

3703

P7-82-322

Б.Ф.Петров, В.В.Каманин, Ю.Рюдигер, С.П.Иванова, О.Е.Крафт, Ю.В.Наумов

множественность ?-переходов в реакции ¹⁶⁰Gd(¹⁶O, xn) ^{176-x}Hf предельный угловой момент

I. ВВЕДЕНИЕ

В работе ^{/1/} представлены результаты исследования реакции 160 Gd(16 O, xn) ^{176-x} Hf при энергиях ионов ¹⁶ O or 80 до 134 МэВ. С помощью системы многократных совпадений ^{/2/} получены множественности *у*-лучей < М> и ширины распределения по множественности *σ* для различных каналов реакции, соответствующих вылету от 4 до 8 нейтронов. Основной задачей настоящей работы является прямое экспериментальное определение параметров распределения по спинам в составном ядре при различных энергиях налетающих ионов. Однако переход от экспериментальных значений множественностей *у*-лучей к параметрам распределения заселенностей ядерных состояний по спинам требует знания механизма реакции. Обычно этот переход делают на основании простейших эмпирических предположений, в большинстве случаев недостаточно обоснованных.

В настоящей работе делается попытка использовать для такого перехода результаты расчетов конкретной реакции в рамках статистической модели.

II. СРЕДНИЕ ЗНАЧЕНИЯ СПИНОВ И ШИРИНЫ РАСПРЕДЕЛЕНИЯ ДЛЯ КОНЕЧНЫХ СИСТЕМ

Для получения параметров распределения по спинам в конечных ядрах будем исходить из того, что каждой полосе можно приписать некоторое среднее значение множественности < M > ивеличины σ . Эти характеристики даны в последних строках <u>табл.1-5</u> в работе ^{/1/}. Предположим далее, что *у*-разрядка в конечных ядрах происходит сначала за счет каскада статистических *у*-квантов, которые в среднем не уносят момента, но уносят энергию, так что энергия возбуждения конечных ядер оказывается в области ираст-линии. Дальнейшая разрядка происходит вдоль ираст-линии квадрупольными переходами. Тогда для среднего значения спина состояний, с которых начинается *у* -разрядка, можно написать следующее выражение:

$$J_{i} = 2[\langle M \rangle_{i} - K_{i}] + J_{HAV}^{i}; \sigma_{i}^{J} = 2\sigma_{i}, /1/$$

в котором К-число статистических у-квантов; Ј_{НАЧ.}- спин начального наблюдаемого состояния; индекс і относится к определенной полосе.

ботединенный институт ПЛЕОНАЛ РОСЛЕДований EMERICACIO FHA

Таблица l

Параметры	распределения	по	спинам	для	конечных	систем
в	реакции ¹⁶⁰ Gd(18 0,	$xn)^{176-3}$	¥Ħſ		

Канал реакции	E	E(¹⁸ 0)	= 80 МэВ	Е(90 MəB	
	Р	Ĵ	σ	Р	Ĵ	σ^{J}
4n, ¹⁷² Hf	100	24,6	13,4	100	22,2	18,2
I.	73	23,9	IO,4	81	25,3	12,8
5n, ¹⁷¹ Hf [∏] .	53	23,9	II , 6	67	25,5	12,6
Ш.	53	23,9	14,6	67	25,7	I6, 8
	179	23,9	12,0	215	25,5	14,0
6n, ¹⁷⁰ Hf		-	_	57	18,4	10,8
		24,2	12,5		23,5	14,6

Число статистических у-квантов зависит от энергии возбуждения распадающихся состояний над ираст-линией и от средней энергии статистических переходов. Величина К может быть измерена экспериментально либо рассчитана в рамках достаточно реалистической модели.

В работах $^{/3,4'}$ предполагается, что K = 4 и не зависит от типа реакции, от энергии ионов, от канала реакции. Однако это предположение, основанное на систематике данных, относится к реакциям с ионами Ar, Kr и измеряемым множественностям в диапазоне 15-30. В $^{/5'}$ вопрос о числе статистических квантов экспериментально изучался для реакции с 16 О в диапазоне энергий 70-80 МэВ. Было обнаружено, что число статистических квантов коррелирует с измеряемой множественностью и меняется от 2 до 6 при изменении множественности от 8 до 20. Мы будем использовать значения K₁, приведенные в этой работе. Полученные таким образом параметры распределения по спинам для каждой полосы приведены в <u>табл.1 и 2</u>. В этих же таблицах даны относительные интенсивности P₁ заселения нижних состояний полос, пропорциональные соответствующим сечениям реакции с заселением Таблица 2

Параметры распределения по спинам для конечных систем в реакции ¹⁶⁰Cd(16O,xxn)176-х Hf

ŗ					•									
Канал				E(¹⁶ 0) =	HEW OII		Е(<mark>9</mark> 0)	=I20 Mab	ĕ	¹⁶ 0)=	I29 MaB		E(¹⁶ 0)=	I34 MaB
natry pad	e		Ь	ייו	οJ	Р	- ا!	o J	Р	ц,	ο ,	Ч	l Is	σJ
6n, 170	JH		100	23,2	0 ' II	00I	2(),6	9 ° 6	00I	23,2	11 , 6	8	24,0	I3,0
		і.	52	23,9	10 , 0	3 6	2(),3	9,4	152	23,3	I0,8	114	26,6	IZ,4
Å.	HL	ц.	00	22,3	9 ° 6	13	2.,9	10 ° 0	21	20 , I	10 ° 0I	R	27.7	12,6
			ង	29,5	8 . 11	14	2:,5	0 ° 0I	54	24,7	11 , 6	51	23,7	I3 , 8
			72	24,7	I0,2	87	20,9	9*6	227	23,3	6 * 0I	461	26,0	в,8
8n, ¹⁶⁸	H		ı	t i	,	26	I5 , 8	I0,4	15 4	20,2	IO,8	161	20,0	I0,8
				23,8	7 , 01		20,1	9,7		22,3	0,11		23,2	0'21

данной полосы. Параметры распределения по спинам определяются следующим образом:

$$\overline{J} = \frac{\sum_{i} P_{i} \overline{J}_{i}}{\sum_{i} P_{i}}; \quad \sigma^{J} = \frac{\sum_{i} P_{i} \sigma_{i}^{J}}{\sum_{i} P_{i}}.$$
 /2/

Так же определяются и параметры распределений по спину для усредненной конечной системы при конкретной энергии налетающих ионов. Эти данные приведены в последних строках в табл.1 и 2. В модели с резким краем распределение по моментам составной системы имеет треугольную форму.

В этом случае среднее значение составляет 2/3 от $J(P_{max})$ или от величины $J(P_{1/2})$, которая определяется как значение спина J, соответствующего половинному спаду распределения заселенностей состояний.На <u>рис.1</u> приведены величины максимального момента $J(P_{1/2})$ для различных энергий налетающего иона.На <u>рис.2</u> приведены значения $J(P_{1/2})$ для конечных систем при данной энергии иона, то есть величины $J(P_{1/2})$, усредненные по сечениям наблюдаемых каналов реакции.

III. РАСЧЕТЫ ОСНОВНЫХ ХАРАКТЕРИСТИК РЕАКЦИИ В РАМКАХ СТАТИСТИЧЕСКОЙ МОДЕЛИ

Экспериментальные величины средних множественностей у -переходов позволяют получить параметры спинового распределения в данном канале реакции и в составном ядре. Достаточно надежно по множественности определяются средние значения Ј и полуширины распределений. Однако такой переход от множественностей у-лучей к распределению по спинам требует определенного представления о механизме реакции. Для перехода от распределения заселенностей по спину в конечных системах к распределению в составном ядре необходимо учесть изменения распределения при испускании каскада частиц. Кроме того, представляет интерес детальный анализ таких характеристик, как распределение заселенностей состояний по спинам и энергиям возбуждения. сравнение заселенностей, связанных с испусканием различных частиц и у-квантов, анализ спектров частиц и у-квантов. Установление основных закономерностей, предсказываемых статистической моделью, необходимо для надежной идентификации нестатистических эффектов, которые могут проявляться при достаточно больших энергиях налетающих частиц.

Мы провели расчеты статистических характеристик реакции $160 \text{ Gd} (16 \text{ O}, \text{ xm})^{176-x} \text{ Hf}$ по программе $\text{GROGI2}^{/6/}$ для энергий налетающих ионов от 80 до 142 МэВ /лабораторная система/. В программе вычисляется распределение заселенностей по спинам и энергиям возбуждения для всех каналов реакции, что необходимо для интерпретации экспериментальных данных по множественности у-лучей.

1. РАСПРЕДЕЛЕНИЕ ПО МОМЕНТАМ В СОСТАВНОМ ЯДРЕ И ПОЛНОЕ СЕЧЕНИЕ РЕАКЦИИ

Обсудим сначала динамику изменения распределения заселенностей ядерных состояний по спинам при испускании последовательности частиц или у-квантов.

Начальное распределение по спинам в составном ядре, связанное с сечением реакции, может быть рассчитано различными способами.

Полное сечение реакции

$$\sigma_{\rm R} = \pi \lambda^2 \sum_{\ell} (2\ell + 1) T_{\ell} .$$

На <u>рис.3</u> приведены полученные таким способом распределения для энергий ¹⁶О 80, 110 и 142 МэВ. В <u>табл.3</u> приведены характеристики рассчитанных распределений для различных энергий. В первой колонке даны значения моментов $\ell(P_{max})$, соответствующих максимуму заселенностей, во второй колонке - величины

Таблица З

Характеристики распределения по моментам в составном ядре

	1	2	3	4	5	6
Е(¹⁶ О) МэВ	(P _{max})	(P _{1/2})	σ _R mb	σ _{ER} mb.	Ĵ	σJ
80	23	35	676	676	23,8	10,9
90	33	44	I060	1039	30,0	12,2
102	43	54	1427	139 3	35,9	13,6
110	49	59	1620	15 3 9	38,9	I4 , 4
122	56	67	I857	1627	4 I,7	15,0
134	62	73	2044	I559	42,7	15,3
142	66	77	2I 46	I4 78	42,8	15,3

 ℓ (Р $_{\frac{1}{2}}$), соответствующие половинному спаду заселенностей. В третьей колонке даны полные сечения реакции $\sigma_{\mathbf{p}}$.

Как отмечено в работах $^{/3,7/}$, сечение образования составного ядра ограничивается конкуренцией процессов деления и слубоконеупругих реакций, сечение которых быстро нарастает с увеличением момента ℓ . В наших расчетах вводилась резкая граница в распределении по моментам в составном ядре при $\ell = 65$. Это значение выбрано в соответствии с теоретическими рекомендациями $^{/7,8/}$ и приблизительно согласуется с полученными экспериментальными результатами. В четвертой колонке табл.3 дано сече-

ние образования составного ядра $\sigma_{\rm ER}$, ограниченное по моменту величиной $\ell_{\rm f}$. В пятой и шестой колонках представлены средние значения момента ${\bf J}$ и полуширины распределений $\sigma_{\rm T}$.

<u>Рис.3</u>. Начальные распределения по моментам ℓ в составном ядре. Цифры около кривых — энергии ионов в МэВ. Вертикальная линия проведена при значении $\ell_{max} =$ =65, принятом в расчетах в качестве максимального.

2. ДИНАМИКА ИЗМЕНЕНИЯ ЗАСЕЛЕННОСТЕЙ ПРИ ИСПУСКАНИИ ЧАСТИЦ

Если задано начальное распределение $P_{\mu}(\vec{E}, \vec{J})$ заселенностей в ядре μ , то можно вычислить распределение заселенностей в ядре $\mu - 1$:

$$P_{\mu-1} (E, J) = \sum_{\overline{J}} \sum_{\overline{E}} P_{\mu} (\overline{E}, \overline{J}) R_{\mu k} (\overline{E}, \overline{J}; E, J) / G$$

где К – сорт частиц, испускание которых приводит к ядру $\mu = 1$. Величина $\mathbf{R}_{\mu \mathbf{k}}(\vec{\mathbf{E}}, \vec{\mathbf{J}}; \mathbf{E}, \mathbf{J})$ пропорциональна вероятности испускания частицы К из ядра μ с энергией $\vec{\mathbf{E}}$ и спином $\vec{\mathbf{J}}$ в ядро $\mu = 1$ с энергией \mathbf{E} и спином \mathbf{J} :

$$\mathbf{R}_{\mu_{\mathbf{i}}}(\overline{\mathbf{E}},\overline{\mathbf{J}}; \mathbf{E}, \mathbf{J}) = \rho_{\mathbf{i}} (\mathbf{E}, \mathbf{J}) \sum_{\mathbf{S}=|\mathbf{J}-\mathbf{S}|}^{\mathbf{J}+\mathbf{S}} \sum_{\mathbf{J}-\mathbf{S}|}^{\mathbf{J}+\mathbf{S}} \mathbf{T}_{\mathbf{i}\ell} (\epsilon).$$

Здесь $\rho_i(\mathbf{E}, \mathbf{J})$ - плотность уровней в остаточном ядре; s внутренний спин частицы; $\mathbf{T}_i \boldsymbol{\ell}(\epsilon)$ - коэффициент проницаемости для $\epsilon = \mathbf{E} - \mathbf{E} - \mathbf{B}\mu_i$, где $\mathbf{B}\mu_i$ - энергия связи i - той частицы в ядре μ ; G - коэффициент нормировки, равный

$$G = \sum_{i} \sum_{J} \int R_{\mu_{i}} (\overline{E}, \overline{J}; E, J) dE.$$

Проницаемости $T_{if}(\epsilon)$ для каждого канала рассчитывались по оптической модели с параметрами, приведенными в табл.4.

Плотность уровней выбиралась в приближении ферми-газа:

$$\rho(\mathbf{v},\mathbf{J}) = \frac{2\mathbf{J}+1}{24\sqrt{2\sigma^3}} \frac{a^{-1/4}}{(\mathbf{v}-\delta)^{5/4}} \exp\{2\sqrt{a(\mathbf{v}-\delta)} - \frac{\mathbf{J}(\mathbf{J}+1)}{2\sigma^2}\}$$

Для ираст-линии использовалось выражение

$$E_{J} = (J + 1/2)^2 / aR + \delta$$
.

Рис.4. Распределения заселенностей по спинам для разных нейтронных каналов при энергии иона ¹⁶О 102 МэВ.

Рис.5. Распределения заселенностей по энергии возбуждения для разных нейтронных каналов при энергии иона ¹⁶0 102 МэВ.

ъ В	1	I,25	I,30	I,30		, мб								I	MŐ				
8 s.o.	0,75	0,75	I	ı		Сечение	1 8 8	- 708	143	309 1	204	1			Сечение,	- 520 450	- 440 310	 270 IB0	- 230 60
R s.o.	10 ' 1	10,1	1	ı	ргий <mark>16</mark> 0	۲ م ۲	8,4 6.7	- 8 , 6	6,6	* 8	0 ° 0	.]			α γ	- 7,9 8,6	8,0 8,3	- 7,4 7,5	- 7,4 6,8
V	6,2	6,2	I	I	эне хинри	J _y	- 24 16	26	I6	30 I	27				e) J _y	- 34 23	31 22	 36 26 31 20	- 23 29 29 18 29
a w	0,60	0,51	0,60	0,72	для разли	J_{γ} ($P_{1/2}$)	32 I	1 88	25	49	8 %		жение/		J _y (P _{1/}	- 44 35	41 30	25 24 20	23 23 18
Rw	1,27	1 , 32	I,70	I,05	<u>ица 5</u> ния P(J)	115	24 - 22 21 16	30 ÷ 27 24	9I	98 1 1 1 33	26 77		агододи) і			9 - 31 29 23 23	55 58 58 57	37 43	4 43
м	I0,8	10 , 8	15 , 0	6I,8	<u>Таўл</u> аспределет	(3/1	8	41		8 1			Таблица		J(P _{1/2})	46	44 4	73 36 31 31	77 3 32 29
a v	0,75	0,75	0,75	0,75	истики ра	J(P	-1 35 25 31 -).	37	25	-1- 24 46	₽ ₽					55 •• 4 8	- 67 41 34	- 25,8 ,2	- 22,5 ,6
Rv	1,17	1,17	1,20	60 ' I	Характері	(ЯеМ) <mark>т</mark> Е	1,6 ÷ 24. I5,6 6.8	3,7 ÷ 23, 13,2	7,4	1,6 🕂 33,1	I4,3 6,4				E _r (M ₃ B)	,9 ÷ 28,3 19,6 10,4	,8 + 28. 17,4 11,6	103,7 ÷ 17 9	111,0 8 8
Λ	48,0	4 9 , 0	30,0	40,0		Канал I)n÷3n 54 4n 5n	n÷4n 6: 5n	6 J	n÷4n 74 5n	وع	ŧ (Канал	÷5n ⁸¹ 6n 4n	1÷67 ⁹² ギカ 87	0m++n 8n 9n	01 ÷81 9 n 10 n
	a	đ	a II	16 ₀		E(¹⁶ 0) M ₃ B	80	<i>0</i> 6		δ	102	V			E(¹⁶ 0) (M3B)	б ^{II}	122 122	I34	91 1

.

<u>Габлица 4</u> Параметры оттического потенциала .

8.

На каждом шаге, то есть при переходе от ядра μ к ядру μ -1, в расчетах учитывается изменение заселенностей при испускании не только нейтронов, но и у-квантов, а также протонов и α -частиц. Частицы с разной вероятностью испускаются из различных областей двумерного распределения $P_{\mu}(\vec{E},\vec{J})$, что может приводить к заметной деформации начального распределения по спинам, если сечения процессов сравнимы с полным сечением.

На <u>рис.4</u> приведены типичные распределения заселенностей по спинам при энергии ¹⁶ О 102 МэВ для различных нейтронных каналов. На рис.5 для этих же условий приведены распределения заселенностей по энергии возбуждения.

Как правило, испускание первых нескольких нейтронов не приводит к качественным изменениям P(J). В небольших пределах меняется только верхняя граница Р(J), что дает небольшие изменения среднего значения спина J. Столь небольшое изменение в распределении заселенностей в дочерних ядрах на первых этапах реакции связано с относительно небольшим вкладом в полное сечение сечений испускания протонов, а -частиц и у-квантов. На последующих стадиях наблюдается изменение формы распределения P(J), которое связано с резко увеличивающимся вкладом у-распада в сечение реакции. До тех пор, пока энергия возбуждения в остаточном ядре выше ~20 МэВ, сечение реакций определяется в основном нейтронным распадом. не приводящим к сильным деформациям распределения P(J) /стадия 1/. Значительные изменения в Р(J) наблюдаются в каналах реакций с испусканием большого числа нейтронов, то есть с начальными распределениями P(E) < 20 МэВ /стадия II/. В табл.5 для каждой энергии ¹⁶ О даны изменения средних моментов для 1 стадии реакций, характеристики распределения P(E, J) для II стадии реакции.

3. РАСПРЕДЕЛЕНИЕ ЗАСЕЛЕННОСТЕЙ, ПРИВОДЯЩЕЕ К ИСПУСКАНИЮ НЕЙТРОНОВ, ПРОТОНОВ И «-ЧАСТИЦ

Как уже отмечалось, на 1 стадии реакции / E * > 20 M3B/ сечение испускания нейтронов составляет 90-95% полного сечения реакции. Поэтому распределение P (E, J) для испускания нейтронов практически совпадает с распределением P(E, J) родительского ядра. Различия начинают проявляться на II ступени реакции / E*<20 M3B/. Типичная ситуация изображена на <u>рис.6</u> / E₁₈₀ = =102 M3B/. Распределение P_n(J) для канала 4n практически полностью совпадает с начальным заселением в канале 4n. Для канала 5n наблюдается небольшое различие, а для канала 6n различие довольно значительное. Максимум и среднее значение \vec{J} сдвигаются в сторону меньших значений, тем самым сдвигается в ту же сторону родительское распределение последующего канала реакции.

<u>Рис.6.</u> Распределения Р $_{\gamma}$ (J), Р_п (J), Р(J) для разных каналов реакции при энергии иона ¹⁶О 102 МэВ.

Сечения испускания протонов и а-частиц сравнимы между собой по порядку величины и составляют каждое менее 5% от полного сечения.

Распределения для протонов систематически сдвинуты в низкоспиновую область и оказываются более симметричными, чем нейтронные. Распределения для испускания *а*-частиц, наоборот, сдвинуты в высокоспиновую область и более асимметричны.

Распределения по энергиям возбуждения для испускания нейтронов, протонов и а-частиц практически не различаются.

4. РАСПРЕДЕЛЕНИЯ, ПРИВОДЯЩИЕ К ИСПУСКАНИЮ у-ЛУЧЕЙ

Экспериментальное изучение множественности у-переходов, связанных с дискретными у-линиями или сплошным спектром улучей, дает информацию о распределении по спинам состояний, приводящих к испусканию у-лучей.

На 1 стадии реакции у -излучение не конкурирует с нейтронным распадом. Как только возникает такая конкуренция, распределения $P_{\gamma}(J)$ могут существенно отличаться от родительского распределения P(J). На <u>рис.6</u> распределения $P_{\gamma}(J, 5n)$ и $P_{\gamma}(J, 6n)$ приведены вместе с соответствующими распределениями $P_{n}(J)$ и P(J). В канале 5n, где вклад в сечение от γ -излучения составляет ~25% полного сечения, распределение $P_{\gamma}(J, 5n)$ сильно отличается от P(J, 5n). Максимум распределения сдвинут в сторону больших спинов, и это характерно при всех энергиях налетающих ионов /см. табл.5/ для каналов с минимальным наблюдающимся числом вылетевших нейтронов. Для следующего шага реакции γ -распад является уже основным типом распада и распределение $P_{\gamma}(J)$ практически совпадает с P(J).

Поэтому переход от измеряемых распределений P_y (J) к распределениям P(J) должен совершаться по-разному для разных каналов с учетом расчетов в статистической модели.

IV. СРАВНЕНИЕ ЭКСПЕРИМЕНТАЛЬНЫХ И ТЕОРЕТИЧЕСКИХ РЕЗУЛЬТАТОВ. ОЦЕНКА МОМЕНТОВ ДЛЯ СОСТАВНОГО ЯДРА

Анализ данных, приведенных в таблице 5, и других теоретических результатов показывает, что вычисленные средние значения спинов состояний, приводящих к испусканию у-лучей в данном канале реакции, оказываются очень чувствительными к энергии налетающих ионов. Изменение энергии ¹⁶О на несколько МэВ может привести к изменению \overline{J}_{γ} на 25-30%. Поэтому сравнение вычисленных значений \overline{J}_{γ} для каждого канала реакции возможно только с теми экспериментальными данными, которые получены на тонкой мишени / ~1 мг/см²/ при малом разбросе по энергии в пучке и контроле за энергией ионов с точностью 1-2 МэВ. В то же время усредненные по сечениям величины достаточно хорошо описывают характеристики Р(J) конечной системы на первой стадии реакции, и эти величины можно сравнить с экспериментальными. На рис.2 представлены экспериментальные данные величин J(P 1,), соответствующих половинному спаду заселенностей в конечной системе. Здесь же приведены теоретические результаты по состояниям, приводящим к у-распаду - Ј (Рц) и по полным заселенностям - Ј(Р₁₄). Видно, что обе кривые согласуются между собой и кривая, описывающая полные заселенности, ближе к экспериментальным данным.

Наиболее яркой чертой полученных данных является независимость максимального момента в конечной системе от энергии налетающих ионов. Для данной реакции величина $J(P_{1/2})$ для конечной системы составляет 34,5, что соответствует J=23.

Таким образом, перед началом у-разрядки ядро при всех изученных энергиях ¹⁸О образуется при энергии возбуждения около 20 МэВ с распределением заселенностей состояний по спину, которое характеризуется J=23, $J(P_{14}) = 34,5$ и $\sigma^{(J)} = 12$. Отметим, что энергии возбуждения ираст-состояний со спином 23 и 34 равны соответственно 5,6 и 9,6 МэВ.

Оценка предельного момента $J(P_{\frac{1}{2}})$ для составного ядра по полученным экспериментальным данным может быть сделана различными способами. При этом необходимо учесть изменение среднего и граничного $J(P_{\frac{1}{2}})$ момента в процессе испускания нейтронов на первой стадии реакции. Если предположить, что при испускании одного нейтрона среднее значение J распределения меняется на 1,5 единицы, то, оценив среднее число испущенных нейтронов, можно получить J для составного ядра и затем $J(P_{\frac{1}{2}})$. Полученные таким образом величины $J(P_{\frac{1}{2}})$ представлены на <u>рис.7</u> сплошными кружками. Предельный момент $J(P_{\frac{1}{2}})$ оказывается практически независящим от энергии ионов и равен /48+2/ h.

<u>Рис.7.</u> Величины $J(P_{\frac{1}{2}})$ для составной системы в зависимости от энергии ионов: • - результаты обработки в предположении, что каждый нейтрон уносит момент 1,5h; о - с учетом рассчитанного по программе GROGI изменения параметров распределений по спину; • - расчеты по оптической модели; пунктирная линия - $\ell_{max} = 65$.

Другую оценку можно получить, используя рассчитанные по статистической модели изменения моментов на первой стадии реакции. Эти данные содержатся в табл.5. Полученные с помощью программы GROGI2 величины $J(P_{\frac{1}{2}})$ нанесены на рис.7 светлыми кружками. Предельный момент меняется от 40 до 62 в изученном интервале энергий. Сплошной линией на рис.7 показано значение $J(P_{\frac{1}{2}})$, которое характеризует рассчитанное по оптической модели распределение во входном канале.

выводы

1. С помощью описанной в $^{/1/}$ установки были измерены средние множественности < M> у-переходов и ширины распределения по множественности σ в конкретных условиях на ускорителе У-200 ЛЯР ОИЯИ для различных вращательных полос в ядрах 172 Hf - 168 Hf /каналы от 4n до 8n /. Эти величины относительно слабо меняются при изменении энергии 16 О и остаются в пределах 9-15. Значения σ группируются около величины < M>/2.

2. Получены предельные значения $J(P_{\frac{1}{2}})$, описывающие распределения заселенностей ядерных состояний по спину для каналов, в которых начинается конкуренция нейтронного и *у*-распадов.Эти значения равны ~34th и практически не зависят от энергии налетающих ионов.

3. Проведены расчеты различных характеристик реакции в статистической модели. Рассчитанные параметры распределения по спинам сравниваются с экспериментальными. Детально изучена динамика изменений распределений по спинам.

4. Получены значения J(P_{1/2}) для составной системы. Эти значения равны /48+2/1 при различных энергиях ¹⁶О или (50±10)1 в зависимости от способа обработка. Показано, что для получения сведений о зависимости предельного значения $\ell_{\rm пред.}$ от энергии ¹⁶О необходимо уточнить процедуру учета сброса момента на первых стадиях реакции.

Авторы выражают благодарность академику Г.Н.Флерсву за интерес к работе, профессору Ю.Ц.Оганесяну и Ю.Э.Пенионжкевичу за полезные обсуждения, А.М.Сухову и В.Г.Субботину - за помощь при запуске измерительной системы, коллективу эксплуатации циклотрона У-200 - за обеспечение четкой работы ускорителя, В.В.Кобекову и В.А.Лощенко за помощь в измерениях и обработке.

ЛИТЕРАТУРА

1. Петров Б.Ф. и др. ОИЯИ, Р7-82-15, Дубна, 1982.

- 2. Петров Б.Ф. и др. Изв.АН СССР, сер.физ., 1980, 44, с.1970.
- 3. Hillis D.L. et al. Nucl. Phys., 1979, A325, p.216.
- 4. Simon R.S. et al. Nucl. Phys., 1977, A290, p.253.
- 5. Sie S.H. et al. Phys.Rev.Lett., 1981, 46, p.405.
- 6. Grover G.R., Gilat J. Phys.Rev., 1967, 157, p.802.
- 7. Бор О., Моттельсон Б. Структура атомного ядра. "Мир", М., 1977. т.2.
- Cohen S., Plasil F., Swiatecki W.J. Ann.of Phys., 1974, 82, p.557.

Рукопись поступила в издательский отдел 5 мая 1982 года.

НЕТ ЛИ ПРОБЕЛОВ В ВАШЕЙ БИБЛИОТЕКЕ?

Вы можете получить по почте перечисленные ниже книги,

если они не были заказаны ранее.

Д13-11182	Труды IX Международного симпозиума по ядерной элект- ронике. Варна, 1977.	5	р.	00	к.
Д17-11490	Труды Международного симпозиума по избранным пробле- мам статистической механики. Дубна, 1977.	6	р.	00	к.
д6-11574	Сборник аннотаций XV совещания по ядерной спектроско- пии и теории ядра. Дубна, 1978.	2	р.	50	к.
Д3-11787	Труды III Международной школы по нейтронной физике. Алушта, 1978.	3	р.	00	к.
Д13-11807	Труды III Международного совещания по пропорциональ- ным и дрейфовым камерам. Дубна, 1978.	6	р.	00	к.
	Труды VI Всесоюзного совещания по ускорителям заря- женных частиц. Дубна, 1978 /2 тома/	7	р.	40	к.
Д1,2-12036	Труды V Международного семинара по проблемам физики высоких энергий. Дубна, 1978	5	р.	00	к.
Д1,2-12450	Труды XII Международной школы молодых ученых по физике высоких энергий. Приморско, НРБ, 1978.	3	р.	00	ĸ.
	Труды VII Всесоюзного совещания по ускорителям заря- женных частиц, Дубна, 1980 /2 тома/	8	₽.	00	к.
Д11-80-13	Труды рабочего совещания по системам и методам аналитических вычислений на ЗВМ и их применению в теоретической физике, Дубна, 1979	3	р.	50	к.
Д4-80-271	Труды Международной конференции по проблемам нескольких тел в ядерной физике. Дубна, 1979.	3	р.	00	к.
д4-80-385	Труды Международной школы по структуре ядра. Алушта, 1980.	5	р.	00	к.
Д2-81-543	Труды VI Международного совещания по проблемам кван- товой теории поля. Апушта, 1981	2	р.	50	к.
Д10,11-81-622	Труды Международного совещания по проблемам математи- ческого моделирования в ядерно-физических исследова- ниях. Дубна, 1980	2	p.	50	к.
Д1,2-81-728	Труды VI Международного семинара по проблемам физики высоких энергий. Дубна, 1981.	3	р.	60	к.
Д17-81-758	Труды II Международного симпозиума по избранным проблемам статистической механики. Дубна, 1981.	5	р.	40	к.
Д1,2-82-27	Труды Международного симпозиума по поляризационным явлениям в физике высоких энергий. Дубна, 1981.	3	р.	20	к.
P18-82-117	Труды IV совещания по использованию новых ядерно- Физических методов для решения научно-технических и народнохозяйственных задач. Дубна, 1981.	3	p .	80	к.

Заказы на упомянутые книги могут быть направлены по адресу: 101000 Москва, Главпочтамт, п/я 79 Издательский отдел Объединенного института ядерных исследований

ТЕМАТИЧЕСКИЕ КАТЕГОРИИ ПУБЛИКАЦИЙ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Индека	с Тематика	
1.	Экспериментальная физика высоких энергий	1
2.	Теоретическая физика высоких энергий	1
3.	Экспериментальная нейтронная физика	1
4.	Теоретическая физика низких энергий	
5.	Математика	
6.	Ядерная спектроскопия и радиохимия	
7.	Физика тяжелых ионов	
8.	Криогеника	
9.	Ускорители	1
10.	Автоматизация обработки экспериментальных данных	
11.	Вычислительная математика и техника	
12.	Химия	
13.	Техника физического эксперимента	
14.	Исследования твердых тел и жидкостей ядерными методами	
15.	Экспериментальная физика ядерных реакций при низких энергиях	
16.	Дозиметрия и физика защиты	
17.	Теория конденсированного состояния	1
18.	Использование результатов и методов фундаментальных физических исследований в смежных областях науки и техники	
10	-	

19. Биофизика

Петров Б.Ф. и др. Множественность у переходов в реакции 100 Qd(10, m)176-ж HL Предельный угловой момент

Использованы результаты исследования гамма-разрядки высокоспиновых состояний, образующихся в реакции 160 (180, m) 178- Пл при энергиях ионов от 80 до 134 Мэ8. Основная задача работы – прямое экспериментальное определение параметров распределения заселенностей ядерных состояний по спинам в составном ядре при различных энергиях ионов. Для перехода от экспериментальных значений множественностей у-лучей к параметрам используются результаты расчетов конкретной реакции в статистической модели. Получены предельные значения моментов, описывающие распределения заселенностей ядерных состояний по спинам, для каналов, в которых начинается конкуренция эмиссии нейтронов и у-лучей.

Работа выполнена в Лаборатории ядерных реакций ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубна 1982

Petrov B.F. et al. The Multiplicity of y-Transitions in the Reaction ¹⁶⁰Cot¹⁶O.m)^{176-x}Hf. The Limiting Angular Momentum

On the basis of the results of investigation of γ -decay of the highspin states formed in the reaction ${}^{160}\text{Od}({}^{16}\text{O,m}){}^{176-x}\text{Hf}$ at ${}^{16}\text{O}$ ion energies ranging from 80 to 134 MeV, the parameters of the spin distribution of the population of nuclear states in a compound nucleus are determined at different ion energies. To pass from the experimental values of the γ -ray multiplicities to these distribution parameters use is made of the results of statistical model calculations for a concrete reaction. The limiting values of angular momenta are obtained describing the nuclear state population distributions for the channels in which the competition begins between neutron and γ -emission.

The investigation has been performed at the Laboratory of Nuclear Reactions, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna 1982

Перевод авторов.