

1863

сообщения объединенного института ядерных исследований дубна

19/4-82

P7-82-15

Б.Ф.Петров, В.В.Каманин, Ю.Рюдигер, С.П.Иванова, О.Е.Крафт, Ю.В.Наумов

множественность у -переходов в реакции 160 Gd(160, xn) 176-х Hf

I. ВВЕДЕНИЕ

В последние годы появился ряд новых экспериментальных методов, позволяющих исследовать ядерные состояния с высокими /до нескольких десятков ћ / значениями спинов. Такие состояния возбуждаются в реакциях с тяжелыми ионами при энергиях 5-10 МэВ/нуклон. Гамма-разрядка высокоспиновых состояний может осуществляться в три стадии: 1/ испускание статистических квантов, приводящих к уровням вблизи "yrast" -линии; 2/ разрядка квадрупольными переходами вдоль "yrast" -линии, образующими широкий пик неразрешенных квадрупольных у- переходов; 3/ разрядка через дискретные у-переходы.

Системы многократных совпадений, подобные использованной в работе^{/1/}, позволяют, с одной стороны, непосредственно измерять параметры распределения по множественности для у-переходов в данной реакции, с другой - могут быть использованы как "фильтр множественности", выделлющий процессы, сопровождающиеся испусканием каскада у-квантов.

В настоящей работе система многократных интегральных совпадений, подробно описанная в^{/2/} применяется для исследования высокоспиновых состояний, заселяющихся в реакции 160 Gd(16 O,xn) ${}^{176-x}$ Hf. Измерения проведены для энергий 16 O от 5 до 9 МэВ/нуклон.

Измеряются средняя множественность и ширина распределения по множественности для различных каналов реакции. Делаются выводы о среднем значении спина в конечных ядрах и ширинах распределения по спинам. Обнаружено, что среднее значение спина состояний конечных ядер слабо зависит от энергии налетающих ионов в исследуемом диапазоне. Экспериментальные данные сравниваются с рассчитанными по статистической модели с помощью программы GROGI-2^{/3/}. Рассчитанное изменение среднего момента ядерных состояний при переходе от составной системы к конечному продукту использовано для получения из экспериментальных данных сведений о среднем значении момента в составном ядре.

При нескольких энергиях налетающих ионов исследована конкуренция статистического спектра у-лучей и пика неразрешенных квадрупольных переходов. Измерены спектры множественности улучей, позволяющие оценить моменты инерции при значениях спинов около 40 f.

EMERTHOTEKA

hand the second s

1

тт. УСЛОВИЯ ЭКСПЕРИМЕНТА

.

Измерения проводились на пучке ионов ¹⁶О ускорителя У-200 Лаборатории ядерных реакций ОИЯИ. Использовалась мишень ¹⁶⁰Gd толщиной ~5.5 мг/см². Токи ¹⁶0⁺⁴ составляли несколько наноампер. Энергии ионов 160 /лабораторная система/ менялись от 80 до 134 Мав. Измерения проводились с помощью системы многократных совпадений /2/, которая первоначально использовалась для измерения множественности у-переходов при распаде радиоактивных изотопов /4/. Общий вид системы изображен на рис.1. Она состоит из 12 детекторов NaJ(T1), размерами 63x63 мм. расположенных на равном расстоянии от мишени. Эффективность регистрации гамма-лучей слабо зависит от энергии в диапазоне 0.2-1.0 МэВ и составляет в среднем 0.007 для одного детектора.

Сцинтилляционные блоки смонтированы в свинцовой камере, обеспечивающей защиту от перерассеяния гамма-квантов и уменьшающей фон от внешних источников облучения. Внутри свинцовой защиты размещалась тонкостенная вакуумная камера для мишени. Интенсивность пучка на мишени контролировалась с помощью цилиндра Фарадея, расположенного за пределами камеры, и по загрузке спектрометрического тракта.

временной привязки: 3 - мажо-

информации; 5 - анализатор

привязки; 7 - предусилитель;

8 - полупроводниковый детек-

Рис.1. Общий вид установки.

Электронная система установки включает временной и энергетический тракты полупроводникового детектора, набор трактов ФОРМИРОВАНИЯ СИГНАЛОВ ВРЕМЕННОЙ ПРИВЯЗКИ ДЛЯ СЦИНТИЛЛЯЦИОННЫХ детекторов, мажоритарную схему совпадений, линии задержки и систему обработки и накопления информации, разработанную в ЛЯР ОИЯИ. построенную из модулей стандарта КАМАК и накопителя-анализатора на 4096 каналах "TRIDAC". Блок-схема системы приведена на рис.2.

III. ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ И МЕТОДЫ ОБРАБОТКИ ДИСКРЕТНЫХ СПЕКТРОВ

При энергиях ионов ¹⁶О 80, 90, 110, 120, 129 и 134 МэВ измерены с помощью Ge(Li) -спектрометра спектры у-лучей различной кратности: \mathtt{p}_0 , \mathtt{p}_1 , \mathtt{p}_2 , \mathtt{p}_3 , \mathtt{p}_4 . Спектры кратности **Р**о соответствуют случаям, когда у-квант определенной энер-ГИИ ПОПАЛ В Ge(Li) - СПЕКТДОМЕТР. А НИ В ОДНОМ ИЗ КРИСТАЛЛОВ NaJ(T1) у-квант не зарегистрирован /спектры антисовпадений/. Кратность р₁ соответствует случаям, когда одновременно с импульсом в Ge(Li) спектрометре возник импульс в одном из 12 NaJ(T1) детекторов /двойные совпадения/. Кратность р. соответствует событиям, когда одновременно с импульсом в $Ge^{2}(Li)$ спектрометре возникает 2 импульса в любой паре NaJ(Tl) детекторов, р₂ - 3 импульса в любых трех детекторах и т.д. В качестве примера на рис. 5 приведены спектры у -лучей различных кратностей при энергии ¹⁶О, равной 80 МэВ. Наблюдаемые линии соответствуют у - переходам между уровнями вращательных полос в каналах 4n и 5n.

Идентификация линий в у-спектрах проведена на основе анализа известных энергий переходов, относительных интенсивностей линий, зависимости относительных интенсивностей от энергии ионов и в некоторых случаях - по множественности у-линий. Относительные интенсивности линий, пропорциональные сечению в данном канале реакции, качественно согласуются с расчетами функций возбуждения по программе GROGI-2 и по методу, предложенному в работе 151. Имеющиеся расхождения могут быть объяснены экспериментальными условиями /толщица мишени и разброс энергии ионов/.

При энергии налетающих ионов 80 и 90 МэВ со сравнимой интенсивностью заселяются вращательные полосы в канале 4n(¹⁷²Hf) и 5n (¹⁷¹ Hf).

В наших спектрах полоса основного состояния ¹⁷²Нf может быть прослежена до спина 20^{+ /6-8/}. Линии, соответствующие разрядке состояний 14⁺ и ниже, оказываются достаточно интенсивными для надежного определения средней множественности. Боко-

тор.

3

вые полосы, а также полосы, построенные на изомерных состояниях^{/9/}, в наших условиях не проявились.

В ¹⁷¹Нf известно несколько полос^{/10}/ Две полосы, построенные на основном состоянии 7/2⁺[633], прослеживаются до спинов 41/2⁺. Интенсивно заселяется полоса на состоянии 1/2⁻[521] с последовательностью 1/2⁻ - 5/2⁻ - 9/2⁻ - 13/2⁻ и т.д. Другая последовательность 1/2⁻ - 3/2⁻ - 7/2⁻ - 11/2⁻ и т.д. плохо проявилась. Практически не видны в наших измерениях полосы, построенные на изомерных состояниях.

При энергии ¹⁶О, равной 90 МэВ, относительное сечение в канале 4n уменьшается, и появляются линии, соответствующие каналу 6n(¹⁷⁰Hf). Основные линии в спектре принадлежат каналу 5n. Заселяются те же полосы, что и при энергии 80 МэВ. При энергии 110 МэВ максимум сечения приходится на канал 6n. Наблюдаются линии, соответствующие разрядке уровней

6

Ń

полосы основного состояния со спинами $\leq 20^{+}$ ^{/6},^{7/}. Линий, соответствующих каналу 5n, при этой энергии идентифицировано не было. Слабые линии, наблюдающиеся в спектре, относятся к каналу 7n(¹⁸⁹ Hf). Тот же характер спектра сохраняется и при энергии 120 МэВ. Однако соотношение интенсивностей линий в канале 6n и 7n меняется. Появляются слабые линии канала 8n. В ¹⁶⁹ Hf известно несколько полос^{/11/}. Две полосы с отрицательной четностью построены на основном состоянии 5/2⁻[523]. Обе полосы интенсивно заселяются в наших спектрах. Так же интенсивно заселяются и две полосы с положительной четностью, построенные на состоянии 5/2⁺[642]. При энергиях 129 и 134 МэВ основными линиями в спектрах являются линии в каналах 7n и 8n. В канале 8n(¹⁶⁸ Hf) идентифицируются уровни со спином до 16⁺ /6.7/.

Анализ Ge(Li) спектров различных кратностей позволяет сделать следующие общие заключения об используемой методике и характере экспериментальных данных.

1. Использование системы многократных совпадений в сочетании с Ge(Li) спектрометром позволяет получить чистые γ -спектры с кратностью p_2 и p_3 . Это связано с тем, что фоновые линии, сильно искажающие одиночный спектр /или спектр p_0 /, имеют малые множественности и сильно подавлены в спектрах высоких кратностей.

2. В спактрах кратностой р₂ И р₃ проявляется большое число слабых линий, имеющих высокую множественность и, возможно, соответствующих переходам между высокоспиновыми состояниями вращательных полос.

3. Достигнутая в реальных условиях статистическая точность достаточна для надежного определения среднего значения множественности и второго момента распределения по множественности.

IV. ОПРЕДЕЛЕНИЕ МНОЖЕСТВЕННОСТИ И ШИРИНЫ РАСПРЕДЕЛЕНИЯ ПО МНОЖЕСТВЕННОСТИ ДЛЯ У-ПЕРЕХОДОВ

Множественность у-переходов определяется как среднее число у-квантов, совпадающих по времени с данными, выделенными у -квантами. Для чистого каскада из M+1 кванта вероятность наблюдения события кратности р системой из N детекторов равна /1.2 (

$$W_{N}^{p}(M) = C_{N}^{p} \sum_{k=0}^{p} (-1)^{k-p} C_{p}^{k} [1 - (N-k)_{\epsilon}]^{M} . \qquad /1/$$

4

5

Здесь C_N^p и C_p^k - числа сочетаний, ϵ - телесный угол /с учетом эффективности регистрации/ для одного детектора NaJ(Tl). Если для множественности наблюдается некоторое распределение, то надо перейти к средним значениям вероятности регистрации $\langle W_p(E_{ik}) \rangle$. Нормированные площади линии E_{ik} в спектрах различных кратностей связаны с величинами $\langle W_p(E_{ik}) \rangle$:

$$\langle W_{p}(E_{ik}) \rangle = \frac{S_{p}(E_{ik})}{\sum_{p \in S_{p}} (E_{ik})}$$
. (2/

Для величины < $W_p \stackrel{P}{(E_{ik})}$ можно получить выражение

$$\langle W_{p}(E_{1k}) \rangle = C_{N}^{p} \sum_{k=0}^{p} (-1)^{p-k} C_{p}^{k} [1 - (N-k)_{\ell}]^{\leq M >} \times$$

$$\times \Sigma \frac{\mu_{j} \ln^{j} [1 - (N-k)_{\ell}]}{j!} .$$
(3)

Здесь μ_j - моменты распределения: $\mu_j = \langle (M - \langle M \rangle)^j \rangle$. Более удобная система уравнений получается при переходе от величин $\langle W_p(E_{ik}) \rangle$ к величинам $\langle W_N^p(E_{ik}) \rangle$, которые представляют собой вероятности ненаблюдения совпадений в N-p детекторах:

$$\langle W_{N}^{p}(E_{ik}) \rangle = \sum_{k=0}^{p} C_{p}^{k} (C_{N}^{k})^{-1} \langle W_{k}(E_{ik}) \rangle$$

$$/4/$$

Обозначив $y_p = \ln [1 - (N-p)_{\epsilon}]$, получаем выражение

$$\frac{\ln < W_n^{p}(E_{ik}) >}{y_p} \le + y_p \frac{\mu_2}{2!} + y_p^2 \frac{\mu_3}{3!} + \dots$$
 /5/

Из экспериментально измеряемых площадей линий в спектрах

различных кратностей $S_p\left(E_{ik}\right)$ можно получить величины $<\!\!W_p(E_{i\,k})\!>$ или $<\!\!W_N^p(E_{i\,k})\!>$ по формулам /2/ и /4/ и, решая систему уравнений /3/ или /5/, вычислить значения средней множественности <M> и более высоких моментов. Такой подход реализуется для сильных линий, измеренных в благоприятных условиях. Однако реальная экспериментальная ситуация накладывает некоторые ограничения на его применимость. Прежде всего, оказывается практически бесполезным спектр P_0 , так как в нем содержатся сильные фоновые линии невысокой множественности, затрудняющие измерения площадей интересующих нас линий. Поскольку в установке измеряются одновременно спектры только четырех кратностей, то нет данных об интенсивности линий в спектрах кратности >4. Существенной проблемой является также учет случайных совпадений. Выражения для восстановления p_0 и учета

совпадений высоких кратностей даны в работе^{/12/} однако их применение, как показывает анализ, может привести к большим погрешностям.

Более надежным является способ, основанный на подгонке измеряемых отношений площадей линии методом наименьших квадратов с заданной формой распределения по множественности. В предположении гауссовской формы распределения получена система уравнений для величин < $\overline{W_{p}(E_{ik})}$:

$$\langle \overline{W_{p}(E_{ik})} \rangle = (1 - (N-p)\overline{\epsilon})^{M+1/2 \sigma^{2} \ln (1 - (N-p))\overline{\epsilon}}$$
 /6/

при прямом суммировании ряда /5/ в предположении, что распределение по множественности гамма-лучей является нормальным.

Эта система уравнений решалась методом наименьших квадратов с начальными значениями:

$$< M_{Hay} > = \frac{S_2 \cdot 2}{S_1 (N-1) \overline{\epsilon}} \qquad \sigma_{Hay} = \frac{< M_{Hay}}{2} \qquad /7/$$

В результате имеем полную интенсивность линии, т.е. сумму площадей линии во всех кратностях, величину среднего значения распределения по множественности $\langle M \rangle$ и второй момент распределения $\mu_2 = \sigma^2$. Как правило, получается очень хорошая точность подгонки к экспериментальным отношениям площадей линий. Погрешность для $\langle M \rangle$ и σ составляет в основном <u>+1</u> для сильных линии и +2 - для слабых.

Таблица i

Средние множественности <M> и ширины распределения σ для γ -переходов в реакции 160 Gd (16 O,4n) 172 Hf

Er	$T_{I} \rightarrow T$	$E(^{16}0)=8$	ВО МәВ	$E(^{16}0)=$	90 MəB	
кэВ	-4 $-i$	< M>	ଟ	< <u>M></u>	ଟ	_
213,6	4+ → 2+	14,0	6,3	1 5, 3	8,5	
320,4	6 + -> 4 +	17,4	-	II , 5	-	
410,2	8 ⁺ → 6 ⁺	13,5	6,2	18,5	12,2	
485,4	I0 +> 8 +	II , 6	7,8	12,3	3,8	
545	I2 +⊸>I0 +	18 ,2	8,0	8 , I	7,6	
589	I4 ⁺ →I2 ⁺	13,5	6 , I	-	-	
622	I6 ⁺ →I4 ⁺	12,0	5,6			
		14,3	6,7	I3, I	9,I	

Таблица 2

			_
венности <m></m>	и ширины	распределения	6

Er	TIAT	$E(^{16}0)=8$	ВО МэВ	$E(^{I6}0)=9$	ЭО М эВ
юВ	⊥4 →⊥ I	<m></m>	6	<m7< th=""><th>ୈ</th></m7<>	ୈ
	3	2+[633]	(I)		
267	1发+>吃	9,5	5,6	10,8	5,1
354	2 1/2+ →17/2+	10,8	5 , I	12,7	5,8
44 0	25/2 ⁺ → 21/2 ⁺	7 , I	3,6	10,8	5,I
522	29/2+->25/2+	10,3	4,9	10 , 8	8,4
598	33/2+->29/2+	9 , I	5,6	10,1	4,8
		10,2	5,2	II,4	6,4
	Ŧ.	2+ [633]	(E)		
236	15/2+ -> 11/2+	-	-	12,6	5,9
334	19/2+ -> 15/2+	8,6	6 , 5	9,5	6,6
429	93/4+ 719/2+	10,4	5,0	I4.0	6,3
516	27/2+ ->23/2+	-	_	-	_
593	31/2+ ->27/2+	13,0	6,0	-	-
		10,7	5 , 8	12,0	6,3
		1/2- [521] (0)		
258	13/2->9/2-	11,2	5,6	12,2	6,7
330	17/2 -> 13/2	8,6	6,5	II,6	7,9
39 0	21/2 -> 17/2	12,8	8,4		_
44 0	25/2> 21/2	7 , I	3 , 6	9,8	. 4,7
486	29/2 25/2-	11,6	8ر7	12,3	8,3
528	33/2 -> 29/2	16 , 8	-	İ5,5	10,6
57I	37/2> 33/2-	15,0	8,3	16,5	-
		12,7	7,3	13,6	8.4

Средние множест σ для у-переходов в реакции ¹⁶⁰Gd(¹⁶O,5n) ¹⁷¹Hf

,

γ −переходов Средние множественности <M> и ширины распределения *о* для в реакции ¹⁶⁰Gd(¹⁶⁰, 6n)¹⁷⁰ Hf.

.

6 $E(I_{0})=I_{29}$ MaB $E(I_{0})=I_{34}$ MaB **4**,0 6,7 6,7 5,7 6,5 6,7 I. T ŝ I**4,**0 و**ر** 11 I**4,**8 I2,3 7**,**4 15**,**9 1 15,I 6,3 4,9 5,8 4,6 6,3 6,7 7,5 **4**,I 6 Ŷ 9**,**I I2**,**7 12**,**9 13**,**3 8**,**3 15**,**2 10**,**2 I2,6 E(^{I6}0)=I20 MaB 4,7 5,6 2,6 4,4 5,5 4,8 6,1 6 Ŷ 11,5 12**,**1 6**'**0I 9,8 7**,**9 9,8 I0**,**8 9,6 $\mathbf{E}(^{I6}\mathbf{0})=90$ MaB $\mathbf{E}(^{I6}\mathbf{0})=110$ MaB 4,8 5,9 4,3 6,3 5,5 10 1 Ś I3,3 6**6**11 8**,**3 п,¹ I**4**,6 12,2 12,6 1 5**,**I 4,7 6,4 5,4 t 1 1 ł 0 Ŷ 9,5 9,8 9,2 8,3 1 I 1 1 17 16⁺->14⁺ 6+ → 4+ 8⁺→6⁺ 10**+→8**+ I2⁺→I0⁺ I4⁺-•I2⁺ **1**^{2⁺} À **+4** Б Б С 462,0 220,9 320**,**4 400,2 510,7 550,3 584,3

Таблица

m]

4	l
Ĕ	l
Ы	
2	l
a	
H	

.

у -переходов	
BUD	
6	
<m> и ширины распределения</m>	⁶⁰ Gd (¹⁶ O, 7n) ¹⁶⁹ Hf.
Средние множественности	в реакции 1

يد	۱. ۲	B(^{I6} 0)	=IIO Maß	E (^{I6} 0)	-120 Haß	B(100)	Entl 621= (B(100]	Idd Mai
0	, _ _ _ _	< W>	ک	÷	و	Ê	Ь	< H>>	હ
			ğ	1001 5/2	rt [642] (1)			
٩	17/2+ ~~ 1 /1+	6 (11	4 ,9	9 ¹ 6	4,7	1 " 6	4 ,9	ł	. 1
4	24/2+> 172+	11,2	5,6	8 [,] 3	4 ,2	12,2	5 , 9	11,2	6,5
4	25 k -> 24 kt	I 6 6	4,6	7,6	5 , 7	10 ,6	5,3	14,4	6,3
~	23×+> 29 4+	1	. F	8 , 0	4 ,I	9 , 7	5,5	13,6	5,9
		10 , 7	5 , 0	4	4.7	10,4	5,4	13,1	6,2
			ğ	1001 5/2	rt [642] (臼			
н	42 -> 4/P+	13 , 3	5,5	ц,7	5 , 7	10,4	5,I	13 , 7	6 , 3
8	19 Kt -> 15 Kt	I	1	!	I	ł	ı	6 ⁽ 11	7,4
ດ	23/2 19/2+	8,8	4 ₃ 5	8 ,6	4 , 5	9,5	5,6	12 , 3	5,8
0	13Ht -> 23Ht	0 ° 6	4,4	8,7	4,9	8 , 0	4,2	12 ,4	5,7
		10 ,4	4,8	9,7	5,0	9,3	5,0	14,1	6,3

			DOTOD				I			
267,1	43/2 9/2	. I6,I	1	1	ן 1	18 , 7	4,3	I	3 5	5 , 8
346,2	134	2 ⁶ 1	4,9	[I,4	3 , 4	10 , 3	5,I	I	0	5,9
4. II,0	2112	- 14,6	2°0	[3,4	6 , 0	IOI	· 7,3	ï	3 , 5	0 , 01
460 , 6	254 -> 24	6 II -	5,9	9 ° 6	5,7	13 , 3	6 3	ï	2 ³ 3	5 , 7
490,2	29/ 25/	· - 7,0	3,8	4,4	4,4	8,7	, 4, ⁷	E .	0	5,4
		15 , 5	5 , 9	11,5	5,0	13,1	2 ² ε	i Ii	2 , 6	6,9
							E F	аблица 5		1
	Среј для	дние множ у-перех	ественност одов в реа	ги ⊲МЪ акции ¹	и ширин 160Gd (¹⁶ (ы расп] 0, 8n) ¹⁶	ределен 8Hf	ИЯ О		
	ц	· ·	E(^{I6} 0)=	ICW ON	3 E(^{I6} 0);	-I29 Mai	в в(^{I6} 0)=I34 MaB		
	50		< H>	ს	< H>	હ	É	6	1	
	261,5	4 ⁺ → 2⁺	11,4	€, ₃ 4	8,7	4,6	10,1	4 ,9		
	37I , 2	6+->4+	7,4	0	8 , I	5 ,0	13 , 3	3 , 6		
	456,6	8 ⁺ ->6 ⁺	9 ° 6	5 ³	6 , 7	5, 0	12,3	5 , 7		
	522,0	10 + 8+	12,1	5 رائ	15 , 3	ı	12 ,4	5 , 7		
	569,8	12 ⁺ -10 ⁺	8,0	Ι,,	9,7	5,5	13 , 6	5, 9		
	551 56	I4 ⁺ →I2 ⁺	6 ° 01	6,5	15 , 2	6,7	15,I	6 , 7		

Таблица 4 /продолжение/

полоса 5/2⁻ [523] (П) -

10

٠

11

.

5,4

0**,**11,0

5,4

11,11

5,2

8,4

В табл.1-5 представлены результаты измерений, сгруппированные по вращательным полосам в каждом канале реакции. В первых колонках таблиц даны энергии у-переходов между вращательными уровнями данной полосы, во второй - последовательность спинов начального и конечного состояний. В следующих приведены значения средних множественностей <М> и величин σ для тех энергий налетающих ионов, при которых данная линия надежно наблюдается. В последней строке каждой таблицы представлены средние значения <M> и σ для каждой полосы. Эти величины получены без учета линий, заведомо содержащих вклад от примесных линий малой множественности. В нечетных ядрах, где заселяется несколько полос, указаны характеристики низших состояний.

Как видно из таблиц, значения множественностей заключены в диапазоне от 9 до 15, что соответствует 11-17 гамма-переходам в каскаде. Величины о группируются вокруг значения, равного половине средней множественности.

Авторы выражают благодарность академику Г.Н.Флерову за интерес к работе, профессору Ю.Ц.Оганесяну и Ю.Э.Пенионжкевичу за полезные обсуждения, А.М.Сухову и В.Г.Субботину - за помощь при запуске измерительной системы, коллективу эксплуатации циклотрона У-200 - за обеспечение четкой работы ускорителя, В.В.Кобекову и В.А.Лощенко - за помощь в измерениях и обработке.

ЛИТЕРАТУРА

- 1. Hagemann G. et al. Nucl. Phys., 1975, A245, p.166.
- 2. Петров Б.Ф. и др. Изв. АН СССР, сер.физ., 1980, 44, с.1970.
- 3. Grover G.R., Gilat J. Phys.Rev., 1967, 157, p.802.
- 4. Петров Б.Ф., Крафт О.Е., Наумов Ю.В. Изв. АН СССР, сер. физ., 1980, 44, с.1823.
- 5. Каманин В.В., Карамян С.А. ОИЯИ, Р7-80-412, Дубна, 1980.
- 6. Stephens F.S., Lark N.L., Diamond R.M. Nucl.Phys., 1965, 63, p.82.
- 7. Bochev B. et al. Nucl. Phys., 1977, A282, p.159.
- 8. Walker P.M. et al. Nucl. Phys., 1977, A293, p.481.
- 9. Walker P.M., Dracoulis G.D., Johnston A. Phys.Rev., 1980, C21, p.464.
- Dracoulis G.D., Walker P.M. Nucl. Phys., 1979, A330, p.186.
- 11. Rezanka I. et al. Phys.Rev., 1975, C11, p.1767.
- 12. Hillis D.L. et al. Nucl. Phys., 1979, A325, p.216.

Рукопись поступила в издательский отдел 11 января 1982 года.

Петров Б.Ф. и др. Множественность у -переходов в реакции ¹⁶⁰Gd(¹⁶O,xn)^{176-x} Hr.

Исследована гамма-разрядка ядерных состояний с высокими значениями спинов в реакции ¹⁶⁰Od(¹⁶O, xn)^{176-х} Нг при энергиях ионов ¹⁶O от 5 до 9 МэВ/нуклон. Использована система многократных интегральных совпадений. Измерена средняя множественность гамма-лучей и распределение по множественности для разных каналов реакции. Сделаны выводы о средних значениях спина в конечных ядрах, обнаружено, что среднее значение спина слабо зависит от энергии налетающих ионов. Экспериментальные данные сравниваются с рассчитанными в статистической модели по программе GROGI-2.

Работа выполнена в Лаборатории ядерных реакций ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубна 1982

Petrov B.F. et al.			P7-82-15
y -Transition Multiplicity	in the	¹⁰⁰ Gd (¹⁶ O,xn) ^{176-x} Hf	Reaction.

The gamma-decay of high spin nuclear states in the $^{160}Gd(^{16}O,m)^{176-x}$ Hf reaction is investigated at ion energies from 5 up to 9 MeV/nucleon. The multiplicity integral coincidence technique was used. The average multiplicity and the multiplicity distribution of y-rays for other reaction channels have been measured. The conclusions are drawn as to spin average values for residual nuclei. It has been discovered that this average values has a weak dependence of particle energy. The experimental and calculated data on statistical model with GROGI-2 program using are compared.

The investigation has been performed at the Laboratory of Nuclear Reactions, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna 1982

Перевод О.С.Виноградовой.