

P7-84-358

С.А.Карамян

НАБЛЮДЕНИЕ ДОЛГОЖИВУЩЕЙ ЯДЕРНОЙ КВАЗИМОЛЕКУЛЫ В СИСТЕМЕ <sup>20</sup>Ne + Ge

Направлено в журнал "Письма в ЖЭТФ"

1984

В работе<sup>/1/</sup> сообщено, что в столкновениях таких тяжелых ядер, как U + U,при энергии около 5,9 МэВ/нукл. образуется в некоторой доле случаев двойная система с временем жизни около  $6 \cdot 10^{-20}$  с, что заметно больше времени столкновения. При взаимодействии ядер  $^{16}$ O +  $^{12}$ C<sup>/2/</sup>обнаружена временная задержка ~  $10^{-18}$  с вылета продуктов неупругого взаимодействия ядер. Авторы<sup>/2/</sup> считают, что временная задержка возникает, главным образом, за счет времени вторичного процесса распада возбужденного продукта после его образования в реакции.

В настоящей работе время протекания реакции неупругого взаимодействия ядер <sup>20</sup>Ne и Ge измерено с помощью эффекта теней при регистрации мишенеподобных продуктов реакции.

Кинетическая энергия ядер отдачи упругого рассеяния в зависимости от их угла вылета  $\theta$  в л.с., как известно, дается выражением

$$E_{ynp} = \frac{4\gamma E_i}{(1+\gamma)^2} \cos^2\theta,$$

Где  $\gamma = A_i / A_T$  отношение массовых чисел иона и ядра мишени,  $E_i$  - энергия иона в л.с. При неупругом рассеянии энергия ядер отдачи под углом  $\theta$  меньше, чем  $E_{ynp}$ , и может убывать до нижнего кинематического предела  $E_{min} = E_{ynp} / 4$ . Соответственно имеется верхний кинематический предел степени неупругости реакции  $\Delta E_{max}(\theta)$ , зависящий от угла:

$$\Delta E_{max} = \frac{E_i}{1+\gamma} \cos^2 \theta$$

где  $\Delta E$  - энергия возбуждения продуктов реакции. При уменьшении угла наблюдения в области  $\theta < \theta_{\rm R}$  где  $\theta_{\rm R}$  - резерфордовский угол, происходит увеличение степени неупругости процесса. Таким образом, возникает возможность экспериментальной оценки времени протекания реакции в зависимости от степени неупругости с помощью эффекта теней. При этом в качестве эталонного теневого минимума можно использовать минимум, наблюдаемый в области углов, соответствующих упругому и квазиупругому взаимодействию  $\theta \ge \theta_{\rm R}$ . На рис.1 показаны зависимости от  $\theta$  величин  $E_{\rm ynp}$ ,  $E_{\rm min}$ и  $\Delta E_{\rm max}$  для взаимодействия ионов <sup>20</sup>Ne c Ge при энергии 102 MэВ. Здесь же дано сравнение измеренной угловой зависимости выхода ядер отдачи с рассчитанным выходом для упругого резерфордовского рассеяния. Видно, что в области углов  $\theta > 74^\circ$ 

BUSTEHA

1

/1/

121



Рис.1. Кривые 1,2,3 – функции  $E_{y \Pi p}(\theta)$ ,  $E_{min}(\theta)$ ,  $\Delta E_{max}(\theta)$ . Кривая 4 и точки – рассчитанная и измеренная зависимости выхода ядер отдачи от угла наблюдения.

выход обрезается порогом регистрации детектора, а при  $\theta \leq \theta_{R} = 67^{\circ}$  также происходит резкое убывание выхода за счет исключения канала упругого рассеяния. Область углов  $\theta < 65^{\circ}$  соответствует неупругим взаимодействиям.

Толстый монокристалл <sup>ест.</sup> Ge облучали ионами <sup>20</sup> Ne с энергией 102 МэВ. Ядра отдачи упругого и неупругого взаимодействий ре-ГИСТРИРОВАЛИ СТЕКЛЯННЫМ ТРЕКОВЫМ ДЕТЕКТОРОМ В ДИАПАЗОНЕ УГЛОВ  $\theta = 50-75^{\circ}$  относительно пучка. Прослежена зависимость формы осевого <111> и плоскостных /110/ теневых минимумов от угла наблюдения. Угловое разрешение опыта +0,3° обеспечивалось ограничением пучка до диаметра 1 мм. При интенсивности пучка 1010 с-1монокристалл сохраняет комнатную температуру. Стеклянный трековый детектор обладает энергетическим порогом регистрации ядер Ge. равным 5 МэВ. Вычисленная толщина работающего слоя мишени, зависящая от угла, оказывается небольшой, ~ 0,5 мг.см-2 по нормали. Потери энергии падающих ионов при прохождении работающего слоя составляют 3-4 МэВ. Кроме энергетического порога детектор обладает пороговым свойством отбора частиц по атомному номеру, ядра с Z < 15 не создают проявляемых треков в стекле. В эксперименте это проверено помещением АІ поглотителя толщиной 1,2 мг. см<sup>-2</sup> перед стеклом. Треки на детекторе исчезли. что соответствует пробегу мишенеподобных продуктов реакции, но не легких ядер.

Из всего многообразия частиц - продуктов ядерного взаимодействия <sup>20</sup>Ne+Ge - отбираются таким образом только мишенеподобные продукты упругого и умеренно неупругого взаимодействий. Глубоконеупругие тяжелые продукты вылетают под углом < 45° к пучку и не попадают на детектор. К глубоконеупругим относим события с полной кинетической энергией в с.ц.и. меньше  $B_e$ , где  $B_e$  кулоновский барьер взаимодействия ядер.Продукты распада составного ядра отсекаются порогом регистрации и диапазоном угла наблюдения. Сечение деления в изучаемой реакции / $\sigma_f \approx /1 \div 10/$  мб согласно измерениям<sup>/3/</sup> / много меньше сечения образования наблюдаемых ядер отдачи неупругого взаимодействия.

На рис.2а показано расположение кристаллографических осей и плоскостей монокристалла Ge относительно пучка, на рис.26 схематическое изображение теневой картины на плоскости детектора и направления просмотра плоскостных теневых минимумов.Видно,



Рис.2. а. Расположение кристаллографических осей и плоскостей относительно пучка. б. Схематическое изображение теневой картины на детекторе. Штриховая линия – проекция пучка на плоскость детектора, 1,2,3,4 – направления просмотра плоскостных теней.

Рис.3. Профили осевых <111> /а-г/ и плоскостных /110/ /д-з/ теней монокристалла Ge. Направление регистрации ядер отдачи составляет с пучком углы 66, 59, 54, 52° для случаев а,б,в,г и 74, 68, 63, 57,5° - для случаев д, е, ж, з соответственно. Положения регистрации плоскостных теней показаны на рис.26.



3

что для каждого угла рассеяния  $\theta$  можно сделать измерение для плоскостей, составляющих разные углы с пучком, и, кроме того, получить осевую тень. Это существенно для извлечения подробной информации о времени протекания реакции.

Некоторые результаты просмотра теневых минимумов даны на рис.3. Для области углов, соответствующих квазиупругим процессам, наблюдаются как осевые, так и плоскостные тени неплохого качества. Отметим, что приведенные минимумы соответствуют одинаковой дозе ионов, и, следовательно, ухудшение теней за счет радиационного повреждения монокристалла одинаково /и не очень велико/. Значения угловых ширин минимумов учитывают поправку на угловое разрешение опыта. Для углов наблюдения  $58^{\circ} > \theta > 52^{\circ}$  теневые минимумы постепенно исчезают с уменьшением  $\theta$ , появляется характерная структура с максимумом в центре, которая показывает большое смещение излучающего объекта из узла кристаллической решетки.

Влияние времени жизни распадающегося ядра\* на теневой минимум принято характеризовать относительным параметром  $R = \Omega_{\tau}/\Omega_0$ , где Ω - полный объем осевой или площадь плоскостной тени. Субскрипт 0 относится к эталонной тени, соответствующей малой временной задержке реакции, т - к тени, существенно измененной за счет немалого времени протекания реакции. Величина R имеет физический смысл доли ядер, распавшихся за время, меньшее чем  $t = r_0 / v_1$ , где  $r_0$  - параметр обрезания атомного потенциала оси или плоскости, у, - нормальная составляющая скорости распадающегося ядра. Так как угловая ширина тени  $\psi$  несколько меняется с углом в следствие изменения энергии продуктов реакции, то при определении отношения R учитывались значения 🌵 следующим образом:  $R = \Omega_{\tau} \psi_0 / \Omega_0 \psi_{\tau}$ . На рис.4а показаны измеренные величины R в зависимости от угла рассеяния  $\theta$  или от степени неупругости процесса  $\Delta E_{max}$  Видно, что доля быстрораспадающихся ядер убывает с ростом степени неупругости процесса. Наблюдается соответствие между результатами, относящимися к оси <111> и плоскостям /011/, /101/. Согласно известным данным /4-7/ о формировании эффекта теней при взаимодействии частиц с монокристаллом, величина г. для плоскостного случая составляет г. « а т. ,а для осевого - г. =6 а т. .Параметр Томаса-Ферми атF= 0,104 А для взаимодействия ядер Ge с монокристаллом Ge. Следовательно, значения  $t = r_c/v_1$  равны 1,5 sin<sup>-1</sup>a ac и 9,2 sin<sup>-1</sup> $\theta$  ac для плоскостных и осевых теней соответственно, где а - угол между пучком и плоскостью. Используя значения R, измеренные для оси <111> и двух плоскостей, составляющих разные углы с пучком, можно получить результат, относящийся к временному распределению со-





Рис.4. а. Относительная интенсивность эффекта теней R. Точки  $\phi$  - кристаллографическая ось <111>,  $\phi$ - плоскость /011/,  $\phi$  плоскость /101/, б. Величина 1 - R для  $\theta$  = 57,5° в зависимости от времени t.

бытий распада. На рис.46 дана зависимость величины 1- $\mathbb{R}$  от времени для ядер отдачи, вылетающих под углом 57,5° к пучку. Величина 1- $\mathbb{R}$ , имеющая смысл доли ядер, не распавшихся за время t ==  $r_c/v_L$ , в случае экспоненциального распада равна 1- $\mathbb{R} = e^{-t/r}$ . Точки на рис.46 не укладываются на экспоненте, они лучше отвечают временному распределению

с максимумом при значении t ~ 9 ас. Длительное существование системы взаимодействующих ядер означает, что угловое распределение продуктов в с.ц.и. должно быть симметричным относительно 90°. С использованием трекового детектора из пластика, нечувствительного к *а*-частицам и протонам, зафиксирована соответствующая величина выхода частицеподобных продуктов реакции в заднюю полусферу вплоть до углов, близких к 180°.

Таким образом, наблюдалась временная задержка  $\sim 10^{-17}$  с событий реакции испускания мишенеподобных продуктов неупругого взаимодействия ядер  $^{20}$ Ne и Ge. Это время много больше периода вращения  $T \approx 4 \cdot 10^{-21}$  с двойной ядерной системы с угловым моментом, близким  $\ell_{max} = 49$  h. Поэтому речь идет о наблюдении долгожите вущей ядерной квазимолекулы  $^{20}$ Ne + Ge. В данном случае, по-видимому, нет возможности объяснить наблюдаемую временную задержку событий каким-либо другим путем – ни как время вторичного процесса распада возбужденного продукта<sup>/2/</sup>, ни как время деления составного ядра<sup>/8/</sup>.

Интересно отметить, что наблюдение относится к умеренно неупругим реакциям, следовательно, длительное существование квазимолекулы не приводит к полной диссипации кинетической энергии относительного движения ядер. Она имеет, вероятно, форму энергии периодических колебаний или вращения.

Автор благодарен И.Н.Егошину за предоставление монокристалла Ge и группе эксплуатации циклотрона У-300 за получение пучков ионов с нужными параметрами.

## ЛИТЕРАТУРА

- 1. Kienle P. Intern. School-Seminar on Heavy-Ion Physics. JINR, D7-83-644, Dubna, 1983, p. 216.
- 2. Gomez del Campo J. et al. Phys.Rev.Lett., 1983, 51, p. 451.
- 3. Cabot C. et al. Nucl. Phys., 1975, A244, p. 134.
- 4. Maruyama M. et al. Nucl. Phys., 1970, A145, p. 581.
- 5. Andersen J.U. et al. Nucl. Phys., 1975, A241, p. 317.
- 6. Gibson W.M. et al. Nucl. Phys., 1979, A317, p. 313.
- 7. Меликов Ю.В. и др. Труды IX Всесоюзного совещания по физике взаимодействия заряженных частиц с кристаллами. М., Изд-во МГУ, 1979, с. 30.
- 8. Бугров В.Н., Карамян С.А. ОИЯИ, Р7-83-809, Дубна, 1983.

# НЕТ ЛИ ПРОБЕЛОВ В ВАШЕЙ БИБЛИОТЕКЕ?

### Вы можете получить по почте перечисленные ниже книги,

#### если они не были заказаны ранее.

|               | Труды VI Всесоюзного совещания по ускорителям заря-<br>женных частиц. Дубна, 1978 /2 тома/                                                           | 7 р. 40 к.              |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
|               | Труды VII Всесоюзного совещания по ускорителям заря-<br>женных частиц, Дубна, 1980 /2 тома/                                                          | 8 p. 00 к.              |
| Д11-80-13     | Труды рабочего совещания по системам и методам<br>аналитических вычислений на ЗВМ и их применению<br>в теоретической физике, Дубна, 1979             | 3 р. 50 к.              |
| д4-80-271     | Труды Международной конференции по проблемам<br>нескольких тел в ядерной физике. Дубна, 1979.                                                        | 3 р. 00 к.              |
| д4-80-385     | Труды Международной школы по структуре ядра.<br>Алушта, 1980.                                                                                        | 5 p. 00 ĸ.              |
| Д2-81-543     | Г<br>Труды VI Международного совещания по проблемам кван-<br>товой теории поля. Алушта, 1981                                                         | 2 р. 50 к.              |
| Д10,11-81-622 | Труды Международного совещания по проблемам математи-<br>ческого моделирования в ядерно-физических исследова-<br>ниях. Дубна, 1980                   | 2 p. 50 к.              |
| Д1,2-81-728   | Труды VI Международного семинара по проблемам физики высоких энергий. Дубна, 1981.                                                                   | 3 р. 60 к.              |
| A17-81-758    | Труды II Международного симпозиума по избранным<br>проблемам статистической механики. Дубна, 1981.                                                   | 5 p. 40 ĸ.              |
| Д1,2-82-27    | Труды Международного симпозиума по поляризационным<br>явлениям в физике высоких энергий. Дубна, 1981.                                                | 3 р. 20 к.              |
| P18-82-117    | Труды IV совещания по использованию новых ядерно-<br>физических методов для решения научно-технических<br>и народнохозяйственных задач. Дубна, 1981. | 3 р. 80 к.              |
| д2-82-568     | Труды совещания по исследованиям в области<br>релятивистской ядерной физики. Дубна, 1982.                                                            | 1 р. 75 к.              |
| д9-82-664     | Труды совещания по коллективным методам<br>ускорения. Дубна, 1982.                                                                                   | 3 р. 30 к.              |
| дз,4-82-704   | Труды IV Международной школы по нейтронной<br>физике. Дубна, 1982.                                                                                   | 5 p. 00 ĸ.              |
| Д2,4-83-179   | Труды XУ Международной школы молодых ученых<br>по физике высоких энергий. Дубна, 1982.                                                               | 4 р. <mark>80 к.</mark> |
|               | Труды УШ Всесоюзного совещания по ускорителям<br>заряженных частиц. Протвино, 1982 /2 тома/                                                          | 11 р. 40 к.             |
| Д11-83-511    | Труды совещания по системам и методам<br>аналитических вычислений на ЭВМ и их применению<br>в теоретической физике. Дубна, 1982.                     | 2 р. 50 к.              |
| д7-83-644     | Труды Международн <mark>ой школы-семинара по физике</mark><br>тяжелых <mark>ионов. Алушта, 1983.</mark>                                              | 6 р. 55 к.              |
| д2,13-83-689  | Труды рабочего совещания по проблемам излучения                                                                                                      | 2 0 00 4                |

Рукопись поступила в издательский отдел 24 мая 1984 года.

Заказы на упомянутые книги могут быть направлены по адресу: 101000 Москва, Главпочтамт, п/я 79 Издательский отдел Объединенного института ядерных исследований

# ТЕМАТИЧЕСКИЕ КАТЕГОРИИ ПУБЛИКАЦИЙ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ

| Индекс | Тематика                                                                                                             |
|--------|----------------------------------------------------------------------------------------------------------------------|
| 1      | Экспериментальная физика высоких энергий                                                                             |
| 2.     | Теоретическая физика высоких энергий                                                                                 |
|        | Экспериментальная нейтронная физика                                                                                  |
| 4.     |                                                                                                                      |
| 5.     | Математика                                                                                                           |
| 6.     | Ядерная спектроскопия и радиохимия                                                                                   |
| 7.     | Физика тяжелых ионов                                                                                                 |
| 8.     | Криогеника                                                                                                           |
| 9.     | Ускорители                                                                                                           |
| 10.    | Автоматизация обработки экспериментальных данных                                                                     |
| 11.    | Вычислительная математика и техника                                                                                  |
| 12.    | Химия                                                                                                                |
| 13.    | Техника физического эксперимента                                                                                     |
| 14.    | Исследования твердых тел и жидкостей<br>ядерными методами                                                            |
| 15.    | Экспериментальная физика ядерных реакций при низких энергиях                                                         |
| 16.    | Дозиметрия и физика защиты                                                                                           |
| 17.    | Теория конденсированного состояния                                                                                   |
| 18.    | Использование результатов и методов<br>фундаментальных физических исследований<br>в смежных областях науки и техники |

19. Биофизика

Карамян С.А. Р7-84-358 Наблюдение долгоживущей ядерной квазимолекулы в системе <sup>20</sup>Ne + Ge

Монокристалл германия облучали ионами <sup>20</sup>Ne с энергией 102 МэВ. Теневые минимумы в угловом распределении ядер отдачи упругого и неупругого взаимодействий фиксировались стеклянным трековым детектором. Обнаружено почти полное исчезновение теневых минимумов в области углов вылета тяжелых продуктов  $\theta = 58-52^\circ$ . Соответствующее время протекания реакции  $-10^{-17}$  с.

Работа выполнена в Лаборатории ядерных реакций ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1984

#### Перевод О.С.Виноградовой

Karamian S.A. P7-84-358 Observation of a Long-Lived Nuclear Quasimolecule in the  $^{20}$ Ne + Ge System

Germanium single crystal was irradiated by 102 MeV <sup>20</sup>Ne ions. For the nuclei, recoiled at the elastic and inelastic nuclear interaction, blocking effect minima are fixed at the angular distribution. The minima have almost disappeared for the target-like product emission angles  $\theta = 58-52^{\circ}$  relatively to the beam. Corresponding duration time of the reaction is about  $10^{-17}$  s.

The investigation has been performed at the Laboratory of Nuclear Reactions, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1984