5-56 865

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

1208/2-75

P7 - 8567

31/11.25

Б.Бочев, С.Илиев, Р.Калпакчиева, С.А.Карамян, Т.Куцарова

ВРЕМЕНА ЖИЗНИ ВЫСОКОСПИНОВЫХ ВРАЩАТЕЛЬНЫХ СОСТОЯНИЙ ИЗОТОПА ¹⁶⁴ УЬ, ИЗМЕРЕННЫЕ МЕТОДОМ ЭФФЕКТА ДОППЛЕРА НА ЯДРАХ ОТДАЧИ

P7 - 8567

Б.Бочев, С.Илиев, Р.Калпакчиева, С.А.Карамян, Т.Куцарова

ВРЕМЕНА ЖИЗНИ ВЫСОКОСПИНОВЫХ ВРАЩАТЕЛЬНЫХ СОСТОЯНИЙ ИЗОТОПА¹⁶⁴ УЬ, ИЗМЕРЕННЫЕ МЕТОДОМ ЭФФЕКТА ДОППЛЕРА НА ЯДРАХ ОТДАЧИ

Направлено в ЯФ

Объздиненный енститут жерных есследований БИБЛИОТЕКА Бочев Б., Илиев С., Калпакчиева Р., Карамян С.А., Куцарова Т.

P7 - 8567

Времена жизни высокоспиновых врашательных состояний изотопа ¹⁶⁴ Уь, измеренные методом эффекта Допплера на ядрах отдачи

При помощи метода допплеровского смещения гамма-лучей на ядрах отдачи измерены времена жизни высокоспиновых уровней полосы основного состояния и времена независимого заселения изотопа ¹⁶⁴Yb, полученного в реакции (⁴⁰ Ar, 4n).

Установлено, что сильного торможения переходов в области бэкбендинга не происходит.

Экспериментальные значения приведенных вероятностей переходов В(Е2) сравниваются с некоторыми теоретическими предсказаниями.

Препринт Объединенного института ядерных исследований Дубна 1975

Bochev B., Iliev S., Kalpakchieva R., P7 - 8567 Karamian S.A., Kutsarova T.

Lifetimes of High Spin Rotational States of ¹⁶⁴Yb Measured by Doppler-Shift Recoil-Distance Method

The lifetimes and the side-feeding times of the high-spin ground-band levels of $^{164}\rm Yb$ have been measured by a recoil-distance Doppler-shift method following $(^{40}\rm Ar,\,4n)$ reaction. Only a small retardation of the transitions in the back-bending region is found. The experimental B(E2) values are compared with theoretical predictions.

Preprint of the Joint Institute for Nuclear Research Dubna 1975

ВВЕДЕНИЕ

Энергия высокоспиновых уровней для многих четночетных деформированных ядер сильно отклоняется от

í.,

вращательного закона $E_{I} = \frac{\hbar^2}{2J} I (I+1)$, так что энергии переходов между уровнями не только становятся существенно меньшими, чем по формуле для жесткого ротатора $\Delta E_{I} + I - 2 = -\frac{\hbar^2}{J} (2I-1)$, но даже уменьшаются

с ростом спина в определенной области его значений /как правило - I = 12, 14, 16th /. Такому поведению /эффект бэкбендинга/ соответствует характерная S -образная кривая для зависимости момента инерции ядра от квадрата частоты вращения.

Имеется целый ряд теоретических моделей, созданных с целью объяснения эффекта бэкбендинга. Однако физическая сущность явления еще далеко не понята. Представляется важным дальнейшее накопление экспериментальных данных, в частности, измерение приведенных вероятностей квадрупольных переходов между состояниями полос в той области углового момента, где имеет место аномальный рост момента инерции, а также измерение магнитных моментов для тех же состояний. С этой целью нами была поставлена задача измерения времен жизни /и, следовательно, величин B(E2) / высокоспиновых вращательных уровней изотопа 164 Yb, для которого экспериментально найден $^{/1}$ ярко выраженный бэкбендингэффект в области I \geq 14. В последнее время стали известны данные $^{/2/}$, показавшие, что переходы в зоне бэкбендинга $14^+ \rightarrow 12^+$ для 158 Er и $12^+ \rightarrow 10^+$ для 130 Се имеют факторы торможения по сравнению с моделью жесткого ротатора - 1,25±O,3O и 1,39±O,35 соответственно.

Ранее нами были измерены времена жизни нижних уровней ротационной полосы вплоть до спина 8⁺ для 164 Yb /3/. Настоящие опыты выполнялись с помощью усовершенствованной аппаратуры, обеспечившей, в частиости, высокую точность в измерении малых расстояний пролета ядер отдачи вплоть до 5 мкм, что было необходимо для измерения короткоживущих состояний /⁷ 1 nc/ в области высоких спинов.

2. ЭКСПЕРИМЕНТ

Уровни ¹⁶⁴Yb заселялись в реакцин ¹²⁸Ie(40Ar, 4n). Энергия пучка ионов ⁴⁰Ar циклотрона тяжелых ионов У-ЗОО ЛЯР, после прохождения тормозящих фольг, составляла 190 *МэВ*. Был применен метод допплеровского смещения гамма-лучей из образованных в реакции ядер отдачи, распадающихся во время пролета заданного расстояния от мишени до металлического стоппера /4/. Мишень из металлического теллура с содержанием ¹²⁸Te 94-97% имела толщину 1 *мг/см*². Поступательное перемещение ее по отношению к стопперу осуществлялось при помощи микрометрического винта. Изменение положения мишени регистрировалось высокопрецизионным микрометрическим индикатором, что позволило достигнуть точности измерения относительных расстояний не хуже 1 *мкм*.

Для определения начала отсчета и для контроля измеряемых расстояний на пучке был применен метод измерения электрической емкости между мишенью и стоппером /5/.Настройка относительной ориентации плоскости стоппера и мишени проводилась при помощи микроскопа. Отклонение от параллельности в зависимости от качества поверхности мишени и стоппера для их рабочей части ие превышало 2-5 мкм.

Гамма-лучи из реакции регистрировались под углом 0°по отношению к направлению пучка при помощи Ge(Li)-

4

-детектора с объемом 34 см³н разрешением 2,4 кэВ. Использовалась схема блокировки, позволявшая записывать одновремению спектр мгновенного гамма-излучения и фоновый спектр в промежутках между импульсами ионного источника циклотрона.

В данной геометрии для каждого перехода в зависимости от времени жизни соответствующего уровня и расстояния между мишенью и стоппером, в общем случае могут наблюдаться два гамма-пика. Пик с энергией перехода Е^и и интенсивностью І^и соответствует тем ядрам, которые распались после торможения в неподвижном стоппере. Пик с большей энергией Е^ви интенсивностью [^в возникает в результате излучения ядер, распавшихся во время пролета от мишени до стоппера. Изменение относительной интенсивности несмещенного и смещенного пиков в зависимости от расстояния пролета для переходов с уровней 8⁺, 10⁺, 12⁺, 14⁺, 16⁺и 18⁺ показано на рис. 1. Были также измерены спектры при "нулевом" и "бесконечно большом" расстоянии, когда должны наблюдаться либо несмещенный, либо только смещенный пик, что позволило выяснить вопрос о присутствии фоновых гамма-линий в обеих энергетических позициях и получить информацию о форме линии, необходимую при обработке более сложных участков спектра. Для каждого расстояния { D ; } определялась доля интенсивности несмещенного пика $Y_i(D_i) = J_i^u(J_i^u + J_i^s)^{-1/i} = 18, 16, 14, .../$ данного перехода. Средняя скорость ядер отдачи находилась непосредственно из наблюдаемого в спектрах смещения у-лучей и после поправки на телесный угол детектора составляла /0,0200±0,0004/ c.

3. ОБРАБОТКА ДАННЫХ

При определении значений времен жизни состояний с высоким спином из экспериментальных отношений { Y_i (D_j)}, исправленных на ряд факторов /3,4/, необходимо учитывать тот факт, что отдельные уровни заселяются как непосредственно от предыдущего уровня полосы, так и независимо из состояний континуума.

Рис. 1. Гамма-спектры переходов 8-6, 10-8, 12-10, 14-12, 16-14, и 18-16 ¹⁶⁴ Yb при разных расстояниях между мишенью и стоппером, измеренные детектором с объемом 34 см³.Индексом и отмечены несмещенные, s - допплеровски смещенные пики.

В данном опыте вклад независимого заселения, определенный из относительной интенсивности переходов, присутствовал для уровней с $I > 8^+$. Временная структура компонент независимого заселения неизвестна и в общем случае ее нельзя экспериментально оценить. В результате анализа гамма-спектров выяснилось, что в отдельные уровни ($18^+, 16^+, \ldots, 8^+$), где нет мешающих фоновых линий, не наблюдается вклада заселения с большим временем жизни />20 *пкс*/. Верхняя граница интенсивности такого заселения равна 5%.

Обработка экспериментальных данных проводилась далее по модели /6/, описывающей общий случай заселения и распада вращательной полосы, в которой независимое заселение каждого уровня /в том числе и первого наблюдаемого/ аппроксимируется одним экспоненциальным членом. Извлечение нужной информации проводилось путем решения на ЭВМ обратной задачи одновременного нахождения средних времен жизни уровней $\{r_i\}$ и времен независимого заселения $\{\phi_i\}$ из экспериментальных отношений $\{Y_i(D_j)\}$ и интенсивностей заселения с использованием регуляризованных итерационных процессов типа Гаусса-Ньютона /8/.

На рис. 2 показаны расчетные кривые распада уровней, соответствующие найденным значениям $\{r_i\}$ и $\{\phi_i\}$. Экспериментальные отношения $\{Y_i(D_j)\}$ приведены с погрешностями, имеющими в основном статистический характер.

4. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

В таблице суммированы данные об энергиях переходов, средних временах жизни, интенсивностях и временах независимого заселения уровней ¹⁶⁴Yb, полученные в настоящей работе. Результаты для времен жизни уровней 2,4,6,8 находятся в хорошем согласии с данными нашей предыдущей работы /3/.

Указанные в таблице ошибки к значениям $\{\tau_i\}$ н $\{\phi_i\}$ получены путем статистической оценки решения /7/, по данным об отношениях $\{Y_i(D_j)\}$ и их погрешностях,

Рис. 2. Кривые распада для переходов 6-4, 8-6, 10-8, 12-10, 14-12, 16-14, 18-16 ¹⁶⁴Yb, полученные для данного решения на ЭВМ. Точки - экспериментальные отношения Y(D). Ошибки приведены только для некоторых отношений.

а также исследованием в ряде случаев совместной доверительной области /8/ пар сильнокоррелированных параметров r_i и ϕ_i , относящихся к одному и тому же уровню (i) полосы. Относительно большие погрешности значений времен независимого заселения отражают тот факт, что этим величинам не соответствуют экспериментально наблюдаемые переходы. Параметры { ϕ_i } находятся из экспериментальных кривых распада уровней, на ход которых они, очевидно, оказывают непосредственное влия-

ние в соответствии с их величиной и интенсивностью независимого заселения, определенными экспериментально. Неточность определения нулевой позиции аппаратуры /±2 мкм/ сказывается заметно лишь на точности значений времени жизни и времени заселения первого наблюдаемого уровня /18 +/. Дополнительная погрешность значений $\tau_{18} = \phi_{18}$, составляющая ~ 0,3 *пкс* и ~ 0,7 *пкс* соответственно, включена в ошибки этих величин, приведенных в таблице.

Из измеренных времен жизни были определены приведенные вероятности переходов В(Е2),/см. табл./. В последнем столбце таблицы экспериментальные значения времен жизни уровней сравниваются с расчетными данными для жесткого ротатора. Для большинства переходов /за исключением перехода 16⁺ 14⁺ и, возможно, 14⁺ → 12⁺/, наблюдается хорошее согласие значений { r_i } с соответствующими значениями ротатора в пределах погрешностей эксперимента. Сравнительно большое время жизни уровня 16⁺ указывает на замедление перехода 16⁺ 14⁺ по отношению к вращательному, равное 1,45[±]O,29.

Этот переход находится в области обратного хода кривой момента инерции в зависимости от частоты вращения для ¹⁶⁴ Yb, поэтому представляет интерес сравнить полученный в настоящей работе результат с литературными данными.

Выше была приведена ссылка /2/ на работы, посвященные измерению величин В(Е2) - переходов в зоне бэкбендинга для изотопов ¹⁵⁸ Ег и ¹³⁰ Се Других данных в литературе пока нет. Наши результаты для ¹⁶⁴ Yb в согласин с работами /2/ позволяют сделать экспериментально обоснованный вывод о том, что сильное торможение переходов в зоне бэкбендинга не имеет места. Для переходов, соответствующих области обратного хода момента инерции, фактор замедления не превышает 1,2 - 1,4. Для других переходов возможное замедление лежит в пределах 10-15%, определяемых экспериментальной точностью. От этих результатов несколько отличаются данные /9/ по временам жизни уровней для изотопов диспрозия и эрбия, полученные методом анализа формы допплеровской линин. Для перехода 12⁺ → 10⁺, находящегося

		18	Guinta				
Перехоц	Знергия (кай)	Незанисиное Заседение	(10 ⁻¹² c)	(10 ⁻¹² °)	ÅT	B(E2, I+I-2) (e ² x10 ⁻⁴⁸ cm ⁴)	T por
s ↓ 0	I23,5	0		IZ72450	I,420	9E0"0#8I6"0	I
4 + 2	262,8	0		42,8 <u>+</u> 1,5	0,110	I.356±0.048	0,961±0,034
6 4 4	375,0	0		7,24.0,25	680°0	I,456 <u>40</u> ,050	0,992+0,034
9 † 8	463,0	Itel	6.315.3	2.2010.70	0,021	I.7040.54	82.0400.0
10 1 8	6"083	14-71	5.1 <u>+</u> 4.2	1, 19 <u>4</u> 0, 40	0,015	I.6010.54	0,97±0,33
I2 + I0	576,9	Ita	4.813.2	0.8010.30	0,012	I.57±0.57	I,01 <u>+</u> 0,38
I4 + I2	569 ° 7	1 ⁴	2,3 <u>4</u> I,I	I.05 <u>0</u> .30	0,012	I.28±0.25	I,25 <u>4</u> 0,24
I6 → I4	490	I2+I.5	I.340.5	2,53 <u>1</u> 0,50	0,018	1,1140,22	I,45 <u>4</u> 0,29
I8 → I6	543	36 <u>4</u> 3,5	5 .3+1. 5	I.07±0.50	0,0I4	I,59 <u>4</u> 0,75	I.02+0.48

еще в области плавного изменения момента инерции, было найдено замедление, равное $1,39\pm0,15$; $1,33\pm0,15$ и $1,42\pm0,25$ для 160 Dy, 162 Dy, 164 Er соответственно. Отметим, что результаты метода анализа формы линии сильно зависят от недостаточно хорошо известных удельных энергетических потерь ядер отдачи в веществе.

Физические причины аномального поведения момента инерции, называемого бэкбендинг, наиболее естественно можно объяснить пересечением двух вращательных полос: полосы основного состояния и возбужденной полосы с большим моментом инерции. Относительно природы второй возбужденной полосы имеются разные предположения. и для редкоземельной области наиболее вероятными механизмами ее появления считают эффект антиспаривания /10/и эффект вращательного развязывания /11/ или их комбинацию. Надежных теоретических расчетов вероятностей переходов между состояниями, находящимися в области бэкбендинга, пока нет. Грубая оценка /12/ степени замедления, вызванного эффектом антиспаривання, дает значение для перехода 14⁺→ 12⁺¹⁵⁸Er, не превышающее 30% и для соседних ему переходов величину ~10%. По модели /11/ переходы вблизи точки пересечения полос должны быть замедлены не более чем на 10% по отношению к ротационным скоростям. Эти теоретические оценки не противоречат нашим экспериментальным данным. В таблице приведены также времена независимого заселения { ϕ_i } высокоспиновых уровней ¹⁶⁴Yb.

Несмотря на значительные погрешности, можно заметить тенденцию увеличения { ϕ_i } при переходе к более низколежащим уровням полосы. Порядок величины времен заселения /2-6/ *пкс* не противоречит существующим представлениям /^{11/} о времени протекания ираст-каскада, состоящего из ускоренных E2 - переходов.

Авторы благодарны академику Г.Н.Флерову и Ю.Ц.Оганесяну за постоянное внимание и интерес к работе и советы, Э.Наджакову за полезные обсуждения, Л.Александрову - за помощь в математической обработке данных, В.Г.Субботину - за помощь в подготовке элект-

10

11

ронной части аппаратуры, а также группе эксплуатации циклотрона У-ЗОО за обеспечение пучка нужных параметров.

Литература

- I. R.M.Lieder, W.F.Davidson, P.Jahn, H.-J.Probst and C.Mayer-Böricke, Phys.Lett., 39B, 196 (1972); P.H.Stelson, G.B.Hagemann, D.C.Hensley, R.L.Robinson, L.L.Riedinger, and R.O.Sayer. Bull. Am. Phys. Soc., 18, 581 (1973).
- 2. D.Ward, H.R.Andrews, J.S.Geiger, R.L.Graham, J.F.Sharpey-Schafer, Phys.Rev.Lett., 30, 493 (1973); D.Ward, H.R.Andrews, G.J.Costa, J.S.Geiger, R.L.Graham and P.Taras. XXIV Совещание по ядерной спектроскопии и структуре атомного ядра. Харьков, 1974.
- 3. Б.Бочев, С.А.Карамян, Т.Куцарова, Я. Ухрин, Е.Наджаков, Ц.Венкова, Р.Калпакчиева. ЯФ, 16, 633 /1972/.
- 4. K.W.Jones, A.Z.Schwarzschild, E.K.Warburton, D.B.Fossan. Phys. Rev., 178, 1773 (1969).
- 5. T.K.Alexander and A.Bell. Nucl. Instr. & Meth., 81, 22 (1970).
- 6. Б.Бочев, Л.Александров, Т.Куцарова. Сообщение ОИЯИ, Р5-8321, Дубна, 1974.
- 7. Л.Александров. Сообщение ОИЯИ Р5-7259, Дубна, 1973.
- 8. Д.Химмельблау. Анализ процессов статистическими методами, Мир, М., 1973.
- 9. F.Kearns, G.D.Dracoulis, T.Inamura, J.C.Lisle and J.C.Willmott, J.Phys., A7, 211 (1974).
- 10. B.R.Mottelson and J.G. Valatin. Phys.Rev.Lett., 5, 511 (1960).
- 11. F.S.Stephens and R.S.Simon. Nucl. Phys., A183, 257 (1972).
- 12. R.A.Sorensen. Rev.Mod.Phys., 45, 353 (1973).

Рукопись поступила в издательский отдел 30 января 1975 года.