и слиянии F_d . Для наглядности удобно их отнести к проницаемости, рассчитанной без учета связи каналов. Отметим, что проницаемости при распаде T_d соответствуют распаду из возбужденного ядра ²²² R_d , так как при спонтанном распаде мы имеем $Q_{peave} = 33,05$ МэВ. Расчеты показывают, что при низких энергиях полная проницаемость при распаде полностью определяется туннелированием в основном состоянии, а при слиянии заметный вклад в проницаемость дают и возбужденные каналы. Видно, что учет связи каналов приводит к усилению проницаемости для слияния уже при энергиях $E \approx V_{\rm b}$, а при распаде усиление незначительно и начинается при более низких энергиях.

Показанные на рис.2 коэффициенты для распада T_d дают распределение потоков в асимптотической области, а коэффициенты для слияния F_d — на расстоянии $2 = \rho_{\mu\rho}$, т.е. они учитывают также перераспределение потоков после прохождения кулоновского барьера.

Интересно выяснить, на каких расстояниях происходит наибольшее перераспределение падающего потока для реакций слияния и раснада. Для решения этой задачи разложим точные канальные волновые функции

2

-3

Рис. I. Центральный потенциал
(сплошная линия) и потенциал
связи (штриховая линия) в за-
висимости от расстояния между
центрами ядер "С и
$$2^{200}PG$$
. Ввер-
ху показаны конфигурации ядер
при $2 = R_{\mu\nu}$ и $2 = R_6$.

2

Рис.2. α – проницаемости в различных каналах при распаде T_{α} и слиянии F_{α} ; δ – полные проницаемости и проницаемость в основном канале. Стрелкой отмечена высота кулоновского барьера.

относительного движения по сходящимся и расходящимся волнам

$$R_{d}(z) = f_{d}(z) \Psi_{d}^{(-)}(z) + t_{d}(z) \Psi_{d}^{(+)}(z), \qquad (9)$$

для которых мы возьмем их квазиклассические выражения. Явный вид этих функций приведен в работе II. Выпишем здесь выражения только для сходящихся функций, нормированных на единичный поток:

$$\begin{split} \Psi_{d}^{(-)}(\tau) &= \frac{1}{\sqrt{k_{d}(\tau)}} \cdot e \times p \left[-i \int_{R}^{2} (z') dz' + \frac{\pi}{4} \right] \\ \Psi_{d}^{(-)}(\tau) &= \frac{i}{\sqrt{|k_{d}(\tau)|}} \cdot e \times p \left[-\int_{R}^{1} |k_{d}(\tau') d\tau' \right] + \frac{1}{2\sqrt{|k_{d}(\tau)|}} \cdot e \times p \left[\int_{R}^{2} |k(\tau') d\tau' \right] \\ \kappa_{d}^{2}(\tau) &= \frac{i}{\sqrt{|k_{d}(\tau)|}} \cdot e \times p \left[-\int_{R}^{1} |k_{d}(\tau') d\tau' \right] + \frac{1}{2\sqrt{|k_{d}(\tau)|}} \cdot e \times p \left[\int_{R}^{2} |k(\tau') d\tau' \right] \\ \kappa_{d}^{2}(\tau) &= \kappa_{d}^{2} - \frac{2 \cdot \kappa}{4^{2}} \sqrt{(\tau) - \frac{\lambda(\lambda+1)}{2^{2}}} \end{split}$$

локальное волновое число. Вблизи правой и левой точки поворота в подбарьерной области мы используем линейные комбинации функций Эйри/12/.

В верхней части рис.З для реакции слияния при энергии E=50 МэВ мн показали функции $|\mathscr{A}_{d}(z)|^{2}$, описывающие поток в основном и возбужденном каналах, идущий налево. В средней части рисунка для реакции распада при той же энергии показаны функции $|t_{d}(z)|^{2}$, описывающие поток, идущий направо. Стрелками показаны правая и левая точки поворота в основном и возбужденном каналах для этой энергии. Видно, что в реакции слияния система подходит к кулоновскому барьеру практически невозбужденной, а при распаде большая часть потока, идущего направо, оказывается в возбужденном состоянии. Это связано с тем, что в реакции слияния связь каналов перед точкой поворота осуществляется за счет плавно меняющегося потенциала кулоновского возоужденноя, а в реакции распада – за счет большого и резко меняющегося ядерного потенциала связи (см. рис.1).

В нижней части рис. З мы показали распад для случая, когда ядро $203 \rho \mathcal{C}$ с самого начала находится в возбужденном состоянии 3⁻ с энергией 2,6 МэВ и распад происходит при энергии E = 47,4 МэВ. Видно, что система с большой вероятностью успевает перейти в основное состояние и в асимптотической области почти весь поток находится уже в основном канале. Таким образом, для расчетов времен жизни тяжелых ядер по отношению к спонтанному распаду или распаду из возбужденных состояний необходимо учитывать спектроскопические факторы тех конфигураций, когда один из распадающихся фрагментов находится в нижайших возоужденных коллективных состояниях.

Можно представить, что аналогичные процессы будут происходить и с реакциями одно- и двухнуклонных передач, если спектроскопические факторы в родительском ядре для некоторых дочерних ядер велики и эти каналы сильно связаны с основным каналом распада. Известно, например^{/13/}, что в ядре ²²² Ra спектроскопический фактор для ядра ¹² С в 20 раз оольше, чем для ядра ¹⁴ С , но из-за проигрыша в Q реакц. в асимптотической области мы будем наблюдать ядро ¹⁶ С.

-5

Рис.З. Разложение падающего потока по сходящимся и расходящимся волнам для реакций слияния и распада соответственно. Сплошные линии - потоки в основном канале реакшии. пунктирные линии - в возбужденном канале, α - слияние при энергии E = 50 МэВ, δ - распад из основного состояния при полной энергии Е = 50 МэВ, в распад из состояния 3 при энергии E = 47.4 МэВ.

3.Заключение

9

В данной работе в реалистическом случае было продемонстрирована асимметрия полной проницаемости под кулоновским барьером в случае учета многих каналов реакции. Показано, что усиление проницаемости из-за связи с каналом неупругого возбуждения при распаде невелико, по сравнению с обратной реакцией слияния. Это может сказаться при описании конкуренции между делением и испарением частиц при снятии возбуждения составного ядра, так как параметры статистической испарительной модели обнуно выбираются из реакций слияния.

При изучении реакций спонтанного испускания тяжелых кластеров необходимо учитывать, что начальная распадная конфигурация может состоять из возбужденных осколков, а также из соседних по N и Z ядер. Это приведет к уменьшению теоретических оценок для времен жизни тяжелых ялер/14/.

Авторы благодарны Ф.А.Гарееву, Б.Н.Захарьеву и Ю.М.Чувильскому за обсуждение проблем , затронутых в настоящей работе.

Литература

I. Hill D.L., Wheeler J.A.-Phys.Rev., 1953, 89, p.1102

- Beckerman M. e.a.-Phys.Rev., 1981, C23, p.1581.
 Jahnke W. e.a.-Phys.Rev.Lett., 1982, 48, p.17.
- 4. Dasso C.H., Landowne S., Winter A.-Nucl.Phys., 1983,A405, p.381
- 5. Шилов В.М. ОИЯИ, Р4-86-843, Дубна, 1986.

6. Landowne S., Dasso C.H.-Phys. Rev., 1986, C33, p. 387.

- 7. Амирханов И.В., Захарьев Б.Н.-ЖЭТФ, 1965, 49, с.1097.
- 8. Афанасьев Г.Н., Пермяков В.П., Шилов В.М. Тезисы докладов XXXI Совещания по ядерной спектроскопии и структуре атомного ядра. "Наука" Л., 1981. с.495.

9. Back B.B. e.a.-Phys.Rev., 1985, C32, p.195.

- IO.Бор О., Моттельсон Б. Структура атомного ядра т.2 "Мир", М., 1977.
- II. Мигдал А.Б., Крайнов В.П. Приближение методы квантовой механики "Наука", М., 1966.

12. Справочник по специальным функциям. Под ред. Абрамовица М. и Стигана И. "Наука", М., 1979.

13. Кадменский С.Г., Фурман В.И., Чувильский Ю.М. В трудах Школы по структуре ядра, Алушта, 1985, ОИЯИ, Д4-85-851,Дубна, 1985, с.385. 14. Сэндулеску А., Поэнару Д.Н., Грейнер В.-ЭЧАЯ, 1980, т.II, с.1334.

> Рукопись поступила в издательский отдел 26 MOHA 1987 FOIA.

> > .7

6

ТЕМАТИЧЕСКИЕ КАТЕГОРИИ ПУБЛИКАЦИЙ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Тематика Индекс 1. Экспериментальная физика высоких энергий 2. Теоретическая физика высоких энергий 3. Экспериментальная нейтронная физика 4. Теоретическая физика низких энергий 5. Математика 6. Ядерная спектроскопия и радиохимия 7. Физика тяжелых ионов 8. Криогеника 9. Ускорители 10. Автоматизация обработки экспериментальных данных 11. Вычислительная математика и техника 12. Химия 13. Техника физического эксперимента 14. Исследования твердых тел и жидкостей ядерными методами 15. Экспериментальная физика ядерных реакций при низких энергиях 16. Дозиметрия и физика защиты 17. Теория конденсированного состояния 18. Использование результатов и методов фундаментальных физических исследований

в смежных областях науки и техники

19. Биофизика

 Тараканов А.В., Шилов В.М.
 Р7-87-482

 Туннелирование при распаде и слиянии сложных ядер

На основе многоканальной модели граничных условий продемонстрирована асимметрия полной проницаемости под кулоновским барьером при учете внутренней структуры сталкивающихся ядер. Для реакций распада усиление вероятности тунне лирования по сравнению с одноканальным случаем оказалось небольшим. Показана важность учета состояний, в которых один из распадающихся фрагментов находится в возбужденном состоянии.

Работа выполнена в Лаборатории теоретической физики ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1987

Перевод авторов

Tarakanov A.V., Shilov V.M. P7-87-482 Tunnelling in decay and fusion reactions of complex nuclei

The total penetrability at energies below the Coulomb barrier is shown to be asymmetric in the framework of the coupled-channel boundary-condition model that takes into account the internal structure of the colliding nuclei. The increase of the tunnelling probability for the decay reactions is small as compared with the single-channel case. It is shown that the consideration of the initial excited states of decay fragments is important.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1987