

ОбЪЕДИНЕННЫЙ Институт Ядерных Исследований

дубна

19/4-82

P7-82-29

В.И.Кузнецов

1849 /82

О ВЕРОЯТНОСТИ ЗАПАЗДЫВАЮШЕГО ДЕЛЕНИЯ НЕЙТРОНОДЕФИЦИТНЫХ ЯДЕР

Направлено в журнал "Вопросы атомной науки и техники", серия "Ядерные константы". С ростом нейтронного дефицита энергии электронного захвата Q_{33} увеличивается и наступает момент, когда Q_{33} становится величиной одного порядка или превосходит барьер деления дочернего ядра. В этом случае после электронного захвата или β^+ - распада энергия возбуждения дочернего ядра может оказаться достаточной, чтобы произошло деление с заметной вероятностью. Такой процесс, как известно, носит название запаздывающего деления /1/

В последнее время в связи с развитием ускорительной техники^{/2/} наметились пути синтеза тяжелых нейтронодефицитных ядер в широком диапазоне А и Z, в том числе ядер, лежащих левее оболочки N =126. В связи с этим были выполнены расчеты вероятности P запаздывающего деления после распада материнского нейтронодефицитного ядра в области Z от 94 до 101.

Запаздывающее деление заметно проявляется, начиная с Z > 94. В области $Z \le 94$ /89-93/ запаздывающее деление, по-видимому, могут испытывать лишь отдельные ядра⁷³. Если Z > 101, расчеты становятся мало достоверными, так как в этом случае значительную роль начинает играть спонтанное деление, оценить влияние которого в области вдер со значительным нейтронным дефицитом в настоящее время затруднительно. Этими соображениями и определился интервал Z, для которого выполнены расчеты. В рассматриваемой области ядер электронный захват и β^+ -распад конкурируют с α -распадом.

Вероятность Р определяется соотношением:

$$P = \frac{T_a}{T_{K+\beta^+} + T_a} \left(\frac{K/\beta^+}{1 + K/\beta^+} P_{Kf} + \frac{1}{1 + K/\beta^+} P_{\beta^+f} \right).$$
 /1/

Здесь T_a - парциальный период полураспада по отношению к a - распаду, $T_{K+\beta}$ ⁺ - парциальный период β -распада материнского ядра, K/β^+ - коэффициент разветвления для разрешенных переходов, P_{Kf} - вероятность запаздывающего деления после электронного захвата, $P_{\beta+f}^+$ - вероятность запаздывающего деления после ния после β^+ -распада. Расчеты T_a , T_{33} были выполнены с помощью формул⁴. Использовались значения коэффициентов разветвления K/β^+ , полученные теоретически $^{(5,6)}$ для разрешенных переходов.

Величины Р_к определялись из соотношений:

Овъединенный ристити ядерных месля дозании БИБЛИОТЕКА

1

$$P_{Kf} = \int_{C}^{Q_{K}} b(E) \frac{\Gamma_{f}(E) dE}{\Gamma_{f}(E) + \Gamma_{\gamma}(E)} .$$
 /2/

Здесь Q_K - энергия К -захвата, С - энергия обрезания, обусловленная эффектом спаривания /для нечетно-нечетных ядер С =26 $A^{-1/2}$ МэВ, а для ядер с нечетной массой - вдвое меньше/, Γ_f и Γ_y - ширина деления и y - ширина. Вероятность заселения уровня дочернего ядра с энергией Е:

$$\begin{split} b(E) &= 1/2 \; S_{\beta}(E) \; \pi \; g_{K}^{2}(Z) \; (Q_{K}^{-} E - B_{K}^{-})^{2} P_{K}^{-1}, \\ rge \; \frac{1}{2} \; \pi \; g_{K}^{2}(Z) \; & - \; средняя величина радиальной волновой \\ \phi ункции материнского ядра, B_{K}^{-} = энергия связи K - электрона \\ в дочернем ядре, P_{K}^{-} = доля K - захвата в электронном захвате, \\ G_{K}^{-} = энергия K - захвата. В предположении S_{\beta} = const E > C \; и \\ S_{\beta} = 0 \; E < C \; и \; P_{K}^{-} = 1. Пренебрегая членами порядка B_{K}^{-} по срав$$
 $нению с величиной G_{K}^{-} - C, получим после нормировки: \end{split}$

$$b(E) = 3(Q_K - E)^2 (Q_K - C)^{-3}$$
. /3/

В настоящее время проведены теоретические исследования, в которых показано, что $S_{\beta}(E)$ может иметь низколежащую структуру, влияющую на вероятность запаздывающего деления/7/. Однако расчет $S_{\beta}(E)$ для нейтронодефицитных ядер весьма затруднен. В более простых случаях нейтроноизбыточных нуклидов получены лишь положения низколежащих максимумов $S_{\beta}(E)$. Вместе с тем в ряде работ /см. напр /8/ / показано, что предположения о постоянстве $S_{\beta}(E)$ дают возможность правильно оценить порядок $P_{K_{1}}$, что вполне определяет область возможных запаздывающих излучателей. Величина Γ_{r} рассчитывалась по формулам работы /9/ в приближении одномерного параболического барьера, с использованием для плотности уровней $\rho(E)$ выражения: $\rho(E) = A \exp\left(2\sqrt{a}E\right)$. Ширина Γ_{γ} вычислялась в предположении, что осуществляются только переходы типа E1, т.е. вероятность перехода пропорциональна E_{γ}^{3} /см.

В случае β^+ -распада функция Ферми f(Q $_{\beta}$ -E,Z) ~ (Q $_{\beta}$ -E)⁵. С учетом этого обстоятельства вычислялась вероятность P $_{\beta^+}$ f. Высоты барьеров B_f, величины Q_K брались из таблиц работты/11/.

Результаты расчетов величин Р приведены на рис.1,2 и 3 для нечетно-нечетных ядер, нечетно-четных ядер Z[95,101] и для ядер четно-нечетных Z[94, 100] в зависимости от числа нейтронов в ядре.

Следует заметить, что величины Р принимают максимальные значения в узком диапазоне значений N от 120 до 125 нейтронов и от 132 до 135 нейтронов. Эти максимумы обусловлены влиянием оболочки N =126 и ростом барьера деления правее N =126

<u>Рис.1.</u> Зависимость lg P нечетно-нечетных ядер от числа нейтронов в ядре N для Z: 95 /светлый кружок/, 97 /крест/, 99 /треугольник/ и 101 /темный кружок/.

с уменьшением неитронного дефицита. Б промежутке значений й от 126 до 132 вероятность Р меньше максимальной примерно на четыре порядка. Величина Р в первом приближении экспоненциаль-изменение Р_{К f} при вариации В f в пределах $Q_{K} > B_{f} + \Delta E$ $B_{f} + \Delta E$ в первом приближении ~ $(\frac{Q - Bf}{\Omega})^{3}$ сравнительно невелико. В областях максимумов Р условие $Q_K > B_f$ всюду выполняется, и, следовательно, ошибка в теоретических расчетах B,, естественно неизбежная для ядер, удаленных более чем на 10 нейтронов от линии eta -стабильности, не влияет существенным образом на положение максимумов P (N). Следует отметить, что при условии $Q_K > B_f$ вероятности нечетно-четных ядер P_{Kf} не отличаются по порядку величины существенным оби P_{Rt} разом от этих величин для нечетно-нечетных ядер.

Для N<115 вероятности Р не вычислялись, так как ядра с N<115 в обозримом будущем недостижимы для экспериментальных исследований по причине малости их сечений образования и времени жизни. Кроме того, здесь результаты вычислений

2

3

Рис.2. Зависимость lg Р нечетно-четных ядер от числа нейтронов для Z; 95 /светлый кружок/, 97, 99 /светлый и темный треугольники/ и 101 /темный кружок/.

Рис. 3. Зависимость lg Р четно-нечетных ядер от числа нейтронов для Z; 94 /светлый кружок/, 96, 98 /светлый и темный треугольники/ и 100 /темный кружок/.

становятся менее надежными ввиду уменьшения достоверности

экстраполяции T_{α} , $T_{K+\beta^+}$, B_f . Характерные значения P_{Kf} и P_{β^+f} , P для изотопов с Z от 94 до 101 приведены в таблице.

Синтез нейтронодефицитных нуклидов, принадлежащих к области №126, в настоящее время возможен на пучках тяжелых ионов в разнообразных ядерных реакциях, например:

 $^{180}W + ^{40}Ca \rightarrow ^{217}Pu + 3n;$ $^{182}W + ^{40}Ca \rightarrow ^{219}Pu + 3n;$ ${}^{184}\text{Os} + {}^{39}\text{K} \rightarrow {}^{220}\text{Am} + 3n; \qquad {}^{169}\text{Tm} + {}^{54}\text{Fe} \rightarrow {}^{218}\text{Am} + 5n;$ ¹⁶⁹Tm +⁵⁸ Ni →²²²₉₇Bk + 5 n и т.д.

ТАБЛИЦА

ATOMHUN	MACCOBOR	UNCTO			
номер	число	нейтронов	PKf	₽₽₽₽	P
94	215	121	0,06	8,3.10-4	0,020
	-	-	-	-	-
95	217	122	0,076	0,041	0,049
	232	137	0,040	10-15	0,030
96	219	123	0,084	2 ,4 •10 ⁻³	0,025
	231	135	0,047	4,0·10 ⁻⁶	0,039
97	221	124	0,098	0,004	0,052
	233	136	0,010	1,0·10 ⁻⁶	7,5.10-3
98	233	125	0,083	2 ,4 •10 ⁻³	0,024
	233	135	0,220	0,016	0,150
99	224	125	0,200	0,120	0,130
	236	137	0,290	0,036	0,170
100	225	125	0,210	0,027	0,064
	235	135	0,470	0,150	0,260
101	225	124	0,390	0,110	0,150
	237	136	0,400	0,100	0,170

Сечения образования σ_{xn} ввиду малости отношения: (Γ_n / Γ_f) , особенно для последних каскадов испарения нейтронов, в реакциях HI, xn' лежат в области мкб. Поэтому наблюдение запаздывающего деления /сечение образования $\sigma^+ = P \sigma_{xn}$ / может быть осуществлено на пучках тяжелых ионов с интенсивностью ~ 10¹⁴ частиц/с. Такие интенсивности достижимы сегодня на пучках современных циклотронов многозарядных ионов.

В заключение автор благодарит академика Г.Н.Флерова за поддержку работы, профессора Ю.Ц.Оганесяна за ценные советы, Ю.П.Гангрского - за плодотворное обсуждение результатов.

ЛИТЕРАТУРА

- 1. Кузнецов В.И., Скобелев Н.К., Флеров Г.Н. ЯФ, 5, с. 1136, 1967.
- 2. Оганесян Ю.Ц. ОИЯИ, Р9-12843, Дубна, 1979.
- 3. Лазарев Ю.А., Оганесян Ю.Ц., Кузнецов В.А. ОИЯИ, Е7-80-719, Дубна 1980.
- 4. Колесников Н.Н., Демин А.Г., Черепанов Е.А. ОИЯИ, Д4-80-572, Дубна, 1980.
- 5. Zweifel P.F. PR 107329, 1957.
- Wapstra A.H. Nijgh and R. van Lieshout Nucl.Spectroscopy Tables, North-Holland Publ. Co, Amsterdam, 1959.
- 7. Klapdor H.V. et al. Physics Letters, 1978, v. 78B, No.1.
- 8. Aleklett K., Nyman Y., Rudstam J. Nucl.Phys., 1975, A245,
- p. 425.
- 9. Кузнецов В.И. ЯФ, 1979, 30, с. 321.
- 10. Back B.B. et al. Phys.Rev., 1974, C9, p. 1924.
- Myers W.D. Droplet Model of Atomic Nuclei, New York, IFI=Plenum, 1977.

Рукопись поступила в издательский отдел 18 января 1982 года.

НЕТ ЛИ ПРОБЕЛОВ В ВАШЕЙ БИБЛИОТЕКЕ?

Вы можете получить по почте перечисленные ниже книги,

если они не были заказаны ранее.

Д1,2-9224	IV Международный семинар по проблемам физики высоких энергий. Дубна, 1975.	3	р.	60	к.
Д-9920	Труды Международной конференции по избранным вопросам структуры ядра. Дубна, 1976.	3	р.	50	к.
Д9-10500	Труды II Симпозиума по коллективным методам ускорения. Дубна, 1976.	2	ρ.	50	к.
Д2-10533	Труды X Международной школы молодых ученых по физике высоких энергий. Баку, 1976.	3	р.	50	к.
Д13-11182	Труды IX Международного симпозиума по ядерной злект- ронике. Варна, 1977.	5	р.	00	к.
Д17-11490	Труды Международного симпозиума по избранным пробле- мам статистической механики. Дубна, 1977.	6	р.	00	к.
д6-11574	Сборник аннотаций XV совещания по ядерной спектроско- пии и теории ядра. Дубна, 1978.	2	р.	50	к.
Д3-11787	Труды III Международной школы по нейтронной физике. Алушта, 1978.	3	р.	00	к.
Д13-11807	Труды III Международного совещания по пропорциональ- ным и дрейфовым камерам. Дубна, 1978.	6	р.	00	к.
	Труды VI Всесоюзного совещания по ускорителям заря- женных частиц. Дубна, 1978 /2 тома/	7	р.	40	к.
Д1,2-12036	Труды V Международного семинара по проблемам физики высоких энергий. Дубна, 1978	5	p.	00	к.
Д1,2-12450	Труды XII Международной школы молодых ученых по физике высоких энергий. Приморско, НРБ, 1978.	3	р.	00	к.
	Труды VII Всесоюзного совещания по ускорителям заря- женных частиц, Дубна, 1980 /2 тома/	8	р.	00	к.
Д11-80-13	Труды рабочего совещания по системам и методам аналитических вычислений на ЗВМ и их применению в теоретической физике, Дубна, 1979	3	р.	50	к.
Д4-80-271	Труды Международной конференции по пробленам нескольких тел в ядерной физике. Дубна, 1979.	3	p.	00	к.
Д4-80-385	Труды Международной школы по структуре ядра. Алушта, 1980.	5	р.	00	к.
Д2-81-543	Труды VI Международного совещания по проблемам кван- товой теории поля. Алушта, 1981	2	ρ.	50	к.
Д10,11-81-622	Труды Международного совещания по проблемам математи- ческого моделирования в ядерно-физических исследова- ниях. Дубна, 1980	2	р.	50	к.

Заказы на упомянутые книги могут быть направлены по адресу: 101000 Москва, Главпочтамт, п/я 79 Издательский отдел Объединенного института ядерных исследований

ТЕМАТИЧЕСКИЕ КАТЕГОРИИ ПУБЛИКАЦИЙ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Индекс	Тематкка
1. 3	Экспериментальная физика высоких энергий
2.	Георетическая физика высоких энергий
3. :	Экспериментальная нейтронная физика
4.	Теоретическая физика низких энергий
5.	Математика
6.	Ядерная спектроскопия и радиохимия
7.	Физика тяжелых ионов
8.	Криогеника
9.	Ускорители
10.	Автоматизация обработки экспериментальных депово
11.	Вычислительная математика и техника
12.	Химия
13.	Техника физического эксперимента
14.	Исследования твердых тел и жидкостей ядерными методами
15.	Экспериментальная физика ядерных реакций при низких энергиях
16.	Дозиметрия и физика защиты
17.	Теория конденсированного состояния
18.	Использование результатов и методов Фундаментальных физических исследований в смежных областях науки и техники
19.	Биофизика

Кузнецов В.И. О вероятности запаздывающего деления нейтронодефицитных ядер

Рассчитаны вероятности запаздывающего деления нейтронодефицитных ядер в области Z от 94 до 101. Показано, что вероятность P запаздывающего деления на один распад исходного материнского ядра имеет максимум при числе нейтронов в ядрах 120-125 и 132-136 для материнских нечетно-нечетных ядер и ядер с нечетной массой. Приведены некоторые реакции на тяжелых ионах, ведущие к образованию нейтронодефицитных запаздывающих излучателей с числом нейтронов, меньшим 126.

P7-82-29

Работа выполнена в Лаборатории ядерных реакций ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1982 Kuznetsov V.I. On a Probability of Delayed Fission of Neutron- P7-82-29 Deficient Nuclei

The probabilities of delayed fission of neutron-deficient nuclei in 94 up to 101 Z region are calculated. It is shown that the P probability of delayed fission per one decay of initial nucleus has a maximum in the regions of N=120-125 and N= 132-136 for initial odd-odd nuclei and nuclei with odd mass. Some reactions induced by heavy ions resulting in the production of neutron-deficient delayed emitter with N < 126 are given.

The investigation has been performed at the Laboratory of Nuclear Reactions, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1982

Перевод О.С.Виноградовой.