

P7-82-707

А.Г.Артюх, В.В.Авдейчиков, Г.Ф.Гриднев, М.Грушецки, В.Карч, А.Н.Мезенцев, В.Л.Михеев, В.М.Морозов, Л.Поморски, А.Попеску, Д.Г.Попеску, В.В.Волков

КОРРЕЛЯЦИИ ДВУХ АЛЬ́ФА-ЧАСТИЦ ПРИ ВЗАИМОДЕЙСТВИИ ^{пat} Ag + ⁴⁰Ar (285 МэВ)

Направлено в журнал "Ядерная физика"

1982

1. ВВЕДЕНИЕ

Изучение эмиссии легких заряженных частиц в столкновениях двух сложных ядер - одно из интенсивно развивающихся направлений физики тяжелых ионов. Обзоры опубликованных на эту тему работ даны в ^{/1-5'}. В последние годы широкое распространение получили корреляционные эксперименты. Они дают ценную информацию о механизмах образования легких заряженных частиц, выстроенности спинов, распределении углового момента и энергии возбуждения между сопряженными продуктами ядерной реакции ^{/6-8/}.

В нашей работе '9' изучалось образование легких заряженных частиц в реакции ^{nat}Ag+⁴⁰Ar /285 МэВ/ в сопоставлении с продуктами многонуклонных передач. Было установлено, что основной вклад в сечение образования инклюзивных а -частиц дают а-частицы с симметричным относительно 90° в системе общего центра масс угловым распределением. Энергия в максимумах энергетических спектров а-частиц была близка к величине кулоновского барьера составного ядра. В передней полусфере были зарегистрированы также а~частицы, наиболее вероятная энергия которых превышала кулоновский барьер составного ядра, а выход экспоненциально уменьшался с увеличением угла регистрации. Анализ баланса сечений указывал на то, что основная часть всех легких заряженных частиц образуется в процессах с эмиссией более чем одной частицы в одном акте взаимодействия. Это обстоятельство позволяет провести измерения корреляций между легкими частицами.

Настоящая работа посвящена измерению угловых и энергетических корреляций двух а-частиц в системе ^{nat}Ag + ⁴⁰Ar /285 MэB/ как в одной плоскости, так и во взаимно-перпендикулярных плоскостях, образуемых направлением вылета а-частиц и осью пучка.

2. МЕТОДИКА ЭКСПЕРИМЕНТА

Опыты проводились на выведенном пучке 310 см. циклотрона ОИЯИ. Мишень из натурального серебра толщиной 4,4 мг/см² облучалась ионами ⁴⁰Ar с энергией 300 МэВ. В средней плоскости мишени энергия ионов составляла 285 МэВ. К этой энергии мы и относим все полученные данные. Альфа-частицы регистрировались двумя телескопами полупроводниковых детекторов. Толщина кремниевых поверхностно-барьерных ΔE -детекторов составляла 25 и 29 мкм. Поверхностно-барьерные E-детекторы были изготовлены из кремния р-типа и имели толщину чувствительной области до 5 мм 107 . Пер-

States and A. I

1

вый телескоп располагался под углом $\theta_1 = 90^\circ$ л.с. к пучку. При измерениях в одной плоскости, содержащей ось пучка и направления регистрации *a* -частиц обоих телескопов, углы θ_2 регистрации *a* -частиц вторым телескопом по отношению к оси пучка менялись в пределах от $\pm 30^\circ$ до $\pm 128^\circ$ л.с. Знак "плюс" для углов θ_2 соответствует расположению телескопов по одну сторону оси пучка, знак "минус" - по разные. Для измерений вне плоскости первый телескоп поворачивался на 90° в плоскости, перпендикулярной оси пучка. Таким образом, для каждого из углов θ_2 второго телескопа проводились измерения совпадений *a* -частиц при расположении первого телескопа под углом $\theta_1 = 90^\circ$ л.с. как в общей для обоих телескопов и оси пучка плоскости, так и перпендикулярно к ней.

Размер пучка на мишени составлял $4x4 \text{ мм}^2$. Входные коллиматоры телескопов имели отверстия диаметром 5 мм, располагавшиеся на расстоянии 60 мм от центра мишени, что соответствовало среднему телесному углу 5,5 мср.

Электронная аппаратура в стандарте КАМАК обеспечивала одновременную регистрацию энергетических спектров инклюзивных и совпадающих «-частиц с обоих телескопов, а также временной задержки между сигналами с разных телескопов t. Все события записывались на магнитной ленте ЭВМ "Минск-32" с регистрацией 5 параметров: $\Delta E_1, E_1, \Delta E_2, E_2, t$. С целью контроля эффективности регистрации как инклюзивных, так и совпадающих событий на входы предусилителей обоих ∆Е-детекторов и обоих Е-детекторов подавались подобранные по амплитуде, форме и времени задержки импульсы от генератора. Запуск генератора осуществлялся импульсами с мониторного детектора, регистрирующего упруго рассеянные ионы под углом 30°. При таком запуске число импульсов генератора, зарегистрированных как в амплитудных, так и во временных каналах, дает возможность контроля реального мертвого времени злектроники именно в моменты попадания сгустков пучка на мишень. Старт время-амплитудного конвертора осуществлялся импульса-

ми с детектора ΔE_1 , а стоп импульсами с детектора ΔE_2 . Пучок ионов ⁴⁰ Ar на циклотроне ОИЯИ имеет микроструктуру, состоящую из сгустков шириной ~2 нс, повторяющихся через 225 нс в соответствии с частотой напряжения на дуантах. С целью учета фона мы реги-

Рис.1. Временной спектр a-a совпадений на выходе времяамплитудного конвертора. Измерения в плоскости реакции, $\theta_1 = 90^\circ$. $\theta_2 = -30^\circ$.

стрировали события из трех последовательных сгустков пучка. Пример временного спектра приведен на рис.1. В качестве фона бралась половина суммы событий в левом и правом от основного пиках. Абсолютная калибровка энергий и сечений осуществлялась по инклюзивным спектрам a-частиц, для которых данные по энергиям и сечениям получены в работе $^{/9/}$.

3. РЕЗУЛЬТАТЫ ИЗМЕРЕНИЙ

На рис.2а приведены данные по сечениям образования двух α частиц в одном акте взаимодействия Ag + 40 Ar/285 M9B/, полученные при расположении телескопа 1 под углом 90° л.с. к пучку и разных положениях телескопа 2. Дифференциальное сечение образования совпадающих α -частиц при их регистрации в одной плоскости заметно превышает дифференциальное сечение при регистрации α -частиц во взаимно-перпендикулярных плоскостях. Сечение совпадений оказывается в основном симметричным относительно направления пучка. Однако в области задних углов при измерениях в одной плоскости сечение α - α -совпадений при θ_{2} =+128° оказывается

заметно ниже, чем при $\theta_2 = -128 \circ$, когда телескопы оказываются расположенными по разные стороны пучка. Более четко этот эффект заметен на рис.2б и 2в, где приведены дифференциальная множественность а-частиц

 $\frac{\mathrm{d}\mathrm{M}_{\alpha}}{\mathrm{d}\Omega_{1}} = \left(\frac{\mathrm{d}^{2}\sigma_{\mathrm{COBH}}}{\mathrm{d}\Omega_{1}\cdot\mathrm{d}\Omega_{2}}/\frac{\mathrm{d}\sigma_{2}}{\mathrm{d}\Omega_{2}}\right) \wedge \mathrm{отношение}$

сечений образования совпадающих α -частиц с вылетом их в одной плоскости и во взаимно-перпендикулярных плоскостях $d^2\sigma_{_{\parallel}}/d^2\sigma_{_{\perp}}$ соответственно. Ошибки, указан-

Рис.2. а – дифференциальные сечения образования двух совпадающих *a* -частиц при расположении телескопа 1 под углом 90° к пучку и разных положениях телескопа 2; б – дифференциальная множественность совпадающих *a* – частиц; в – отношение дифференциальных сечений образования совпадающих *a*-частиц с вылетом их в одной плоскости и во взаимно-перпендикулярных плоскостях.

Рис.3. Энергетические спектры совпадающих a-частиц для θ_1 =90° µ θ_2 =+30° при расположении телескопов как в одной плоскости /a/, так и во взаимно-перпендикулярных плоскос-тях /б/. На проекциях спектров гистограммами представлены данные для совпадающих a-частиц, пунктирными линиями – для инклюзивных a-частиц.

ные на рис.2, являются статистическими. Вероятность того, что различие в эффектах при $\theta_2 = \pm 128^\circ$ связано лишь со статистическими отклонениями, составляет $\sim 1\%$. С целью повышения надежности были проведены два независимых измерения, давшие совпадающие в пределах статистических ошибок результаты.

При измерениях во взаимно-перпендикулярных плоскостях $dM_a/d\Omega_1$ в пределах ошибок одинаково для $\pm \theta_2$ /рис.26/. Это естественно, ибо в настоящей постановке опытов углы $\pm \theta_a$ при

измерениях во взаимно-перпендикулярных плоскостях эквивалентны.

Измерения в точках $\theta_2 = 0^\circ$, 180° /ось пучка/ не проводились. Но физически все направления $\theta_1 = 90^\circ$ л.с. при $\theta_2 = 0^\circ$, 180° эквивалентны. Поэтому отношение $d^2\sigma_{\parallel}/d^2\sigma_{\perp}$ на рис.2в должно проходить через 1 при $\theta_2 = 0^\circ$, 180° . Соответственно, сечения образования совпадающих *a*-частиц /рис.2а/ и значения $dM_a/d\Omega_1$ /рис.2б/ при $\theta_2 = 0^\circ$, 180° должны совпадать при экстраполяции к этим углам данных, полученных как в одной плоскости, так и во взаимно-перпендикулярных плоскостях.

На рис.3 представлены энергетические спектры совпадающих и инклюзивных a-частиц для θ_1 =90° и θ_2 =+30° при расположении телескопов как в одной, так и во взаимно-перпендикулярных плоскостях. Явно видимых различий между энергетическими спектра-ми совпадающих и инклюзивных a-частиц не наблюдается. Сходство энергетических спектров совпадающих и инклюзивных a-частиц установлено и для других углов измерения.

4. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

4.1. Поперечное сечение совпадений

Данные, приведенные на рис.2, позволяют сделать вывод о том, что угловая зависимость поперечного сечения совпадений является в основном симметричной относительно направления пучка. Это указывает на то, что основной источник совпадающих *a*-частиц имеет направление импульса, близкое к направлению импульса бомбардирующего иона. Этот факт согласуется с выводом, сделанным в работе ^{/9/}: основной вклад в выход инклюзивных *a*-частиц дает испускание из тяжелого продукта реакции, по общему числу нуклонов близкому к продукту полного слияния Ag + Ar.

На основании данных по сечениям совпадений a-частиц можно оценить их среднее число на один акт взаимодействия, приводящий к вылету одной a-частицы под углом $\theta_1 = 90^{\circ}$:

$$M_{\alpha} = 1 + \left(\int_{\Omega_{2}} \frac{d^{2} \sigma_{\text{COBIL}}}{d\Omega_{1} \cdot d\Omega_{2}}, d\Omega_{2}\right) / \left(\frac{d\sigma_{1}}{d\Omega_{1}}(90^{\circ})\right) \approx 1.8.$$
 /1/

Угловое распределение совпадающих *а*-частиц в основном подобно угловому распределению инклюзивных /см. рис.2/. Энергетические спектры совпадающих и инклюзивных *а*-частиц также близки. Энергетические спектры и сечения образования инклюзивных *а*-частиц плавно меняются с изменением угла наблюдения ^{/9/}. Поэтому можно предполагать, что среднее число *а*-частиц на один акт взаимодействия, усредненное и по всем возможным значениям θ_1 , несущественно отличается от величины 1,8, полученной для θ_1 =90°. Таким образом, ~90% инклюзивных *а*-частиц являются результатом обра-

зования двух ^а-частиц на один акт взаимодействия Ag + ⁴⁰Ar /285 МэВ/. С этим выводом согласуется и практическое отсутствие различий в энергетических спектрах совпадающих и инклюзивных а-частиц.

4.2. Угловые моменты

При рассмотрении процессов эмиссии a-частиц в реакциях с тяжелыми ионами существенно установить зоны угловых моментов столкновения, которые соответствуют образованию a-частиц. Для определения углового момента ядра, испускающего a-частицы, используем полуклассический подход, применяемый при анализе данных по зависимости выхода a-частиц от угла вне плоскости реакции ^{/7,11/}. Эта зависимость описывается выражением^{/7/}:

$$W(\theta) \sim \exp\left(\frac{\hbar^2 (I + \frac{1}{2})^2}{2 \cdot r \cdot T} \cdot \frac{M_{\alpha} R^2}{M_{\alpha} R^2 + r} \cdot \sin^2 \theta\right), \qquad (2/$$

где θ - угол вылета частицы по отношению к направлению углового момента I, $M_a R^2$ - момент инерции относительного движения aчастицы вокруг остаточного ядра, r и T - момент инерции и температура остаточного ядра. В качестве параметра радиуса мы использовали $r_0 = 1,3$ Фм. Т было принято равным 3 МэВ в соответствии со значением температуры, определенным из энергетических спектров a-частиц в задней полусфере ^{/9/}. Поскольку мы не знаем, какая из двух совпадающих a-частиц вылетела первой и, соответственно, определила плоскость реакции, мы провели расчеты для обоих вариантов вылета a-частиц. Результаты оценок приведены в таблице. Наиболее надежной оценкой среднеквадратичного значения момента I $_{\rm TMS} = \sqrt{(I + \frac{1}{2})^2}$ следует считать данные для $\theta_2 = -90^\circ$, когда в измерениях оба телескопа геометрически эквивалентны.

По угловым распределениям инклюзивных «-частиц в задней полусфере, полученным в работе ^{/9/}, можно провести независимые оценки углового момента. Мы использовали полуклассическое соотношение из работы ^{/12/}:

$$W(\theta) = 1 + \frac{1}{3} - \frac{\mu_a R^2 \cdot h^2 \cdot \overline{1^2}}{2 \cdot \tau^2 \cdot T} P_2(\cos \theta),$$
 (3)

1

где θ - угол вылета частиц по отношению к оси пучка, $P_2(\cos\theta)$ - полином Лежандра второй степени. При тех же значениях параметров r_0 и **T**, что использовались в соотношении /2/, мы получили среднеквадратичное значение момента $I_{rms} = 52 \pm 7 \, {\rm h}$.

В случае соотношения /2/ оценки I_{rms} относятся к ядру, отличающемуся от продукта полного слияния на «-частицу. В случае соотношения /3/ для нашей постановки опыта I_{rms} представляет собой некое среднее для продукта полного слияния и продукта,

Таблица

Оценки углового момента по отношению совпадений в одной плоскости и во взаимно-перпендикулярных плоскостях

, 0 2 ,град	$d^2\sigma_{\parallel}/d^2\sigma_{\perp}$	I [*] rms, th	I ** , h
+30	1,41+0,16	36+7	53+10
-30	1,40+0,16	36+7	53+10
+52	1,72+0,32	46+10	47+10
-90	1,70+0,18	46+5	46+5
+128	0,81+0,13		-
-128	1,54+0,23	41+9	64+15

* плоскость реакции задана осью пучка и телескопом 2 ** плоскость реакции задана осью пучка и телескопом 1.

отличающегося от него на a-частицу. Согласно^{/13/}, a-частица в наших условиях уносит угловой момент ~10^{fh}. С учетом этого обстоятельства данные для I_{rms}, полученные с помощью соотношения /2/ для $\theta_2 = -90^\circ$ и с помощью соотношения /3/, можно считать хорошо согласующимися.

В работе $^{/14/}$ по сумме сечений образования продуктов испарения нуклонов и деления в системе $Ag + {}^{40}Ar/288$ МэВ/ было получено, что критический угловой момент для полного слияния $\ell_{\rm er} = 108 +$ +8 h. Однако в этой работе не учтен вклад от реакций с образованием прямых *a*-частиц, протонов, дейтронов, тритонов, сумма сечений которых оставляет -480 мбн $^{/9/}$. В следующем разделе нашей статьи показано, что образование этих частиц с большой вероятностью может сопровождаться захватом остатка иона ядроммишенью. С учетом этого величина $\ell_{\rm er}$ становится равной ~85 h. Такое значение находится в удовлетворительном согласии с расчетным значением $\ell_{\rm er} = 75-80$ h $^{/15/}$.

Полученные нами значения I_{rms} для ядер, испускающих *а*-частицы, много меньше l_{cr} . Отсюда следует, что реакции глубоконеупругих передач нуклонов, протекающие при угловых моментах, близких к l_{cr} , не дают существенного вклада в выход совпадающих *а*-частиц. Среднеквадратичный угловой момент составного ядра при $l_{cr} = = 85 \, {\rm fm}$ равен ~60 fb. что близко к полученному нами значению I_{rms}. При сечении образования *а*-частиц с симметричным угловым распределением 1200 мбн^{/9/} и средней множественностью ~1,8 диапазон входных угловых моментов в области $l < l_{cr}$, дающих вклад в это сечение, также практически совпадает с диапазоном угловых моментов составного ядра при полном слиянии. Тем не менее, как было

установлено в /9/ выход а -частиц с симметричным угловым распределением превышает ожидаемый согласно расчетам по статистической модели испарения из составного ядра. Возможной причиной этого может быть увеличение коэффициентов трансмиссии а~частиц при учете деформации ядер с высокими угловыми моментами /13/ Однако этот эффект резко зависит от величины углового момента и наиболее ярко должен проявляться лишь при $\ell \geq \ell_{\rm er}$.Поэтому нам представляется, что повышенный выход а-частиц может быть связан с распадом а-кластерной конфигурации двойной ядерной системы /9,16/. Такая конфигурация может формироваться в процессе передачи нуклонов в исходной системе ион+мишень при ее эволюции к полному слиянию в случае входных угловых моментов $\ell < \ell_{\rm cr}$. С этой точки зрения существенная часть а-частиц с симметричным относительно 90° с.ц.м. угловым распределением испускается ядром до достижения полного статистического равновесия. Это находится в соответствии с рядом экспериментальных фактов, отмеченных в работе /9/ в частности, повышенным значением ядерной температуры, определенным из наклона энергетических спектров а -частиц в области выше кулоновского барьера.

Как видно из таблицы, для угла $\theta_2 = \pm 30^{\circ}$, где существенный /~40%/ вклад в сечение дают высокоэнергичные частицы с направленным вперед угловым распределением, $I_{\rm rms}$ практически совпадает с $I_{\rm rms}$ для других углов, если взять средние величины для задания плоскости реакции разными телескопами. Однако, поскольку полное сечение образования направленных вперед *a* -частиц составляет лишь ~17% от полного сечения образования всех *a*-частиц, диапазон входных угловых моментов, приводящих к образованию этих частиц, должен существенно теснее группироваться около полученного нами среднего значения. Это указывает на более краевой характер столкновений ион+мишень, приводящих к образованию направленных вперед *a*-частиц.

4.3. Различие вероятности совпадений при $\theta_2 = \pm 128^{\circ}$

Различие вероятности совпадений *a*-частиц при $\theta_2 = \pm 128^\circ$ в измерениях в одной плоскости составляет величину около двух /см. рис.2/. Для системы Ag + ⁴⁰Ar /285 МэВ/ отклонение от оси пучка направления ядра отдачи, являющегося продуктом полного или почти полного слияния, после вылета в любом направлении *a*-частицы со средним по спектру значением кинетической энергии не превышает 5° л.с. Согласно данным ^{/9/}, в области $\theta = 130^\circ$ лабораторное угловое распределение *a*-частиц меняется слабо (d σ /dΩ (120°) =68 мбн/ср; d σ /dΩ (140°) =61 мбн/ср). Поэтому эффектами отдачи после вылета *a*-частицы объяснить различие в числе совпадений при $\theta_2 = \pm 128^\circ$ не удается.

В работе⁷⁸⁷ повышенная вероятность совпадений легких частиц при испускании их по разные стороны пучка в одной плоскости в системах ²⁷ Al +¹⁶ O /310 МэВ/ и ¹⁹⁷ Au +¹⁶O /310 МэВ/ была объяснена за счет их испускания из движущегося в системе общего центра масс источника. В нашем случае инклюзивные энергетические спектры α -частиц в области углов $\theta > 90^{\circ}$ не дают указаний на испускание заметной части регистрируемых частиц из движущегося в системе общего центра масс источника ^{/9/}.

В работе $^{/17/}$ при исследовании совпадений a -частиц с легкими фрагментами реакций передач нуклонов в системе 93 Nb + 32 S /313 M9B/ было установлено понижение вероятности совпадений в направлении вылета легкого фрагмента за счет ядерной экранировки a -частиц тяжелого фрагмента находящимся поблизости от него легким фрагментом. Возможно, что наблюдаемое нами понижение вероятности a-a совпадений при θ_2 =+128° также связано со своеобразными эффектами ядерной тени. Однако в отличие от работы $^{/17/}$, нам надо предположить, что тень создается конфигурацией ядер, находящихся в контакте. Дело в том, что понижение кулоновского барьера для a-частиц за счет уменьшения атомного номера излучателя и эффекты отдачи при вылете в одну сторону легкого фрагмента и aчастицы из сопряженного тяжелого фрагмента должны привести к существенному смягчению энергетического спектра a-частиц, что не наблюдалось в эксперименте.

Обнаруженный эффект различия вероятности совпадений на +128° требует дальнейших исследований, в частности, более подробного измерения угловых распределений совпадающих а -частиц.

4.4. Массивные передачи в реакциях с ионами ⁴⁰ Ar

В корреляционных экспериментах было установлено, что для ионов от 10 В до 20 Ne с энергией 6-8 МэВ на нуклон основной вклад в сечение образования a-частиц с направленным вперед угловым распределением дают так называемые "массивные" передачи, в которых ядро-мишень захватывает остальные нуклоны налетающего ядра ${}^{18/}$. Доминирование "массивных" передач в выходе этих a частиц связывалось со значительной величиной a-компоненты в структуре легких ядер.

Полученные нами данные для a-a совпадений указывают на то, что и в реакциях с ионами 40 Ar "массивные" передачи могут давать существенный вклад в инклюзивные сечения образования a-частиц с направленным вперед угловым распределением. Из нашей работы $^{/9/}$ следует, что для угла 30° на долю этих a-частиц приходится $^{-4}0\%$ инклюзивного сечения образования a-частиц. Угловые распределения совпадающих и инклюзивных a-частиц оказались сходными /см. рис.2/. Для средней множественности a-частиц $_1,8$ вылет направленной вперед a-частицы. При измерениях под углами $+30^{\circ}$ первый телескоп располагался под углом 90° . Из рис.3 видно, чо под углом 90° инклюзивные энергетические спектры и энергетические спектры совпадений одинаковы. Максимумы этих спектров соответствуют кулоновскому барьеру продукта полного или почти

8

9

полного слияния. Именно такой энергетический спектр для *a*-частиц, сопровождающих вылет *a*-частиц с направленным вперед угловым распределением, можно ожидать в "массивных" передачах. Указание на доминирующий вклад "массивных" передач в сечение образования направленных вперед *a*-частиц для реакций с ионами ⁴⁰ Ar было получено также в работе^{/ 19/} при измерении корреляций между *a*-частицами и осколками деления в реакции ¹⁹⁷ Au + ⁴⁰ Ar /340 MэB/.

В работе $^{/20/}$ при изучении образования а-частиц в процессах "массивных" передач при облучении 124 Sn ионами 16 O, 19 F, 20 Ne было установлено, что средний входной угловой момент для этих процессов составляет около половины от $\ell_{\rm cr}$ для полного слияния. Наши данные для угла θ_2 =+30° /см. раздел 4.2/ согласуются с этим заключением.

выводы

1. ~ 90% инклюзивных α -частиц являются результатом образования двух α -частиц в одном акте взаимодействия Ag + ⁴⁰Ar / 285 MэB/.

2. Основным источником а-частиц с симметричным относительно 90° с.ц.м. угловым распределением является тяжелый продукт, близкий к продукту полного слияния со среднеквадратичным значением углового момента ~50 °Г.

3. Данные по а-а корреляциям указывают на образование а част тиц с направленным вперед угловым распределением за счет процессов "массивных" передач нуклонов.

4. Вероятность регистрации совпадающих α -частиц в одной плоскости при их вылете по одну сторону оси пучка при $\theta_1 = 90^{\circ}$ и $\theta_2 = 128^{\circ}$ ниже, чем при вылете их при тех же углах по разные стороны пучка.

Авторы выражают глубокую благодарность академику Г.Н.Флерову за стимулирующий интерес к работе.

ЛИТЕРАТУРА

- 1. Wurm J.P. Journal de Physique, 1980, Colloque Cl0, p. Cl0-200.
- 2. Guerreau D., Babinet R. Journal de Physique, 1980, Colloque C10, -p. C10-217.
- Scott D.K. Talk presented at the 3-d Adriatic Europhysics Conference on the Dynamics of Heavy Ion Collisions, Hvar, Yugoslavia, 1981, preprint Michigan State University, MSUCL-355, 1981.
- 4. Бетак Э., Тонеев В.Д. ЭЧАЯ, 1981, 12, с. 1432.
- 5. Gelbke C.K. Invited Talk given at the Int. Conf. on Selected Aspects of Heavy Ion Reactions, Saclay, France, 1982, preprint Michigan State University, MSUCL-372, 1982.

- 6. Tai Kuang-Hsi et al. Nucl. Phys., 1979, A316, p. 189.
- 7. Babinet R. et al. Z. Phys. A, 1980, 295, p. 153.
- 8. Lynch W.G. et al. Phys.Lett., 1982, 108B, p. 274.
- 9, Artukh A.G. et al. Z. Phys. A, 1981, 303, p. 41.
- Avdeichikov V.V. Nucl.Instrum. and Methods, 1978, 155, p. 125.
- Moretto L.G., Blau S.K., Pacheco A.J. Nucl. Phys., 1981, A364, p. 125.
- 12. Ericson T. Advances in Physics, 1960, 9, p. 425.
- 13. Blann M.Phys.Rev., 1980, C21, p. 1770.
- 14. Britt H.C. et al. Phys.Rev., 1976, C13, p. 1483.
- 15. Wilczynski J. Nucl. Phys., 1973, A216, p. 386.
- 16. Волков В.В. Изв. АН СССР, сер.физ., 1981, 45, с. 1810.
- Fan G.-Y. et al. Preprint Max-Planck Institute f
 ür Kernphysik, Heidelberg, 1982.
- 18. Zolnovski D.R. et al. Phys.Rev.Lett., 1978, 41, p. 92.
- 19. Logan D. et al. Phys.Rev., 1980, C22, p. 104.
- 20. Tricoire H. et al.Z.Phys.A, 1982, 306, p. 127.

Рукопись поступила в издательский отдел . 30 сентября 1982 года.

НЕТ ЛИ ПРОБЕЛОВ В ВАШЕЙ БИБЛИОТЕКЕ?

.

Вы можете получить по почте перечисленные ниже книги,

если они не были заказаны ранее.

1

,

Д13-11182	Труды IX Международного симпозиума по ядерной элект- ронике. Варна, 1977.	5 p. 00 ĸ.		
Д17-11490	Труды Международного симпозиума по избранным пробле- мам статистической механики. Дубна, 1977.	6 р. 00 к.	Г/-82-/0/ Корреляции двух альфа-частиц при взаимодействии ^{nat} Ag + 40 Ar /285 МэВ/	
дб-11574	Сборник аннотаций XV совещания по ядерной спектроско- пии и теории ядра. Дубна, 1978.	2 p. 50 ĸ.	Измерены угловые и энергетические корреляции двух а-частии	
Д3-11787	Труды III Международной школы по нейтронной физике. Алушта, 1978.	3 р. 00 к.	в одной плоскости и во взаимно-перпендикулярных плоскостях. Сделаны оценки углового момента тяженого пролукта реакции	
Д13-11807	Труды III Междукародного совещания по пропорциональ- ным и дрейфовым камерам. Дубна, 1978.	6 р. 00 к.	являющегося основным источником <i>а</i> -частиц. Получены указания на механизм "массивных передач" нуклонов с ионами ⁴⁰ Ar. В об-	
	Труды VI Всесоюзного совещания по ускорителям заря- женных частиц. Дубна, 1978 /2 тома/	7 р. 40 к.	ласти задних углов в одной плоскости установлено понижение вероятности совпадений <i>а</i> -частиц при их вылете по одну сторону	
Д1,2-12036	Труды V Международного семинара по проблемам физики высоких энергий. Дубна, 1978	5 p. 00 ĸ.	пучка.	
Д1,2-12450	Труды XII Международной школы молодых ученых по физике высоких энергий. Приморско, НРБ, 1978.	3 р. 00 к	Работа выполнена в Лаборатории ядерных реакций ОИЯИ.	
	Труды VII Всесоюзного совещания по ускорителям заря- женных частиц, Дубна, 1980 /2 тома/	8 р. 00 к.		
Д11-80-13	Труды рабочего совещания по системам и методам аналитических вычислений на ЭВМ и их применению в теоретической физике, Дубна, 1979	3 р. 50 к.	Препринт Объединенного института ядерных исследований. Дубна 1982	
Д4-80-271	Труды Международной конференции по проблемам нескольких тел в ядерной физике. Дубна, 1979.	3 р. 00 к.	Artukh A.G. et al. P7-82-707	
д4-80-385	Труды Международной школы по структуре ядра. Алушта, 1980.	5 p. 00 K.	Correlations Between Two Alpha-Particles in the Interaction of ⁴⁰ Ar Ions with ^{nat} Ag at 285 MeV	
Д2-81-543	Труды VI Международного совещания по проблемам кван- товой теории поля. Алушта, 1981	2 р. 50 к.	In the reaction $^{nat}Ag + ^{40}Ar$ (285 MeV) the angular and kinetic energy correlations between two α -particles in one plane and	
Д10,11-81-622	Труды Международного совещания по проблемам математи- ческого моделирования в ядерно-физических исследова- ниях. Дубна, 1980	2 р. 50 к.	in two reciprocally normal planes have been measured. The angular momentum value has been estimated for the heavy reaction product which is the main source of <i>a</i> -particles. Evidence	
Д1,2-81-728	Труды VI Международного семинара по проблемам физики высоких энергий. Дубна, 1981.	3 p. 60 κ. 5 p. 40 κ. for "massive" transfer reactions induced by 40 Ar ions found. It has been established that the <i>a</i> -particle coi probability decreases if <i>a</i> -particles are emitted at ba angles in one plane and on one beam side.		
Д17-81-758	Труды II Международного симпозиума по избранным проблемам статистической механики. Дубна, 1981.			
Д1,2-82-27	Труды Международного симпозиума по поляризационным явлениям в физике высоких энергий. Дубна, 1981.	3 р. 20 к.		
P18-82-117	Труды IV совещания по использованию новых ядерно- физических методов для решения научно-технических и народнохозяйственных задач. Дубна, 1981.	3 р. 80 к.	The investigation has been performed at the Laboratory of Nuclear Reactions, JINR.	
			Proprint of the Joint Institute for Nuclear Research. Dubna 1982	
Заказ	ы на упомянутые книги могут быть направлены по а 101000 Москва, Главпочтамт, п/я 79	адресу:	Персион Л.В.Пашкевич.	
Издател	ьский отдел Объединенного института ядерных иссл	тедований		

٠

۴

.