

СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

Экз. чит. зала р7-84-68

А.С.Ильинов*, Е.А.Черепанов

РАСПАД ВЫСОКОВОЗБУЖДЕННЫХ СОСТАВНЫХ ЯДЕР: СТАТИСТИЧЕСКИЙ ПОДХОД

^{*} Институт ядерных исследований АН СССР, Москва

1. ВВЕДЕНИЕ

Как известно, реакция полного слияния ядер представляет собой предельный случай неупругого ядро-ядерного взаимодействия. когда образовавшемуся составному ядру полностью передаются импульс, угловой момент и энергия налетающей частицы. Поэтому реакции с образованием составного ядра традиционно привлекались не только для изучения механизма ядро-ядерного взаимодействия, но и для исследования свойств ядер, имеющих аномальные значения чисел нейтронов N и протонов Z, углового момента I и энергии возбуждения Е*. Данная работа посвящена одному из направлений, принадлежащих этому широкому полю деятельности, а именно - изучению распада и свойств высоковозбужденных ядер. При больших возбуждениях Е* ~ 100 МэВ невозможно теоретически рассматривать свойства отдельных ядерных состояний. Кроме того, в этом случае в эксперименте можно получить лишь информацию о структуре ядра, усредненную по большому числу состояний. В силу этих обстоятельств в качестве основы для анализа экспериментальных данных естественно взять статистический подход. Цель работы - в рамках статистической модели проанализировать имеющиеся экспериментальные данные по распаду высоковозбужденных /10 \leq E* \leq 150 МэВ/ составных ядер, образовавшихся в реакциях полного слияния, рассмотреть характерные "тепловые" эффекты, которые проявляются при сильном "нагревании" ядра, определить пределы применимости статистической модели, основанной на концепции составного ядра.

2. СТАТИСТИЧЕСКАЯ МОДЕЛЬ РАСПАДА ВЫСОКОВОЗБУЖДЕННОГО ЯДРА С БОЛЬШИМ УГЛОВЫМ МОМЕНТОМ

В настоящее время существуют различные модификации статистической модели /см., например, монографию $^{/1}$ /, которая используется для описания распада составного ядра. Учитывая, что в реакциях с тяжелыми ионами образовавшиеся составные ядра имеют большой угловой момент I>>1h, выберем квазиклассическую формулировку $^{/2}$ этой модели, в которой пренебрегают спинами S испущенных частиц, а угловые моменты начального \vec{I}_R и конечного \vec{I}_R ядер, а также орбитальный момент $\vec{\ell}$ частицы рассматривают как классические векторы. Тогда вероятность эмиссии в единицу времени частицы с энергий E_{ν} и с моментом $\vec{\ell}$ в направлении \vec{n}

из составного ядра с угловым моментом $\vec{I}_{_{\rm H}}$ и энергией возбуждения $E_{_{\rm H}}^*$ имеет вид $^{/2/}$:

$$P_{\vec{l}} (\vec{\ell}, \vec{n}, E_{\nu}) = (28_{\nu} + 1) \frac{\mu_{\nu} E_{\nu}}{\pi^{2} h^{2}} \frac{\rho_{\kappa} (E_{\kappa}^{*}, \vec{l}_{\kappa})}{\rho_{\mu} (E_{\mu}^{*}, \vec{l}_{\mu})} d\sigma_{inv} (\vec{\ell}, \vec{n}, E_{\nu}).$$
 /1/

Здесь обратное сечение захвата частицы с орбитальным моментом -- , влетающей в ядро в направлении - п, определяется выражением

$$\sigma_{\text{inv}} (\vec{\ell}, \vec{n}, E_{\nu}) = \lambda_{\nu}^{2} T_{\nu} (\ell, E_{\nu}) \cdot \delta (\vec{n} \vec{\ell}).$$
 /2/

В /1/, /2/ индексом ν обозначен тип испускаемой частицы (ν = = n, p, d, t, 3 He, α), μ - ее приведенная масса, λ - дебройлевская длина волны, T - коэффициент прохождения, $E_H^* = E_H^* - E_{\nu} - B_{\nu}$ энергия возбуждения остаточного ядра, B_{ν} - энергия связи частицы. Плотность уровней остаточного ядра вычисляется с учетом закона сохранения углового момента

$$\rho_{K}(\vec{I}_{K}) = \int \rho_{H}(\vec{I}_{H}) \cdot \delta^{3}(\vec{\ell} + \vec{I}_{K} - \vec{I}_{H}) d^{3}\vec{I}_{K}.$$
 /3/

При этом зависимость плотности состояний от углового момента определяется соотношением $^{/1/}$ ρ (E*,I) = ρ (U,O), где $U=E^*-E_R$ и $E_R=h^2\;I\;(I+1)/2\;\theta$ — "тепловая" и вращательная энергии ядра, θ — момент инерции ядра.

Интегрируя уравнение /1/ по соответствующим переменным, можно получить выражения для энергетического спектра, углового распределения испущенных частиц и для парциальных ширин распада $\Gamma_{\nu} \equiv \mathbf{h}^{-1} \, \mathbf{P}_{\nu}$ составного ядра. Парциальные ширины Γ_{ν} определяют конкуренцию между разными каналами распада составного ядра; для них используются следующие приближенные формулы /см., например, /1/):

$$\Gamma_{\nu} (E_{H}^{*}, I_{H}) \approx \frac{2(2S_{\nu} + 1)}{\pi^{2} h^{2} \rho_{H}(U)} \int_{\nu}^{U - B_{\nu}} \sigma_{inv} (E_{\nu}) \rho_{K} (U - B_{\nu} - E_{\nu}) \cdot E_{\nu} dE_{\nu}, /5a/$$

$$\Gamma_{\rm f} (E_{\rm H}^*, I_{\rm H}) \approx (2\pi \rho_{\rm H}(U))^{-1} \int_{0}^{U_{\rm s} - B_{\rm f}} \rho_{\rm s} (U_{\rm s} - B_{\rm f} - \epsilon) d\epsilon,$$
 /56/

$$\Gamma_{\gamma} \left(\mathbf{E}_{\mathrm{H}}^{*}, \mathbf{I}_{\mathrm{H}} \right) \approx \frac{3}{\left(\pi \, \mathrm{hc} \right)^{3} \rho_{\mathrm{H}} \left(\mathbf{U} \right)} \cdot \int_{0}^{\mathbf{U}} \sigma_{\gamma} \, \mathbf{A} \left(\mathbf{E}_{\gamma} \right) \cdot \rho_{\mathrm{K}} \left(\mathbf{U} - \mathbf{E}_{\gamma} \right) \cdot \mathbf{E}_{\gamma}^{2} \cdot d\mathbf{E}_{\gamma} \cdot /5 \, \mathrm{B} /$$

В выражении /5а/ для парциальной ширины эмиссии частицы проинтегрированное по углам обратное сечение $\sigma_{\rm inv}$ обычно рассчитыватют с помощью оптической модели, результаты расчета можно аппроксимировать формулой

$$\sigma_{\text{inv}} = \begin{cases} \sigma_{g} \cdot c_{1} \cdot (1 + c_{2} / E_{\nu}), & \nu = n, \\ \sigma_{g} \cdot (1 + c_{3}) \cdot (1 - c_{4} \cdot V_{\nu} / E_{\nu}), & \nu = p, d, t, {}^{3}\text{He}, a. \end{cases}$$
 /6/

Здесь $\sigma_g = \pi \, r_o^2 \, (A_{K\nu}^{1/3} + A_{\nu}^{1/3})^2$ - геометрическое сечение, $A_{K\nu}$ и A_{ν} - атомные числа остаточного ядра и испущенной частицы, V_{ν} - кулоновский барьер, r_o , c_1 , c_2 , c_3 , c_4 - параметры, значения которых приведены r_o В выражении /56/ для делительной ширины тепловая r_o и вращательная r_o энергии в седловой точке деления связаны соотношением r_o = r_o = r_o . Такая запись ширины r_o учитывает изменение величины барьера деления вращательного ядра, поскольку r_o (1) = r_o (0) - (r_o = r_o 8) /подробнее см. /4/. Наконец, в выражении /5в/ для парциальной ширины эмиссии электрического дипольного гамма-излучения r_o - сечение фотопоглощения *.

Хорошо известные выражения /1-5/ статистической модели описывают идеализированную ситуацию, когда составное ядро имеет фиксированные значения углового момента $\vec{\mathbf{I}}$ и энергию возбуждения Е*. Реальная картина распада высоковозбужденного ядра значительно сложнее, потому что ядро последовательно испускает достаточно большое число частиц, пока не перейдет в основное состояние. При этом промежуточные ядра в звеньях испарительной цепочки будут иметь весьма широкое распределение по энергии возбуждения E^* , угловому моменту I, по нуклонному составу Zи N. Усреднить статистические выражения по характеристикам промежуточных ядер и получить результат в аналитическом виде можно только ценой грубых приближений, поэтому для расчета испарительного каскада, как правило, используют численные методы интегрирования уравнения /1/. Здесь для описания распада высоковозбужденного ядра будет выбран метод Монте-Карло, поскольку в отличие от других способов расчета $^{76-8/}$ в нем точно /в каждой испарительной цепочке, а не в среднем/ учитываются законы сохранения углового момента, энергии, импульса, заряда и массового числа, что позволяет корректно учесть роль флуктуаций в испарительном каскаде, рассчитывается широкий набор характеристик процесса /распределение по углам, энергии, орбитальному моменту и числу испущенных частиц разного типа, выход изотопов, вероятность деления и т.д./. Общая схема расчета подробно изложена в 19/: дальнейшее развитие этого метода /учет конкуренции эмиссии у-квантов и деления/ и сравнение расчетов с экспериментом изложены в /10-12/. В последние годы такой метод расчета распада

^{*} Электрические дипольные гамма-переходы преобладают в области статистического гамма-каскада при $U>1,5-2,0\,$ МэВ; при меньших значениях энергии определяющую роль играет квадрупольное гамма-излучение $^{/5/}$.

высоковозбужденного ядра с большим угловым моментом развивался также и в работах других авторов /13, 14/.

Чтобы выполнить сравнение статистической модели с экспериментом, уравнение /1/ нужно не только усреднить по ступеням испарительного каскада, но и просуммировать по всем значениям I и проинтегрировать по всем направлениям I углового момента составных ядер, образовавшихся в реакции полного слияния*. Это требует вычисления сечения образования составного ядра $\sigma_{\rm CN}$, которое в данной работе выполняется более корректно, чем в предыдущих $^{9-12}/$

Сечение образования составного ядра σ_{CN} составляет часть полного неупругого сечения

$$\sigma_{R} = \pi \lambda_{o}^{2} \sum_{I=0}^{\infty} (2I+1) \cdot T_{o} (I, E_{o}).$$
 /7/

Здесь λ_o - дебройлевская длина волны относительного движения взаимодействующих ядер, E_o - энергия иона в системе центра масс, T_o - коэффициент прохождения I -ой парциальной волны через потенциальный барьер V_I . Потенциал, описывающий ядро-ядерное взаимодействие, при расчете σ_R был взят в виде

$$V_{I}(r) = V_{R} + V_{C} + V_{N}, \qquad (8)$$

где

$$V_{R} = h^{2} I (I + 1) / 2\mu r^{2}$$

$$V_{N} = V_{o} \left\{ 1 + \exp \left[\frac{r - r_{ov} \left(A_{i}^{1/3} + A_{t}^{1/3} \right)}{d} \right] \right\}^{-1}$$

В выражениях /8/ R_c = 1,3($A_i^{1/3}$ + $A_i^{1/3}$) Фм, индексами i и t отмечены величины, относящиеся κ иону и мишени соответственно, μ - приведенная масса системы ион-мишень, эмпирическая систематика параметров потенциала V_o , r_{ov} и d приведена в /15/. Рассчитав σ_R , далее c помощью эмпирической систематики отношения σ_{CN}/σ_R можно найти величину сечения полного слияния

$$\sigma_{\rm CN} = \pi \lambda_{\rm o}^2 \sum_{\rm I=0}^{\rm l_{cr}} (2{\rm I} + 1) \cdot {\rm T_o} ({\rm I, E_o}),$$
 /9/

где $I_{\rm cr}$ - предельная величина углового момента составного ядра.

Рис.1. Зависимость отношения $\sigma_{\rm CN}/\sigma_{\rm R}$ от произведения зарядов взаимодействующих ядер ${\bf Z_i}$ ${\bf Z_t}$. Экспериментальные точки взяты из $^{/16}/$. Сплошная и пунктирная кривые — расчет по формулам $/10{\rm a}/$ и $/10{\rm f}/$ соответственно.

Рис. 2. Зависимость критического углового момента $I_{\rm cr}$ составного ядра $^{150}{\rm Gd}$ от его энергии возбуждения E^* . Экспериментальные точки для реакций $^{16}{\rm O} + ^{134}{\rm Ba}$ (о)и $^{40}{\rm Ar} + ^{110}{\rm Pd}$ (\bullet) взяты из $^{1/}$. Сплошная и пунктирная кривые — результат полуэмпирического расчета, использующего выражения $^{10a}{\rm I}$ и $^{106}{\rm I}$ соответственно. Показана также ираст-линия, рассчитанная с твердотельным моментом инерции составного ядра.

Ясно, что такая процедура имеет смысл для не слишком тяжелых систем с Z_i Z_t ≤ 1500 , у которых энергетическая зависимость сечения реакции σ_R и сечения слияния σ_{CN} описывается одним и тем же потенциалом V_i (r) $^{/15}$ /. В области $Z_i Z_i \leq 1500$ экспериментальные значения σ_{CN}/σ_R в пределах их неопределенностей можно одинаково хорошо /см.рис.1/ аппроксимировать выражениями:

$$\sigma_{\rm CN}/\sigma_{\rm R} = (1 + 5 \cdot 10^{-4} \cdot \rm Z_i \, Z_t)^{-1},$$

$$\sigma_{\rm CN}/\sigma_{\rm R} = [(0.945 \pm 0.055) - 2.7 \cdot 10^{-4} \cdot \rm Z_i \, Z_t].$$
/10a/

При расчете $\sigma_{\rm CN}$ для более тяжелых систем с ${\bf Z_i}\,{\bf Z_t} > 1500$ необходимо, кроме того, учесть существование энергетического сдвига между барьером слияния ${\bf B_{fus}}$ и барьером взаимодействия ${\bf B_{int}}$; в данной работе это делалось с помощью метода, описанного в $^{/15/}$.

Полуэмпирический способ расчета сечения образования составного ядра, опирающийся на выражения /7-10/, хорошо описывает значения $\sigma_{\rm CN}$ вплоть до энергий иона, превышающих величину барьера слияния ${\bf B}_{\rm fus}$ на 40-50 MaB /см., например, рис.2/. При больших энергиях, где слияние определяется уже не проницаемостью потенциального барьера ${\bf V}_{\rm I}$ (г), а включением диссипативных сил на некотором критическом расстоянии ${\bf r}_{\rm cr}^{-1/2}$, зависимость ${\bf I}_{\rm cr}$ (E) становится слабой. Здесь величину ${\bf I}_{\rm cr}$ будем находить из условия наилучшего согласия статистического расчета с экспериментом.

^{*} Вектор углового момента ориентирован в плоскости, перпенди-кулярной пучку ионов.

Таким образом, основными величинами статистической модели являются плотность ядерных уровней ρ и сечение обратной реакции σ_{inv} . Рассмотрим далее, какое влияние на них оказывают тепловые эффекты, обусловленные большим возбуждением ядра.

3. ЗАТУХАНИЕ ОБОЛОЧЕЧНЫХ ЭФФЕКТОВ ПРИ БОЛЬШИХ ВОЗБУЖДЕНИЯХ: АНАЛИЗ ДАННЫХ ПРИ $10 \le E * \le 100$ мэв

Известно, что оболочечные эффекты обусловлены существованием флуктуаций в промежутках между одночастичными уровнями ядра. Поэтому с ростом энергии возбуждения ядерные оболочки должны "замываться" в результате заселения одночастичных состояний во все более широком интервале вблизи энергии ферми. Исчезновение оболочек при нагревании ядра - один из основных видов тепловых эффектов /см. монографию /17//.

В первую очередь оболочечные эффекты влияют на плотность ядерных уровней ρ . Если ядро представляет собой вырожденный газ ферми-частиц, которые заселяют эквидистантную схему одночастичных уровней ϵ_i /т.е. оболочечные эффекты отсутствуют/, то плотность ядерных уровней зависит от энергии возбуждения следующим образом /17/.

$$\rho (E^*) = \frac{\sqrt{\pi}}{12} \cdot \frac{1}{a^{1/4} \cdot (E^*)^{1/4}} \cdot \exp[S(E^*)].$$
 /11/

Здесь зависимость энтропии ядра S от энергии возбуждения E^* находится из соотношения

$$S = 2at$$
, $/12/$

с использованием связи температуры ядра t с энергией

$$E^* = at^2, /13/$$

а параметр плотности уровней $a=\pi\,g_o^2/6$ выражается через плотность одночастичных состояний вблизи энергии Ферми $g_o\equiv g\,(E_F)=$ = Const. Как показывают эксперимент и расчеты $^{/17/}$, выполненные для одночастичных уровней ϵ_i , в оболочечной модели оболочечные эффекты оказывают сильное влияние на величину параметра плотности уровней а при малых возбуждениях. Однако это влияние полностью исчезает при энергиях $E^*\approx 100$ МэВ.Исчезновение оболочечных эффектов в плотности уровней можно описать феноменологической зависимостью $^{/17/}$

$$a(E^*) = \tilde{a}[1 + f(E^*) \cdot \delta W / E^*]$$
 /14/

где $f(x)=1+e^{-\gamma x}$, δ W - оболочечная поправка в формуле масс ядер, $\tilde{a}=A\left(\alpha+\beta A\right)$ - асимптотическое ферми-газовое значение параметра плотности уровней. В данной работе будем использовать эмпирические значения параметров $\alpha=0,134$ MэВ $^{-1}$,

 $B = -1,21 \cdot 10^{-4} \text{ M3B}^{-1}$, $y = 6,1 \cdot 10^{-2} \text{ M3B}^{-1}$, которые были получены в /18/ из анализа данных по плотности уровней с учетом вклада в полную плотность уровней коллективных /ротационных и вибрационных/ состояний

$$\rho_{\text{tot}} (E^*) = K_{\text{rot}} \cdot K_{\text{vib}} \cdot \rho (E^*)$$
 /15/

/подробнее о вычислении K_{rot} и K_{vib} см. в $^{/17/}$ /.

Явление теплового разрушения оболочечных эффектов имеет универсальный характер и наблюдается не только в плотности уровней, но и в других ядерных характеристиках. Так, к своим "жидкокапельным" значениям стремятся с ростом энергии возбуждения равновесные деформации и моменты инерции ядер, поверхность потенциальной энергии в делении ядра и т.д. /см., например, /17//. Но Несмотря на то, что теория предлагает широкий круг ядерных Характеристик для исследования затухания оболочечных эффектов с ростом возбуждения, соответствующих экспериментальных данных получено пока мало. Дело в том, что оболочечные эффекты играют важную роль, в основном, на последней ступени испарительного каскада. Усреднение по характеристикам промежуточных ядер на предыдущих ступенях сильно маскирует проявление этих эффектов, и, кроме того, препятствует извлечению из экспериментальных данных характеристик, соответствующих определенным значениям E*, A, Z.

Наибольший интерес для исследований затухания оболочечных эффектов представляют две группы ядер: а/ находящиеся вблизи дважды магического ядра 208 Pb, имеющего максимальную величину оболочечной поправки δ W к массе ядра; б/ самые тяжелые трансурановые ядра, оболочечная составляющая, в барьере деления которых сравнима или даже превосходит жидкокапельное значение $^{\rm B}_{\rm f}^{\rm LD}$.Поскольку у этих ядер основными каналами распада являются эмиссия нейтрона и деление /см.рис. $^{\rm 3}$ /, наблюдаемыми величинами, непосредственно связанными с плотностью уровней, будут парциальные ширин $\Gamma_{\rm n}$ и $\Gamma_{\rm f}$ Результаты анализа отношения ширин $\Gamma_{\rm n}$ / $\Gamma_{\rm f}$ вблизи свинца просуммированы в $^{\rm 177}$ /. В этом частном случае проблему усреднения по характеристикам промежуточных ядер можно обойти, взяв значения $^{\rm E}$ * вблизи барьера деления $^{\rm B}_{\rm f}$: тогда ядро будет делиться, в основном, на первой ступени испарительного каскада.

В области трансплутониевых ядер данные по энергетической зависимости отношения Γ_n / Γ_f можно извлечь из сечений (HI, xn) реакций /19/. В этом случае избавиться от усреднения по каскаду удается путем отбора таких пар xn и (x+1)n-реакций, в которых во всех звеньях обеих испарительных цепочек, за исключением первого, образуются одни и те же промежуточные ядра. На рис.4 приведены экспериментальные данные для тех изотопов тяжелых ядер, у которых зависимость G_n (E*) = Γ_n / $\Gamma_{\rm tot} \approx \Gamma_n$ / Γ_f исследована в широком интервале энергий возбуждения. Здесь же приведены результаты расчетов величины G_n по соотношениям статистической модели, учитывающим затухание оболочечных эффектов.

Рис. 3. Зависимость от энергии возбуждения E^* вероятностей Γ_i / Γ_{tot} различных каналов распада ядер: а/ 208 Pb, б/ 246 Fm, имеющих нулевой угловой момент.

Рис. 4. Зависимость вероятности эмиссии нейтрона $G_n = \Gamma_n/(\Gamma_n + \Gamma_y + \Gamma_f)$ из ядер C_m , C_f и 102 от энергии возбуждения. Экспериментальные точки, взятые из $^{/19}/$, приведены к нулевому угловому моменту. Сплошные и пунктирные кривые — расчет с учетом затухания и без учета оболочечных эффектов соответственно.

При этом выражение для нейтронной ширины выглядит следующим образом $^{/19/}$:

$$\Gamma_{n} \approx \frac{2\mu_{n}C_{1}}{\pi^{2}h^{2}} \cdot \sigma_{g} \cdot t_{n} \cdot \rho_{k}(U-B_{n})/\rho_{n}(U) \times [(B_{n}-U-t_{n}-C_{2})\exp(\frac{B_{n}-U}{t_{n}}) + (B_{n}+C_{2})].$$

$$+ t_{n} + C_{2} \cdot [(B_{n}-U-t_{n}-C_{2})\exp(\frac{B_{n}-U}{t_{n}}) + (B_{n}+C_{2})].$$

Оболочечные эффекты приводят к существованию двух седловых точек A и B деления. B случае двугорбого барьера делительная ширина определяется выражением $^{/17/}$:

$$\Gamma_{\rm f} = \Gamma_{\rm A} \cdot \Gamma_{\rm B} / (\Gamma_{\rm A} + \Gamma_{\rm B}) \,, \tag{17}$$

где Γ_A и Γ_B - парциальные ширины деления ядра из соответствующих седловых точек. Выражение для вычисления делительной ширины в каждой седловой точке ($\mathbf{i}=A$, \mathbf{B}) имеет вид $^{/19}/$:

$$\Gamma_{i} \approx \frac{t_{i}}{2\pi} \left[\rho_{s}^{i} (U - B_{f}^{i}) / \rho_{H}(U) \right] (1 - \exp \frac{B_{f}^{i} - U}{t_{i}}).$$
 /18/

Температура ядра вычисляется по формуле /19/:

$$t_{j} \approx \sqrt{\frac{U_{j}}{a(U_{i})}} \cdot \{1 + \frac{\delta W}{E_{i}^{*}} \cdot \frac{\tilde{a}}{a(U_{i})} [e^{-\gamma U_{j}} (1 + \gamma U_{j}) - 1]\}^{-1},$$
 /19/

где индекс j означает, что величины относятся либо к остаточному ядру после эмиссии нейтрона, либо к седловым точкам A и B.

Кроме того, на рис.4 показан также результат расчета без оболочечных эффектов по хорошо известным $^{/11/}$ статистическим выражениям, полученным с ферми-газовой плотностью уровней и с жидкокапельными значениями энергий связи, барьеров деления и моментов инерции ядра. Как видно из этого рисунка, оболочечные эффекты в парциальных ширинах Γ_n и Γ_f исчезают довольно быстро: уже при энергиях $E^*>30$ МэВ /при температуре t>1,5 МэВ/ их влияние мало.

Данная работа отличается от предыдущих /9-12/ учетом затухания оболочечных эффектов в статистических свойствах высоковозбужденных ядер, которое описывается соотношениями /11-16/. Проанализируем с помощью усовершенствованного таким образом расчета /по методу Монте-Карло/ характеристики, содержащие усреднения по испарительному каскаду /например, сечение образования данного изотопа/. Наиболее сильно оболочечные эффекты проявляются в тех реакциях, где образуются слабо возбужденные ядра Æ* < 30 МэВ/, которые переходят в основное состояние, испуская минимальное число / х = 1,2/ нейтронов. Развитие нового метода синтеза трансфермиевых элементов /20/, основанного на образовании "холодных" составных ядер, положило начало интенсивному изучению таких реакций. Реакции с испусканием минимального числа частиц имеют максимальный выход при энергиях иона ниже барьера слияния B_{fus} , поэтому сечение слияния σ_{CN} в этой области энергий нужно рассчитывать с высокой степенью точности. Если это требование выполняется, то расчет, учитывающий затухание оболочечных эффектов, хорошо описывает экспериментальные функции возбуждения 1n и 2n реакций /рис.5/. (Н I, 1n) - реакции наблюдаются не только в области трансфермиевых элементов, но и в области средне-тяжелых составных ядер /рис.5/ при сравнительно больших энергиях возбуждения Е*≈50 МэВ.

При определенных условиях может иметь место радиационный захват тяжелого иона $^{/12/}$. Сечение этого процесса определя-

Рис.5. Функции возбуждения полного слияния \mathbf{x}_{n} -реакций в системах: а/ 63 Cu + 93 Nb; б/ 50 Ti + 208 Pb. Экспериментальные точки для σ_{CN} взяты из $^{/21/}$ а для $\sigma_{\mathbf{x}n}$ - из $^{/22,23/}$. Стрелкой показано положение барьера слияния.

Рис. 6. Зависимость от энергии возбуждения вероятностей испарения нейтронов Γ_n / Γ_{tot} /сплошная кривая/, эмиссии гамма-квантов Γ_y / Γ_{tot} /штрихпунктир/ и деления Γ_f / Γ_{tot} /штриховая кривая/ для ядер U, Fm и 102, имеющих угловой момент I = 20h.

ется конкуренцией между эмиссией γ -квантов, делением и испусканием частиц, которая будет более благоприятной для γ -квантов, в частности, в области нейтронодефицитных тяжелых ядер, где $\mathbf{B_n} > \mathbf{B_f}$ /рис.6/. Поскольку конкуренция со стороны γ -квантов заметна при малых возбуждениях \mathbf{E}^* , радиационный захват следует искать в тех реакциях, у которых минимальная энергия возбуждения

Рис.7. Функции возбуждения полного слияния $\sigma_{\rm CN}$ и радиационного захвата σ_{γ} в системе 90 Zr + 90 Zr. Экспериментальные точки (0) для $\sigma_{\rm ER}$ взяты из $^{/25/}$, а для $\sigma_{\gamma}(\bullet)$ из Кривые — расчет, стрелкой показано положение барьера слияния.

Рис. 8. Функции возбуждения реакций, а/ 238 U (12 C, xn) $^{250-x}$ Cf, 6/ 238 U (18 O, xn) $^{256-x}$ Fm. Кривые - результат расчета, экспериментальные точки взяты из $^{/26-28/}$.

на барьере слияния $B_{\rm fus}$ невелика. Расчетные сечения радиационного захвата σ_y показаны на рис.5 и 7: здесь же приведены функции возбуждения конкурирующих $1{\rm n}$, $1{\rm p}$, $1{\rm a}$ реакций. Недавно радиационный захват был обнаружен в $^{/24/}$; экспериментальное сечение радиационного захвата σ_y неплохо согласуется с расчетным. Обращает на себя внимание то обстоятельство, что экспериментальные $^{/25/}$ значения сечения слияния при больших энергиях явно занижены и противоречат расчетным сечениям $\sigma_{\rm CN}$ и σ_y , что

Рис. 9. Функции возбуждения реакций а/ 246 Cm (12 C, xn) $^{258-x}$ 102, б/ 248 Cm (12 C, xn) $^{260-x}$ 102. Кривые – расчет, экспериментальные точки из $^{/29/}$.

Рис.10. Функции возбуждения реакций: $a/\frac{181}{18}$ Ta $(^{19}$ F, xn $)^{200-x}$ Pb, $6/\frac{170}{170}$ Er $(^{30}$ Si, xn $)^{200-x}$ Pb. Экспериментальные точки взяты из $^{/30/}$, кривые – расчет.

указывает на необходимость дальнейшего детального экспериментального изучения этого интересного процесса.

Измерение функций возбуждения реакций с испусканием большого числа частиц (x>4) продолжается многие годы, на следующих рисунках будет показано сравнение расчетов с наиболее представительными экспериментальными данными. На рис.8-10 приведены функции возбуждения реакций, в которых образуются тяжелые ядра, а на рис.11-13 - сечения образования изотопов среднетяжелых ядер и ядер среднего атомного веса. При переходе от тяжелых составных ядер к легким эмиссия заряженных частиц (p,a) становится все более вероятной. Однако в частных случаях наблюдаются отклонения от этой главной тенденции: например, у сильно нейтронодефи-

Рис.11. Функции возбуждения реакции: а/ 130 Te (12 C, xn) $^{142-x}$ Ce, б/ 130 Te (13 C, xn) $^{143-x}$ Ce. Экспериментальные точки из $^{/31/}$. Кривые — расчет, критический угловой момент $I_{\rm cr}\approx 45\,{\rm h}$ при энергии иона $E_i>100$ МэВ в л.с.

Рис.12. Функции возбуждения pxn- и axn-реакций в системе 12 , 130 Те. Обозначения - как на рис.11.

Рис.13. Функции возбуждения реакций 63 Cu (16 O, xn, yp, Z $_{\alpha}$). Экспериментальные точки взяты из $^{/32/}$, кривые – расчет.

цитных составных ядер с А ~ 200 вероятность эмиссии протонов и α-частиц может оказаться сравнимой с вероятностью испускания нейтронов /см.рис.7/. Отметим также, что конкуренция между эмиссией частиц и у-квантов влияет на функции возбуждения реакций с испусканием большего числа частиц, сдвигая на несколько МэВ в сторону больших энергий положение их максимума и улучшая согласие с экспериментом. В области больших энергий возбуждения на сечения образования испарительных остатков сказываются дополнительные ограничения, накладываемые на величину углового момента составного ядра, которые не учитываются соотношениями /10/. Извлеченное в этом случае из экспериментальных сечений (HI; xn.yp.Za) xn-реакций значение критического углового момента I_{cr} указано в подписи к рис.11. В наших ранних расчетах $^{/11,12/}$, выполненных с ферми-газовой плотностью уровней /11-13/ и жидкокапельными барьерами деления, отмечалась сильная чувствительность сечения образования изотопов сильноделящихся ядер к параметрам плотности уровней. При корректном учете оболочечных эффектов /11-16/ результаты статистических расчетов становятся более устойчивыми к вариациям этих параметров. В настоящей работе для описания экспериментальных данных не потребовалось специальной подгонки параметров: параметры плотности уровней в /11-14/ имели свои стандартные значения /17,18/, остальные параметры модели были взяты такими же, как в $^{/9-11/}$.

Еще более усредненными, интегральными характеристиками распада составного ядра, чем функции возбуждения, являются инклюзивные спектры и угловые распределения испущенных частиц. Угловые распределения частиц в результате влияния большого углового момента составного ядра становятся анизотропными, причем анизотро-

Рис.14. Угловые распределения нейтронов, протонов и α -частиц, испущенных в реакции $^{40}\,\mathrm{Ar} + ^{80}\,\mathrm{Se}$. Гистограммы – результат расчета. Экспериментальные точки – из $^{/22/}$.

Рис.15. Энергетически спектры протонов и α -частиц, испущенных из составного ядра 117 Те. которое образовалось в реакциях; а/ 14 N + 103 Rh, б/ 40 Ar + 77 Se с энергией возбуждения 71 и 107 МэВ. Экспериментальные точки взяты из $^{/33/}$. Обозначения – как на рис.14.

пия растет с массой испущенной частицы /см.рис.14/. Энергетические спектры частиц имеют характерный испарительный вид и до энергий 20-30 МэВ неплохо описываются статистической моделью /см.рис.15/. В области больших энергий заметный вклад в спектр, по-видимому, дают предравновесные процессы. На рис.16 показаны спектры у-квантов. Поскольку в расчет включены только статистические дипольные у-кванты, при малых E_y экспериментальный спектр превышает расчетный. В этот участок спектра основной вклад дают квадрупольные у-кванты, которые испускаются из составного ядра при $U < 1,0 \div 1,5$ МэВ. На рассмотренные ранее характеристики реакции пренебрежение эмиссией квадрупольных у-квантов влияния не оказывает.

Таким образом, статистическая модель распада составного ядра через последовательную эмиссию частиц и у-квантов с учетом зату-хания оболочечных эффектов может хорошо описать большую совокупность экспериментальных данных вплоть до энергий возбуждения $\mathbf{E}^* \approx 150$ МэВ. Рассмотрим, проявления каких новых тепловых эффектов можно ожидать при дальнейшем увеличении энергии возбуждения составного ядра.

Рис.16. Энергетические спектры /в относительных единицах/ гамма-квантов, испущенных из составных ядер, образовавшихся в реакциях а/ 22 Ne+ $^{\rm ect}$ Cu и б/ 34 S+ 130 Te с энергиями возбуждения $E^* \approx 74$ МэВ и 61 МэВ соответственно. Экспериментальные точки — из работ $^{/34/}$. /на правом рис.эксперимент нанесен сплошной кривой/. Гистограмма — результат расчета.

4. ТЕПЛОВЫЕ ЭФФЕКТЫ В ЯДРАХ ПРИ БОЛЬШИХ ЭНЕРГИЯХ ВОЗБУЖДЕНИЯ E*>200 МЭВ

Есть два пути в область энергий возбуждения $E^*>200$ МэВ. Один из них связан с использованием тяжелых ионов средней энергии $20 \le E \le 100$ МэВ/нуклон. Однако отсутствие в настоящее время ясного понимания механизма ядро-ядерного взаимодействия в этой области энергий препятствует изучению свойств образовавшихся в нем высоковозбужденных ядер. На наш взгляд, хорошие перспективы в таких исследованиях открывает другой путь, основанный на применении реакции полного слияния массивных ионов $A_i \sim 50$ -100 низкой энергии (E < 20 МэВ/нуклон). Очевидно, в этом случае максимальную температуру составного ядра $/t \approx 10$ МэВ/можно достичь в реакции симметричного слияния. Рассмотрим, какие термодинамические свойства могут иметь такие "горячие" ядра.

4.1. Энтропия и плотность уровней "горячего" ядра

Выражения /11-13/ можно применять лишь для описания сильно вырожденного ферми-газа ($E^* << E_F \cdot A^{1/3}$), т.к. они были получены в модели невзаимодействующих частиц в приближении эквидистантной

схемы одночастичных уровней. Если учесть энергетическую зависимость плотности одночастичных уровней $g(\epsilon)$, то в этой модели можно получить более общие выражения для энтропии и плотности уровней, справедливые при больших возбуждениях /см. $^{/35/}$ и цитириуемую в ней литературу/:

$$E^* = at^2(1 + bt^2 + ...),$$
 /20/

$$S = 2 at (1 + 2/3 bt^2 + ...)$$
 /21/

В уравнениях /20,21/ наряду с обычным параметром плотностей уровней α появляется второй параметр

$$b = \frac{7\pi^2}{20} \frac{g_0''}{g_0} - \frac{\pi^2}{4} \left(\frac{g_0'}{g_0}\right)^2 ,$$

зависящий от 1-й и 2-й производных g(ϵ). Как показывают расчеты $^{/35/}$, величина этого парметра невелика: b = $-3\cdot 10^{-3}$ MpB $^{-2}$; неточности в описании структуры одночастичных состояний высоковозбужденного ядра, характерные для современных моделей невзаимодействующих частиц, могут изменить приведенное значение в 2-3 раза. Отметим, что более последовательные расчеты $^{/36/}$ термодинамических характеристик высоковозбужденных ядер, выполненные с помощью теории конечных ферми-систем, также дают уравнения состояния вида /20,21/ с параметром b = $-/2-3/\cdot 10^{-3}$ MpB $^{-2}$.

Уравнениям /20,21/ соответствует энергетическая зависимость плотности уровней вида

$$\rho (E^*) \sim \exp \left[2a^{3/4} \mid b \mid^{-1/4} Q(E^*) - 4/3a^{1/4} Q^2(E^*)\right],$$
 /22/

где $Q(E^*) = [q - (q - E^*)^{1/2}]^{1/2}$, $q = a/(4|b|) \sim 10$ А МэВ. Результаты расчетов с выражениями /20-22/ начинают отклоняться от стандартных выражений /11-13/ при температурах t > 4-5 МэВ. Наиболее заметно эти отклонения проявляются в энергетических спектрах испущенных частиц, "хвосты" которых становятся более жесткими /35/. В принципе, это обстоятельство можно использовать для экспериментального определения параметра b. Однако в таком случае необходимо не только прецизионно измерить высокоэнергетическую часть спектра, но и выделить в ней вклад предравновесных частиц.

4.2. Макроскопические свойства "горячих" ядер

Большая энергия возбуждения ядра может влиять на такие его макроскопические свойства, как величина радиуса, распределение ядерной плотности, свойства поверхностного слоя и т.д. Температурная зависимость глобальных свойств ядер детально была исследована в рамках методов Томаса-Ферми /37/, Хартри-Фока /38/

Рис.17. Энергетическая зависимость сечения деления σ_f составного ядра $^{200}\,\mathrm{Pb}$, образовавшегося в результате слияния ядер $^{54}\,\mathrm{Cr}$ и $^{146}\,\mathrm{Ce}$. Кривые с пометками $\mathbf{B}_f^{\mathrm{LD}}(\mathrm{T})$ и $\mathbf{B}_f^{\mathrm{LD}}$ — Const — соответственно расчет с учетом и без учета теплового уменьшения барьера деления.

и теории конечных ферми-систем $^{/39/}$. Оказалось, что при $t \leq 5$ МэВ средний радиус R и толщина диффузного слоя Δ увеличиваются при "нагревании"ядра:

$$R(t) \simeq R(0) (1 + K_R \cdot t^2),$$
 /23/

$$\Delta(t) = \Delta(0) (1 + K_{\Delta} \cdot t^2). \qquad /24/$$

Значение коэффициента $K_R \approx 10^{-4}$ МэВ $^{-2}$ настолько мало $^{/38/}$, что тепловое расширение ядра практически не оказывает влияния на величины σ_g и V_{ν} , входящие в выражение /6/ для сечения обратной реакции $\sigma_{\rm inv}$. Рост диффузности ядра значительно более сильный: $K_{\Delta} \sim 10^{-2}$ МэВ $^{-2}$ /38/; он приводит к уменьшению кулоновских барьеров V_{ν} для эмиссии заряженных частиц вследствие распространения области ядерного взаимодействия на большие расстояния $^{/37/}$. Однако обнаружить этот эффект посредством измерения положения максимума в спектре заряженных частиц весьма трудно; даже при t=5 МэВ тепловое уменьшение кулоновского барьера не превышает 10%

Более перспективным представляется исследование тепловых эффектов в другой макроскопической характеристике - поверхностном натяжении ядра. Коэффициент поверхностного натяжения $\sigma_{\mathbf{s}}$ уменьшается с ростом температуры при $t \leq 5$ МэВ по закону

$$\sigma_{s}(t) \simeq \sigma_{s}(0)(1 - K_{s}t^{2}),$$
 /25/

где $K_s\sim 10^{-2}~{\rm MpB}^{-2}$. В свою очередь, это приводит к тепловому уменьшению высоты барьера деления B_f , наиболее заметному у среднетяжелых ядер A ~100-150. Так, величина жидкокапельного барьера деления ядра с A ~80-100 при $E^*=200~{\rm MpB}$ / t ~ 5 MpB/ может уменьшаться на 10-15 MpB, что увеличит его вероятность деления /40/. На рис.17 показан масштаб проявления тепловых эффектов в сечении деления среднетяжелого составного ядра $^{200}{\rm Pb}$, образовавшегося при слиянии ядер $^{54}{\rm Cr}$ и $^{146}{\rm Ce}$. Расчеты были выполнены с коэффициентом K_s , взятым из $^{38/}$; уточнение описания поверхностных свойств ядер может привести к увеличению использованной величины K_s в 2-3 раза $^{/41/}$ и усилению тепловых эффектов.

4.3. 0 пределах применимости статистической модели, основанной на концепции составного ядра

Лежащая в основе рассмотренной здесь статистической модели концепция составного ядра предполагает выполнение условия $r_{\rm CN} >> r_{\rm eq}$. где $r_{\rm CN}$ - время жизни составного ядра, $r_{\rm eq}$ - время установления в нем термодинамического равновесия. Расчеты /42/ процесса термолизации ядра, идущего через двухчастичные столкновения*, дают $r_{\rm eq} \sim 10^{-22}$ - 10^{-21} с. Столь быстрое установление равновесия по внутренним одночастичным степеням свободы находит свое подтверждение в экспериментах по глубоконеупругим реакциям передач 43 . Величину $r_{\rm CN}$ обычно вычисляют с помощью соотношения $r_{\rm CN}=1/\Gamma_{\rm tot}$, используя выражения /5/ статистической модели. При этом уже при энергиях $E^* > 100$ МэВ получают слишком малые значения $r_{\rm CN} \sim 10^{-20}$ – 10^{-21} с, вызывающие сомнения в возможности применения статистической модели. Однако в /44/ было показано, что такая оценка в случае сильно перекрывающихся уровней является некорректной и сильно занижает величину r_{CN} . По-видимому, на сравнительно большие времена жизни составных ядер в области $E^* \sim 100$ МэВ указывают также экспериментальные данные, полученные в /45/ с помощью эффекта теней.

В настоящее время вопрос о временах жизни "горячих" составных ядер остается открытым не только с теоретической, но и с экспериментальной точки зрения. Основные трудности в его решении связаны с усреднением по промежуточным ядрам испарительной цепочки, которое приводит к неэкспоненциальному закону распада высоковозбужденного составного ядра 46 . Интересные возможности открывает здесь использование процесса деления, который сопровождается глобальной перестройкой ядерной материи и кардинальным изменением формы ядра и поэтому является достаточно длительным. Время деления ядра $\tau_{\rm c}$ должно превышать время перехода от седловой точки к точке разрыва $\tau_{\rm SC}$; теоретические оценки 47 / дают $\tau_{\rm SC} \approx /2 \div 3/\cdot 10^{-21}$ с. Недавно полученное 48 экспериментальное значение при больших ${\rm E}^*$ в несколько раз выше этих оценок: $\tau_{\rm SC} \sim 10^{-20}$ с.

Другим ориентиром для оценки минимального времени деления $r_{\rm f}^{\rm min}$ может служить время быстрого деления, которое трактуется как деление с нулевым барьером: $r_{\rm rf} \approx 10^{-20}\,{\rm c}^{/49/}$.

Таким образом время деления высоковозбужденного ядра должно превышать значение $r_1^{\min} \approx 10^{-20}$ с. Отсюда следует, что если при очень больших \mathbf{E}^* время жизни составного ядра станет малым $r_{\mathrm{CN}} \leq 10^{-20}$ с/, то термодинамическое равновесие успеет установиться лишь по одночастичным степеням свободы, и статистическую модель можно будет применять лишь для описания эмиссии

^{*} Учет других механизмов релаксации ядерной системы только уменьшил бы значение $t_{\rm eq}$.

частиц. При этом следует ожидать значительного подавления канала деления, связанного с коллективными степенями свободы, по сравнению с каналами эмиссии частиц 50 . Корректное описание конкуренции деления и эмиссии частиц требует развития динамических подходов, рассматривающих временную эволюцию многотельной ядерной системы с учетом связи между ее одночастичными и коллективными степенями свободы 51 . У очень тяжелых ядер, имеющих малый жидкокапельный барьер деления, такая ситуация может возникнуть при не слишком больших энергиях возбуждения, когада 1

Пределы на существование составного ядра можно получить из простых энергетических соображений. Очевидно, что если тепловая энергия нуклонов ядра превысит их полную энергию связи Е св. то ядро испытает "мгновенный" / $\tau \le 10^{-22}$ с/ развал /взрыв/. Используя уравнение /20/, из условия $\mathbf{E}^* = \mathbf{E}_{\mathrm{CB}}$ получим, что это произойдет при предельной температуре $t_{\rm lim} \approx 10$ -11 МэВ. Расчеты $^{/39/}$ показывают, что при t > 8 МэВ коэффициент поверхностного натяжения $\sigma_{\rm s}$ быстро уменьшается с температурой, пока не обратиться в нуль при критическом значении $t_{cr} \approx 17-20$ МэВ. Баланс между силами кулоновского расталкивания и поверхностного натяжения в горячем ядре нарушается, в результате чего оно расширяется до некоторого объема, соответствующего плотности $\rho_{\text{break np}}$ ~/0.3 - 0.5/ ρ_{o} , затем взрывается. В последнее время свойства горячей ядерной материи в широком интервале плотностей р детально изучались разными методами, включая метод Томаса-Ферми и Хартри-Фока /см.обзор /52//. Оказалось, что при t < t_{ст} ядерная материя может представлять собой смесь жидкой и газовой фаз. Вследствие такого сосуществования фаз горячая ядерная система будет преимущественно распадаться на конечное число легких фрагментов. Описание распада ядер в области предельной температуры $t_{
m lim}$ потребует применения статистических моделей типа развиваемых в /53,54/.

5. ЗАКЛЮЧЕНИЕ

Статистическая модель, основанная на концепции составного ядра, является надежным инструментом для изучения свойств высоковозбужденных ядер, образующихся в реакциях полного слияния. Она позволяет описать широкий круг экспериментальных данных в наиболее хорошо исследованном интервале энергий $E^* \leq 150$ МэВ /температур $t \leq 3$ МэВ/. Одно из главных физических явлений здесь — тепловое затухание оболочечных эффектов. Влияние этих эффектов на ядерные свойства практически исчезает уже при температурах t > 1,5 МэВ.

Представляется актуальным продвижение в почти не изученную область энергий $E^*>200$ МэВ, которое можно осуществить, используя реакции полного слияния, инициированные ионами низкой энер-

гии (<20 МэВ/нуклон), но достаточно большой массы $/A_i \sim 50-100/$. Здесь могут появиться отклонения энергетической зависимости плотности ядерных уровней от общепринятой ферми-газовой /11-13/. Кроме того, при t>4 МэВ тепловые эффекты могут оказать заметное влияние на макроскопические свойства ядра. Наиболее сильно с нагреванием ядра изменяются его поверхностные свойства, в частности, уменьшается барьер деления и возрастает делимость.

Необходимы эксперименты, способные установить предельную температуру, при которой еще имеет смысл говорить о достаточно долгоживущем $/\tau_{\rm CN}>10^{-21}\,{\rm c}/$ составном ядре. В качестве индикатора короткого времени можно, в принципе, использовать процесс деления: при $\tau_{\rm CN}<10^{-20}\,{\rm c}$ с следует ожидать подавления делительного канала распада составного ядра. Компаунд-ядро, по-видимому, не должно существовать при $t>t_{\rm lim}\approx 10\,{\rm MpB}$. В этом случае механизм испарительного каскада должен заменить взрывной механизм распада. В частности, вследствие возможного сосуществования жидкой и газовой фаз в горячей ядерной материи может появиться новый канал распада — мультифрагментация. Изучение мультифрагментного распада в ядро-ядерном взаимодействии в области низких энергий может оказаться полезным для обоснования и развития термодинамического подхода, применяемого при средних и высоких энергиях.

Авторы благодарны академику Г.Н.Флерову за интерес и поддержку данной работы, профессору Ю.Ц.Оганесяну - за полезные обсуждения и ценные замечания.

ЛИТЕРАТУРА

- Bass R. Nuclear reactions with heavy ions. Springer-verlag, 1980.
- 2. Ericson T., Strutinski V. Nucl. Phys., 1958, vol.8, p.284.
- Dostrovsky I. et al. Phys.Rev., 1958, vol.111, p.1659; 1959, vol.116, p.683.
- 4. Blann M., Plasil F. Phys.Rev.Lett., 1972, vol.29,p.303.
- 5. Feenstra S.J. et al. Phys.Lett., 1979, vol.808, p.183.
- Grover J.R., Gilat J. Phys.Rev., 1967, vol.157, p.802, 815, 823.
- 7. Blann M. Nucl.Phys., 1966, vol.80, p.223; US AEC Report C00-3494-10, 1973.
- 8. Puhlhofer F. Nucl. Phys., 1977, vol. A280, p.267.
- 9. Ильинов А.С., Тонеев В.Д. ЯФ, 1968, т.9, с.48.
- 10. Ильинов А.С., Тонеев В.Д. Acta Phys. Polon, 1973, В4, р.173.
- 11. Барашенков В.С. и др. ОИЯИ, Р7-6798, Дубна, 1972; ЯФ, 1973, т.18, с.371; ЭЧАЯ, 1974, т.5, с.469.
- 12. Ильинов А.С., Оганесян Ю.Ц., Черепанов Е.А. ЯФ, 1981, т.33, с.997.

- 13. Hillman M., Eyal Y. Proc.of the European Conf. on Nucl. Phys. with Heavy Ions. Caen, 1976; Editor Fernandez B. et al. vol.1, p.109.
- Gomes del Campo J. Phys.Rev., 1979, vol.19c, p.2170; Phys. Rev. Lett., 1976, vol.36, p.1529.
- 15. Ильинов А.С., Оганесян Ю.Ц., Черепанов Е.А. ЯФ, 1982, т.36, с.118.
- 16. Ильинов А.С., Черепанов Е.А. Препринт ИЯИ АН СССР, П-0090, М., 1978; Sperr P. et al. Z.Phys., 1980, vol.A297, p.355; Nguyen V.S. et al. Phys.Rev., 1979, vol.20c, p.969; Jachcinski C.M. et al. Phys.Rev., 1981, vol.24c, p.2070; Jin G.M. et al. Nucl.Phys., 1980, vol.A349, p.285; Viola V.J. et al. Phys.Rev., 1982, vol.26c, p.178; Shapira D. et al. Phys.Rev., 1983, vol.28c, p.1148; Doubre H. et al. Phys.Lett., 1978, vol.73B, p.135.
- Игнатюк А.В. Статистические свойства возбужденных атомных ядер. Энергоиздат, М., 1983.
- 18. Ильинов А.С., Черепанов Е.А. Препринт ИЯИ АН СССР, П-0064, M., 1977; Nucleonika, 1980, vol.25, p.611.
- 19. Cherepanov E.A., Iljinov A.C., Mebel M.V. J.Phys., G: Nucl. Phys., 1983, vol.11, p.1103.
- 20. Oganessian Yu.Ts. et al. Nucl.Phys., 1975, vol.A239, p.353.
- 21. Bock P.R. et al. Nucl. Phys., 1982, vol.A388, p.334.
- 22. Cobot H.et al. Phys.Lett., 1980, vol.96B, p.55.
- 23. Munzenberg G. et al. Proc.of the actinides-1981, California, 10-15 Sept., p.229.
- 24. Keller J.G. et al. Preprint GSI-84-4, Darmstadt, 1984.
- 25. Beckerman M. et al. Phys.Rev. Lett., 1983, vol.50, p.471.
- 26. Волков В.В. и др. МЭТФ, 1959, т.36, с.762.
- Sikkeland T., Maly J., Lebeck D.F. Phys.Rev., 1968, vol.169, p.1000.
- 28. Донец Е.Д., Щеголев В.А., Ермаков В.А. ЯФ, 1965, т.2, с.1015.
- Sikkeland T., Ghiorso A., Nurmia M.J. Phys.Rev., 1968,vol.172, p.1232.
- 30. Hiude D.J. et al. Nucl. Phys., 1982, vol. A385, p.109.
- 31. Оганесян Ю:Ц. и др. ОИЯИ, Р7-5912, Дубна, 1971.
- 32. Baretto J., Langevin M., Detraz C. Nucl. Phys., 1982, vol. A384, p.211.
- 33. Galin J. et al. Phys.Rev., 1974, vol.10c, p.638.
- 34. Оганесян Ю.Ц. и др. ЖЭТФ, 1963, т.44, с.1171; Sandorf A.M. et al. Phys.Lett., 1983, vol.130B, No.1/2, p.19-22.
- 35. Ботвина А.С. и др. Препринт ИЯИ АН СССР, П-9316, М., 1983.
- 36. Бунатян Г.Г. ЯФ, 1977, т.26, с.9791; 1979, т.10, с.10.
- 37. Chen X.S. et al. Nucl. Phys., 1983, vol. A401, p.143.
- Sauer G., Chandra H., Mosel U. Nucl. Phys., 1976, vol. A264, p. 221.
- 39. Иванов Ю.Б. ЯФ, 1981, т.34, с.45.
- 40. Ильинов А.С., Черепанов Е.А., Чигринов С.Е. ЯФ, 1980, т.32, с.322.

- 41. Vinas M.P.X., Barranco M. Phys.Rev., 1982, vol.26c, p.733.
- 42. Weidenmuller H.A. In: Progr. in Part. and Nucl. Phys., 1980; Editor Wilkinson D., vol.3, p.49.
- 43. Волков В.В. Ядерные реакции глубоконеупругих передач. Энергоиздат, М., 1982.
- 44. Любошиц В.Л. Письма ЖЭТФ, 1978, т.28, с.32; ЯФ, 1983, т.37, с.292.
- 45. Бугров В.Н., Карамян С.А. ЯФ, 1981, т.36, с.577.
- Andersen J.U. et al. Det.Kong.Dan. Vid. Selsk., 1980, vol.40, p.7.
- Swiatecki W.J. Progr. Part. Nucl. Phys., 1980, vol.4, p.383;
 Phys. Scripta, 1981, vol.24, p.113; Nucl. Phys., 1982, vol. A376, p.275;
 Preprint LBL-12708, Berceleu, 1981.
- 48. Specht H.J. Nucl. Phys., 1983, vol. A400, p.43.
- 49. Ngo C. et al. Nucl. Phys., 1983, vol. A400, p.259.
- Alexander J.M. et al. Z.Phys., 1982, vol.A307, p.149.
 Grange P., Weidenmuller H.A. Phys.Lett., 1980, vol.96B, p.26; Grange P., Jun-Qing, Weidenmuller H.A. Phys.Rev.,
- 1983, vol.27c, p.2063. 52. Stocker H. et al. Nucl.Phys., 1983, vol.A400, p.63.
- 53. Fai G., Randrup J. Nucl. Phys., 1982, vol. A381, p.557; 1983, vol. A404, p.551
- 54. Бондорф Я., Мишустин И.Н., Песик К. В сб.: Междунардная школа-семинар по физике тяжелых ионов, Алушта, 14-21 апреля, 1983. ОИЯИ, Д7-83-644, Дубна, 1983.

НЕТ ЛИ ПРОБЕЛОВ В ВАШЕЙ БИБЛИОТЕКЕ?

Вы можете получить по почте перечисленные ниже книги, если они не были заказаны ранее.

	Труды VI Всесоюзного совещания по ускорителям заря- женных частиц. Дубна, 1978 /2 тома/	7	р.	40	к.
	Труды VII Всесоюзного совещания по ускорителям заря- женных частиц, Дубна, 1980 /2 тома/	8	р.	00	K.
Д11-80-13	Труды рабочего совещания по системам и методам аналитических вычислений на ЭВМ и их применению в теоретической физике, Дубна, 1979	3	p.	50	к,
д4-80-271	Труды Международной конференции по проблемам нескольких тел в ядерной физике. Дубна, 1979.	3	D.	00	к.
д4-80-385	Труды Международной школы по структуре ядра. Алушта, 1980.			00	
д2-81-543	Труды VI Международного совещания по проблемам квантовой теории поля. Алушта, 1981	2	D.	50	к.
Д10,11-81-622	Труды Международного совещания по проблемам математического моделирования в ядерно-физических исследованиях. Дубна, 1980			50	
Д1,2-81-728	Труды VI Международного семинара по проблемам физики высоких энергий. Дубна, 1981.			60	
Д17-81-758	Труды II Международного симпозиума по избранным проблемам статистической механики. Дубна, 1981.			40	
Д1,2-82-27	Труды Международного симпозиума по поляризационным явлениям в физике высоких энергий. Дубна, 1981.			20	
P18-82-117	Труды IV совещания по использованию новых ядерно- физических методов для решения научно-технических и народнохозяйственных задач. Дубна, 1981.	3	n.	80	к
Д2-82-568	Труды совещания по исследованиям в области релятивистской ядерной физики. Дубна, 1982.			75	
Д9-82-664	Труды совещания по коллективным методам ускорения. Дубна, 1982.	3	р.	30	к.
Д3,4-82-704	Труды IV Международной школы по нейтронной Физике. Дубна, 1982.	5	р.	00	к.
Д2,4-83-179	Труды ХУ Международной школы молодых ученых по физике высоких энергий. Дубна, 1982.	4	p.	80	к,
	Труды УШ Всесоюзного совещания по ускорителям заряженных частиц. Протвино, 1982 /2 тома/	11	٥.	40	к
Д11-83-511	Труды совещания по системам и методам аналитических вычислений на ЭВМ и их применению в теоретической физике. Дубна, 1982.			50 к	
Д7-83-644	Труды Международной школы-семинара по физике тяжелых ионов. Алушта, 1983.	6 6			
Д2,13-83-689	Труды рабочего совещания по проблемам излучения и детектирования гравитационных волн. Дубна, 1983.	2 p	i. I	00 1	к.

Заказы на упомянутые книги могут быть направлены по адресу: 101000 Москва, Главпочтамт, п/я 79 Издательский отдел Объединенного института ялерных исследований

Ильинов А.С., Черепанов Е.А. Распад высоковозбужденных составных ядер: статистический подход P7-84-68

В рамках статистического подхода прознализированы экспериментальные данные по распаду составных ядер с умеренной энергией возбуждения 10<5°<00 МэВ, образовавшихся в реакциях полного слияния тяжелых иснов. Показано, что учет затухания оболочечных эффектов с ростом энергии возбуждения позволяет описать широкий круг данных при энергиях 5°<00 МэВ. Рассмотрены статистические свойства, макроскопические "тепловые" эффекты, новые механизмы распада ядер с большой /5°>200 МэВ/ энергией возбуждения и возможности развития таких исследований в реакциях полного слияния, инициированных массивными /А, ~ 50-100 / ионами низкой энергии (<20 МэВ/нуклон).

Работа выполнена в Лабораторни ядерных реакций ОНЯИ.

Сообшение Объединенного института ядерных исследований. Дубна 1984

Перевод Л.В. Пашкевич

Iljinov A.S., Cherepanov E.A. Decay of highly excited compound nuclei: a statistical approach P7-84-68

In the framework of a statistical method the experimental data on the decay of moderately excited ($10 < E^* < 200$ MeV) nuclei produced in heavy ion-induced complete-fusion reactions are analysed. It is shown that taking into account the disappearance of shell effects with increasing excitation energy allows one to describe a large amount of data energies $E^* < 200$ MeV. The statistical properties, macroscopic "temperature" effects, new mechanisms of nuclear decay at high excitation energies ($E^* > 200$ MeV) and the possibilities of extending such investigations on complete-fusion reactions induced by low-energy (< 20 MeV/u) heavy ions ($A_1 = 50$ -100) are examined.

The investigation has been performed at the Laboratory of Nuclear Reactions, JIMR.

Communication of the Joint Institute for Nuclear Research. Dubna 1984