

2418/83

P7-83-57

Г.Щорнак, Г.Музиоль, Р.Пильц

ХАРАКТЕРИСТИЧЕСКОЕ РЕНТГЕНОВСКОЕ ИЗЛУЧЕНИЕ И ЭНЕРГИИ СВЯЗИ ЭЛЕКТРОНОВ МНОГОЗАРЯДНЫХ ИОНОВ БЛАГОРОДНЫХ ГАЗОВ

Направлено в журнал "Оптика и спектроскопия"

1983

1. ВВЕДЕНИЕ

Вакансии на внешних атомных оболочках играют важную роль в атомных процессах, происходящих в плазме термоядерных установок, в коллективных сгустках частиц, источниках тяжелых ионов и в астрофизических объектах. Существенно влияет на ход процессов и сила взаимодействия в атомной оболочке и между электронной оболочкой и ядром.

В литературе известно немного экспериментов по определению энергетических сдвигов рентгеновских линий при образовании различного числа вакансий на внешних оболочках атома. Это, несомненно, связано с малым числом подходящих источников многозарядных ионов и с большими требованиями к экспериментальной технике и методике. Определить величины сдвигов энергии характеристиче-СКОГО ДЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ В ЗАВИСИМОСТИ ОТ ЧИСЛА ВНЕШНИХ вакансий можно расчетным путем при помощи метода самосогласованного поля. С этой целью в настоящей работе проведены расчеты по методу Дирака-Фока-Слейтера /1/ для всех основных состояний ионов неона, аргона, криптона и ксенона. Это дополняет по существу ранее проведенные расчеты структуры ксенона /2/ и дает представление о поведении обсуждаемых величин в большом диапазоне Z. Определяются сдвиги энергии рентгеновских переходов и изменения энергии связи электронов как функции ионизационного состояния атома. На примере аргона выясняются изменения интенсивности рентгеновских переходов, которые рассчитываются на основе теории Скофильда /3,4/ с использованием релятивистских волновых функций /1/.

2. МЕТОД РАСЧЕТА

Для расчета сдвигов энергии рентгеновских сателлитов и энергии связи многозарядных ионов используется программа НЕХ ^{/1} в которой самосогласованное потенциальное поле и радиальные орбитальные функции получаются с использованием уравнения Дирака.

В приближении самосогласованного поля волновая функция записывается как детерминант Слейтера из орбитальных функций. Орбитальные функции удовлетворяют одноэлектронным уравнениям. Уравнение Дирака в локальном сферически симметричном потенциале имеет вид

CONCERNMENT AND INTYT

 $[c\vec{\alpha}\vec{p} + \beta mc^2 + V(r)]\Psi_i = E_i\Psi_i$.

/1/

1

Таблица 1

Потенциальная функция складывается из потенциала ядра, кулоновского поля электронов и потенциала обмена слейтеровского ρ 1/8 - типа

$$V_{A}(\mathbf{r}) = -\left(\frac{3e^{2}}{2\pi}\right) \left(3\pi^{2}\rho(\mathbf{r})\right)^{1/3}.$$
 /2/

Орбитальные функции Ψ можно записать в виде:

$$\Psi = \begin{pmatrix} A(r)/r & i^{\ell} \Omega_{j\ell m} \\ B(r)/r & i^{\ell'} \Omega_{j\ell' m} \end{pmatrix}.$$
 (3/

Верхняя строка в /3/ соответствует большой компоненте, нижняя – малой компоненте волновой функции, Ω – двухкомпонентные нормированные спиноры с указанными квантовыми числами. Между квантовыми числами выполняются соотношения:

$$l' = l + s$$
 $j = l + \frac{1}{2} = l' - \frac{1}{2}s$,
 $k = -s(j + \frac{1}{2})$ $s = \pm 1$. (4/

Дифференциальные уравнения для радиальных функций A(r) и B(r) записываются как

$$\frac{d}{dr} \begin{pmatrix} A(r) \\ B(r) \end{pmatrix} = \begin{pmatrix} -k/r & (V - mc^2 - E_i)/cs \\ -(V + mc^2 - E_i)/cs & k/r \end{pmatrix} \begin{pmatrix} A(r) \\ B(r) \end{pmatrix}.$$
 /5/

Расчеты проводились в приближении замороженных орбиталей. При этом для расчетов сдвигов энергии связи собственные значения, полученные с использованием потенциала /2/, берутся с поправкой по методу Латтера^{76/}. Сдвиги энергии рентгеновских линий рассчитывались с использованием обменного потенциала свободных электронов типа Хартри-Фока ^{78,7/}. Сравнение полученных результатов с экспериментальными данными проводится в последующих разделах.

РЕНТГЕНОВСКИЕ САТЕЛЛИТЫ ПРИ НАЛИЧИИ ВНЕШНИХ ВАКАНСИЙ В ЭЛЕКТРОННОЙ ОБОЛОЧКЕ

Как уже говорилось выше, экспериментальных данных о сдвигах рентгеновских линий при наличии внешних вакансий в атомной оболочке почти нет. Однако для определения точности расчетов желательно сравнить их с экспериментальными данными. Такая возможность существует для сателлитов неона, т.к. в этом случае влияние внешних вакансий на энергетические сдвиги рентгеновских Влияние внешних вакансий на сдвиги энергии K_{α} -переходов в неоне. Сравниваются расчетные значения $E_{Д\Phi C}$ с экспериментальными $E_{3KC\Pi}$, ΔE – сдвиги энергии относительно диаграммной линии

Конфигурация ls ^l 2s ^m 2p ⁿ		Сателлит	Е _{эксп,} /эВ	∆Е _{эксп.} /эВ	Е _{ДФС} ∕эВ	
m	n	KL ^O				
2	6		848+2			
2 1	5 6	KL ⁻¹	855 <u>+</u> 2	7 <u>+</u> 4	6,1	
2 1 0	4 5 6	KL ⁻²	863+2	15 <u>+</u> 4	14,5	
2 1 0	3 4 5	KL ⁻³	873 <u>+</u> 2	25+4	25,4	
2 1 0	2 3 4	KL ⁻⁴	882+2 34+4		31,7	
2 1 0	1 2 3	KL ⁻⁵	895 <u>+</u> 2	47 <u>+</u> 4	45,3	
1 0	1 2	KL ⁻⁶	907+2	59 <u>+</u> 4	56,1	

линий можно наблюдать в неискаженном виде. Отсутствие безизлучательных процессов перестройки атомной оболочки, характерных при заполнении внутренних вакансий внешними электронами для элементов с более высоким порядковым номером Z, позволяет однозначно интерпретировать полученные результаты. В табл.1 сравниваются экспериментальные значения энергии K_a -сателлитных линий неона с расчетными. Сравнение экспериментальных и расчетных сдвигов дает хорошее совпадение с точностью до ошибок эксперимента, среднее отклонение измеряемых значений от расчетных не превышает 5%. При переходе к более тяжелым элементам ситуация усложня-

Рис.1. Сдвиги энергии ∆Е К-переходов характеристического рентгеновского излучения благородных газов в зависимости от числа I внешних вакансий.

Рис.2. Сдвиги энергии ΔЕ Lпереходов характеристического рентгеновского излучения благородных газов в зависимости от числа I внешних вакансий.

ется из-за появления смешанных конфигураций с внутренними и внешними вакансиями. Кроме того, уменьшается величина сдвига при дополнительной вакансии, т.к. с увеличением Z растет экранирование внешних электронов.

На рис.1 и 2 показаны сдвиги энергии рентгеновских переходов благородных газов в зависимости от числа внешних вакансий в атомной оболочке. Характерные изменения в наклоне сдвигов рентгеновских энергий наблюдаются всегда для полностью ионизованных подоболочек. Первое резкое изменение обнаруживается при степени ионизации I = 8, что соответствует полной ионизации 5s - оболочки у ксенона, 4s - оболочки у криптона и 3s - оболочки у аргона. Ионизация следующих nd - электронов (n = 3,4) ведет к уменьшению энергии рентгеновских сдвигов, так как при удалении nd - электронов относительный сдвиг участвующих в радиационном переходе электронных уровней уменьшается. При I = 18 наблюдается второе заметное изменение роста сдвигов энергии рентгеновских сателлитов, которое соответствует ионизации 3d - оболочки у криптона и 4d - оболочки у ксенона. Изменения сдвигов при I = 26 возникают вследствие ионизации 4s- и 3s-оболочки у ксенона и криптона соответственно. Следующие характерные точки соответствуют для ксенона: I = 36 /3d -оболочка/ и I = 44 /3s -оболочка/.

Для а -переходов всех серий можно сформулировать правило: энергетические сдвиги наивысшие для тех рентгеновских серий, начальный уровень которых имеет максимальное значение главного квантового числа. Изменение сдвигов энергии рентгеновских переходов наибольшее в тех случаях, когда разность главных квантовых чисел электронных состояний максимальна. Эти закономерности связаны с различным уменьшением энергии связи электронов в состояниях, участвующих в рентгеновском переходе, при появлении дополнительной внешней вакансии. Характерна общая тенденция: с ростом главного квантового числа вакансий во внешних оболочках их влияние уменьшается. Замедляется также рост энергии связи внешних электронных состояний. Относительное изменение энергии связи растет с увеличением разности главных квантовых чисел рассматриваемых уровней.

4. РАСЧЕТ ИНТЕНСИВНОСТЕЙ РЕНТГЕНОВСКИХ ПЕРЕХОДОВ

Дополнительные вакансии в электронной оболочке влияют на вероятности радиационных электронных переходов. Изменения интенсивности рентгеновских переходов представляют собой независимый атомный параметр, измеряя который, можно судить об ионизационном состоянии атома. Такие измерения имеют особенное значение в связи с растущим интересом к источникам высокоионизованных атомов /ион-атомные столкновения, метастабильные состояния при возбуждении атома мишени пучком, горячая плазма/, т.к. спектр излучения дает различную информацию об излучающей системе.

Для анализа переходов в многократно ионизованных атомах Ларкинс $^{/9/}$ предложил статистическую процедуру усреднения, позволяющую оценить силы осцилляторов. Если п электронов находятся в подоболочке, которая может содержать ${\tt n}_0$ электронов в заполненном состоянии, то интенсивность перехода уменьшается в ${\tt n}/{\tt n}_0$ раз для одноэлектронных переходов. Чтобы получить интенсивности рентгеновских переходов квантово-механическим путем, мы используем релятивистские матричные элементы для расчетов вероятностей радиационных переходов в мультипольном разложении, следуя работе $^{/10/}$.

В расчетах не учитывались эффекты электронного обмена. Пренебрежение обменными эффектами при расчете отношения интенсивностей К $_{eta}/K_{a}$ -переходов, например, дает ошибку порядка 5% ^{/4/}. Однако, если интересоваться только относительными изменениями интенсивностей рентгеновского излучения, то эффектами электронного обмена можно пренебречь.

Рис.3. Изменение полной вероятности К -переходов и вероятностей К_{а1}(К - L_{III})-и К_{а2}(К - L_{II})-переходов при ионизации внешней оболочки аргона, вычисленных для основных состояний ионов, І - степень ионизации. Сверху указаны полностью ободранные оболочки.

Рис.6. Относительные интенсивности рентгеновских К-переходов аргона. Сверху указаны полностью ободранные оболочки. I - степень ионизации.

Рис.4. Изменение вероятностей К β_1 (К – М_{III})-и К β_8 (К – М_{II})-переходов при ионизации внешней оболочки аргона, вычисленных для основных состояний ионов. I – степень ионизации. Сверху указаны полностью ободранные оболочки.

Рис.5. Относительные интенсивности рентгеновских К-переходов аргона. Сверху указаны полностью ободранные оболочки. I - степень ионизации.

На рис.3 показаны изменения полной вероятности излучения для К -переходов и изменения вероятностей К - L_{II} и К - L_{III} /К_{а2} и К_{а1} / переходов при последовательном удалении внешних электронов атомной оболочки аргона. Эти же зависимости показаны на рис.4 для К - М_{II} и К - М_{III} /К_{β3} - и К_{β1}-/ переходов аргона. Уже при удалении первых электронов интенсивность К_{β1} - перехода сразу падает, т.к. удаляются электроны с М_{III} - уровня. При удалении внешних электронов вероятности К_а -переходов и полная вероятность К - переходов изменяются несущественно. Влияет только удаление электронов из L -оболочки.

На рис.5 и 6 показаны изменения относительных интенсивностей рентгеновских К-переходов при удалении внешних электронов аргона для основного состояния иона. Резкое нарастание отношений К $\beta_3/K\beta_1$ и К $_{a\,2}/K_{a\,1}$ объясняется уменьшением числа электронов на М_{ШГ}и L_Ш уровнях, из-за чего падают вероятности К β_1 -и К $_{a\,1}$ - переходов.

5. ЭНЕРГИИ СВЯЗИ ПРИ ОБРАЗОВАНИИ ВНЕШНИХ ВАКАНСИЙ В ЭЛЕКТРОННОЙ ОБОЛОЧКЕ

В разделе 3 на рис.1 и 2 даны примеры сдвигов рентгеновских линий при ионизации атомных оболочек. Эти сдвиги возникают вследствие уменьшения экранирования и связанного с этим роста энергии связи электронов. Энергия связи изменяется по-разному для различных уровней. При образовании дополнительных вакансий энергетическое расстояние между электронными состояниями изменяется, что проявляется в сдвигах энергии соответствующих рентгеновских переходов. Это показано в⁷²⁷ для всех степеней ионизации ксенона.

Для определения точности расчетов в табл.2 сравниваются экспериментальные значения потенциалов ионизации, полученные из анализа оптических спектров ^{/11/}с рассчитанными в нашей работе значениями. Совпадение экспериментальных и расчетных значений во всех случаях не хуже 5%. Для увеличения точности расчета необходимо учитывать дополнительные поправки /корреляции электронов, квантово-электродинамические эффекты/.

На рис.7-9 показаны сдвиги энергии связи К-, L_{II} - и M_{II} -уровней неона, аргона, криптона и ксенона. Резкие изменения наклона сдвигов энергии рентгеновских переходов наблюдаются при достижении электронных конфигураций в ионе, которые соответствуют замкнутым оболочкам конфигураций благородных газов или [благородный газ] Id^{10} (n = 3,4), что объясняется соответствующими изменениями энергии связи в многозарядном ионе. Из рис.7-9 видно, что аналогичное поведение наблюдается для энергии связи многозарядных ионов, т.е. проявляется ожидаемая идентичность поведения энергии связи и соответствующих рентгеновских переходов.

Таблица 2

Сравнение	экспериментальных значений потенциалов
ионизации	/11/ с рассчитанными по методу Дирака-Фока-
Слейтера.	I - степень ионизации, Е _{эксп} - экспериментальные
значения :	энергии 11, Е – рассчитанные нами значения

	Неон Z = 10		•	Аргон Z =	18	
I	Е _{эксп.} /эВ	Е _{ДФС} ∕эВ	I	Е _{эксп.} /эВ	Е _{ДФС} ∕эВ	
0	21,564	19,960	0	15,759	14,428	
1	41,079	40,353	1	27,628	26,971	
2	63,742	64,086	2	40,908	40,860	
3	97,044	90,777	3	59,806	55,89	
4	126,287	120,338	4	75,02	72,228	
5	157,940	152,166	5	91,32	89,267	
			6	124,03	123,901	
			7	148,49	144,511	
	Криптон Z	= 36		Ксенон Z	= 54	
I	Е /эВ эксп./эВ	Едфс/эВ	I	Е эксп./эВ	Е _{ДФС} ∕эВ	
0	13,999	12,707	0	12,129	10,953	
1	24,570	23,574	I	21,208	20,120	
2	36,947	35,461	2	32,121	30,087	

Обычно наибольшее изменение энергии связи наблюдается для внутренних уровней, так как ослабление экранирования сказывается здесь очень существенно. Удаление электронов с высокими моментами количества движения меньше влияет на экранирование электронов К -оболочки, чем на расположенные выше уровни. Следовательно, изменение энергии связи электронов К-оболочки с ростом ионизации может стать меньше, чем для расположенных выше уровней, что является причиной уменьшения сдвигов энергии рентгеновского излучения /см. рис.1 и 2/.

Для оценки степени совпадения расчетов энергии связи электронов по методу самосогласованного поля с экспериментальными результатами на рис.10 сравниваются относительные отклонения рас-

Рис.7. Изменения энергии связи ∆Е К – уровней благородных газов, вычисленные для основных состояний ионов. I – степень ионизации.

Рис.8. Изменения энергии связи ΔЕ L_{II}-уровней благородных газов, вычисленные для основных состояний ионов. I – степень ионизации.

Рис.9. Изменения энергии связи ΔΕ М_{II}-уровней благородных газов, вычисленные для основных состояний ионов. I - степень ионизации.

четных энергий уровней от экспериментальных значений для криптона. Нерелятивистские расчеты, как правило, больше отклоняются от экспериментальных данных,чем релятивистские. В релятивистских расчетах на электроны внешних оболочек релятивистские эффекты влияют косвенно в связи с ростом энергии связи электронов с малым моментом

Рис. 10. Относительное отклонение расчетных энергий уровней от экспериментальных значений /12/ для криптона. 1 - собственные значения по метолу Хартри-Фока-Слейтера /18/. 2 - энергии связи по методу Дирака-Фока-Слейтера /1/ с обменным потенциалом типа Хартри-Фока для своболных электронов /6,7/: 3 - собственные значения по методу Дирака-Фока-Слейтера с замороженными орбиталями: 4 - собственные значения по метопу Дирака-Фока-Слейтера /14/ с учетом релаксации: 5 - собственные значения по методу Дирака-Фока-Слейтера /14/с замороженными

орбиталями. Значения 5 за исключением двух внешних орбиталей соответствуют результатам Декло^{/15/}, полученным по методу Дирака-Фока с замороженными орбиталями. Знаком * характеризуются орбитали, для которых $j = l - \frac{1}{2}$; для остальных орбиталей $i = l + \frac{1}{2}$.

количества движения ^{/18-18/}. Электронные орбитали с малыми моментами в релятивистской теории приближаются к ядру, и эффективнее экранируют электроны с более высокими моментами. Это ведет к уменьшению энергии связи этих электронов, если эффекты обмена не оказывают обратного влияния.

6. ЗАКЛЮЧЕНИЕ

Развитие ускорителей тяжелых ионов и связанных с ними источников тяжелых ионов, разработка основ управляемого термоядерного синтеза и прогресс в космических исследованиях настоятельно требуют знания структуры многозарядных ионов. Чтобы получить представление об изменении и порядке величины существенных параметров при образовании дополнительных внешних вакансий в атоме, мы исследовали расчетным путем характеристическое рентгеновское излучение и сдвиги энергий связи для неона, аргона, криптона и ксенона.Эти элементы удобны для применений в источниках тяжелых ионов, т.е. не требуют дополнительных установок для лазерного испарения и т.п.

Полученные нами результаты дают представление об изменении исследуемых параметров в большом Z -диапазоне и могут оказаться полезными для диагностики различных сгустков частиц, включающих многозарядные ионы по характеристическому рентгеновскому излучению этих ионов.

ЛИТЕРАТУРА

- Liberman D.A., Cromer D.T., Waber J.T. Comp.Phys.Commun., 1971, 2, p.107.
- 2. Зиберт Х.У. и др. Оптика и спектроскопия, 1977, т.42, с.1012.
- 3. Scofield J.H. Phys.Rev., 1969, 179, p.9.
- 4. Scofield J.H. Phys.Rev., 1974, A9, p.1041.
- 5. Latter R. Phys.Rev., 1955, 99, p.510.
- 6. Liberman D.A. Phys.Rev., 1968, 171, p.1.
- 7. Sham L.J., Kohn W. Phys.Rev., 1966, 145, p.561.
- 8. Kauffman R.L. et al. Phys.Rev.Lett., 1973, 31, p.621.
- 9. Larkins F.P. J.Phys., 1971, B4, p.L29.
- Scofield J.H. Radiative Transitions. In: Atomic Inner-Shell Processes. Academic Press, New York et al., 1975, vol.1, p.293.
- Строганов А.Р., Свентицкий Н.С. Таблицы спектральных линий нейтральных и ионизированных атомов. Атомиздат, М., 1966.
- 12. Bearden J.A., Burr A.F. Rev.Mod.Phys., 1967, 39, p.125.
- Herman F., Skillman S. Atomic Structure Calculations. Prentice Hall, Englewood Cliffs, New Jersey, 1963.
- 14. Rosen A., Lindgren I. Phys.Rev., 1968, 176, p.114.
- Desclaux J.P. Atomic Data and Nucl.Data Tables, 1973, 12, p.311.
- Liberman D.A., Cromer D.T., Waber J.T. Phys.Rev., 1965, A137, p.27.
- 17. Mayers D.F. Proc.Roy.Soc., 1957, A241, p.93.
- Boyd R.G., Larson A.C., Waber J.T. Phys.Rev., 1962, 129, p.1629.

Рукопись поступила в издательский отдел 2 февраля 1983 года.

НЕТ ЛИ ПРОБЕЛОВ В ВАШЕЙ БИБЛИОТЕКЕ?

Вы можете получить по почте перечисленные ниже книги,

если они не были заказаны ранее.

Д3-11787	Труды III Международной школы по нейтронной физике. Алушта, 1978.	3	ρ.	00	к.
Д13-11807	Труды III Международного совещания по пропорциональ- ным и дрейфовым камерам. Дубна, 1978.	6	p.	00	к.
	Труды VI Всесоюзного совещания по ускорителям заря- женных частиц. Дубна, 1978 /2 тома/	7	p.	40	к.
Д1,2-12036	Труды V Международного семинара по проблемам физики высоких энергий. Дубна, 1978	5	ρ.	00	κ.
Д1,2-12450	Труды XII Международной школы молодых ученых по физике высоких энергий. Приморско, НРБ, 1978.	3	p.	00	к.
	Труды VII Всесоюзного совещания по ускорителям заря- женных частиц, Дубна, 1980 /2 тома/	8	ρ.	00	к,
Д11-80-13	Труды рабочего совещания по системам и методам аналитических вычислений на ЗВМ и их применению в теоретической физике, Дубна, 1979	3	ρ.	50	к.
д4-80-271	Труды Международной конференции по проблемам нескольких тел в ядерной физике. Дубна, 1979.	3	р.	00	к.
д4-80-385	Труды Международной школы по структуре ядра. Алушта, 1980.	5	р.	00	к.
Д2-81-543	Труды VI Международного совещания по проблемам кван- товой теории поля. Алушта, 1981	2	p .	50	к.
ДIO,11-81-622	Труды Международного совещания по проблемам математи- ческого моделирования в ядерно-физических исследова- мнях. Дубна, 1980	2	p.	50	к.
Д1,2-81-728	Труды VI Международного семинара по проблемам физики высоких энергий. Дубна, 1981.	3	p.	60	к.
Д17-81-758	Труды II Международного симпозиума по избранным проблемам статистической механики. Дубна, 1981.	5	p.	40	к.
Д1,2-82-27	Труды Международного симпозиума по поляризационным явлениям в физике высоких энергий. Дубна, 1981.	3	p.	20	к.
P18-82-117	Труды IV совещания по использованию новых ядерно- физических методов для решения научно-технических и народнохозяйственных задач. Дубна, 1981.	3	p.	80	к.
Д2-82-568	Труды совещания по исследованиям в области релятивистской ядерной физики. Дубна, 1982.	1	p.	75	к.
Д9-82-664	Труды совещания по коллективным методам ускорения. Дубна, 1982.	3	p.	30	к.
ДЗ,4-82-704	Труды IV Международной школы по нейтронной физике. Дубна, 1982.	5	p,	00	к.

Заказы на упомянутые книги могут быть направлены по адресу: 101000 Москва, Главпочтамт, п/я 79 Издательский отдел Объединенного института ядерных исследований Щорнак Г., Музиоль Г., Пильц Р. Р7-83-57 Характеристическое рентгеновское излучение и энергии связи электронов многозарядных ионов благородных газов

По методу Дирака-Фока-Слейтера проведены расчеты изменения энергии рентгеновских переходов и энергии связи электронов в атомах благородных газов, имеющих внешние вакансии. Получены сдвиги рентгеновских линий К- и L -серии неона, аргона, криптона и ксенона. Для этих же элементов приведены результаты изменения энергии связи К-, L_{II} - и M_{II} - уровней. Обнаружены резкие изменения наклона исследуемых параметров для конфигураций [благородный газ] и [благородный газ] nd¹⁰ (n=3,4). Для аргона приведены результаты расчета изменения интенсивности рентгеновских К-переходов при последовательной ионизации электронных оболочек. Из сравнения с экспериментальными данными следует, что точность расчетов изменения энергий рентгеновских переходов и энергий связи электронов не хуже 5%.

Работа выполнена в Отделе новых методов ускорения ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1983

Zschornack G., Musiol G., Pilz R. Characteristic X-Ray and Electron Binding Energies of Highly Charged Noble Gas Ions P7-83-57

The energies of characteristic X-ray and electron binding energies of highly charged noble gas ions are computed for a successive increasing number of outer-shell vacancies by the Dirac-Fock-Slater method. X-ray energy shifts for the K-and L-series of neon, argon, krypton and xenon have been obtained. For these elements binding energy shifts for the K-, L_{II} and M_{II} -orbitals are also discussed. For configurations [noble gas] and [noble gas]md¹⁰ (n=3.4) strong alterations of the investigated atomic parameters are met. Calculations for the change of the X-ray rates in the argon K-series by increasing outer-shell ionization are provided. Comparisons between experimental and theoretical results show that the accuracy of the calculated values due to experiments are in the range of about 5%.

The investigation has been performed at the Department of New Acceleration Methods, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1983

Перевод Т.Н.Самолетовой.

4