

Объединенный институт ядерных исследований

дубна

3459/2-81

13/11-81

P7-81-184

# В.Н.Бугров, С.А.Карамян

ИССЛЕДОВАНИЕ ВРЕМЕННЫХ КОМПОНЕНТ РЕАКЦИЙ ДЕЛЕНИЯ ЯДЕР 238<sub>U</sub> + <sup>12</sup>C и W + <sup>22</sup>Ne

Направлено в ЯФ



### 1. ВВЕДЕНИЕ

Время протекания реакции деления ядер может быть исследовано с помощью эффекта теней при использовании монокристаллических мишеней /1/. В первых исследованиях реакций деления ядер тяжелыми ионами было получено, что эффективное время задержки событий деления составляет около 10-17 - 10-18 с для мишеней из вольфрама и двуокиси урана /2-4/. Более поздние исследования /5-7/ для реакций W + 12C и W + 16O дали отличающийся результат, состоящий, главным образом, в наблюдении долгоживущей временной компоненты деления r  $\gtrsim 10^{-16}$ с, имеющей весовой вклад до 20-30% от полного сечения деления. При этом не подтверждены результаты /2-4/ в отношении наблюдения заметной разности глубин теневых минимумов  $\Delta \chi = \chi_1 - \chi_2$  для двух углов ориентации относительно пучка идентичных кристаллографических осей. Такое различие полученных экспериментальных результатов привело также к существенным различиям в описании временного распределения событий деления расчетами на основе статистического подхода.

Для выяснения экспериментального аспекта этого вопроса проведено изучение реакций <sup>238</sup> U + <sup>12</sup> C и W + <sup>22</sup>Ne, нацеленное на: а/ получение сведений о долгоживущей временной компоненте деления; б/ проверку ранее полученных значений  $\Delta_X$  для этих реакций; в/ изучение степени радиационного повреждения монокристаллов при ионном облучении и его влияния на результат в экспериментах по исследованию времени протекания ядерных реакций.

## 2. ЭКСПЕРИМЕНТ

В эксперименте измеряемая разность глубин теневых минимумов  $\Delta_{\chi}$  чувствительна к сравнительно коротким временам задержки событий  $r \approx \frac{0.05 - 0.50 \text{ Å}}{V}$ , где V - скорость отдачи составного ядра, а величина глубины теневого минимума  $\chi_2$  для оси, ориентированной под углом, близким к 180° относительно пучка, чувствительна к долгоживущим временным компонентам  $r > \frac{1.0 \text{ Å}}{V}$ . Поэтому измерения, нацеленные на получение сведений о долгоживущей ком-

> Отъединение и чиститя 7. Прных и следоват

> > БИБЛИОТЕКА

поненте, следует проводить таким образом, чтобы иметь возможность выделить временную составляющую  $\chi_7$  на фоне методического  $\chi_{MeT}$  и радиационного  $\chi_{pag}$ . вклада в  $\chi_2$ . При этом обычно используют представление о возможности аддитивного суммирования всех вкладов в  $\chi_2$ :

 $x_2 = x_7 + x_{MeT} + x_{pag}$  /1/

Для получения величин  $\chi_{\text{рад.}}$  применен метод последовательных облучений одного и того же места монокристалла с фиксацией возникающего различия в  $\chi_2$ . Величина  $\chi_{\text{MET}}$ . Для монокристалла UO<sub>2</sub> определялась в реакции деления  $^{238}\text{U} + ^{4}\text{He}$ , для которой  $\chi_{\tau}$  известно  $^{/8/}$ , а  $\chi_{\text{рад.}}$  можно пренебречь. Для монокристалла W применена реакция упругого рассеяния ионов  $^{40}\text{Ar}$ /24 МэВ/ для определения методического вклада в  $\chi_{o}$ .

Толстые монокристаллические мишени UO<sub>2</sub> и W естественного изотопного состава облучались пучками ионов  ${}^{4}$  He,  ${}^{12}$ C циклотрона У-200 и  ${}^{22}$  Ne,  ${}^{40}$  Ar циклотрона У-300 ЛЯР соответственно. Понижение энергии ионов осуществлялось с помощью тормозящих фольг, энергия циклотрона У-200 понижалась также перемещением по радиусу циклотрона его выводного устройства – стриппера, пучок ионов  ${}^{40}$  Ar +2 с энергией 24 МэВ получен на У-300 в режиме кратной гармоники.

Теневая картина в пространственном распределении осколков деления или упругорассеянных ионов <sup>40</sup> Ar фиксировалась стеклянными пластинами.В результате просмотра обработанных стекол и подсчета числа треков частиц на единицу площади трекового детектора определялись глубины осевых теневых минимумов. Для повышения статистической точности результата центральная область каждого теневого минимума просматривалась полностью по двум координатам х и у выполнялось также поперечное диаметральное сканирование каждого минимума в направлении, перпендикулярном к плоскости реакции. При определении глубин теневых минимумов X1 и Х 2 вводились поправки на изменение телесного угла поля зрения при изменении его координаты, на изменение толщины работающего слоя с изменением угла выхода частиц из мишени, на угловое разрешение эксперимента и на просчеты, связанные с двойными наложениями треков. В случае монокристалла UO, использовались кристаллографические оси <110>, ориентированные под углами 90° и 150° к пучку, а в случае W - оси <111>. ориентированные относительно пучка под углами 90° и 161°.

В табл.1 и 2 приведены основные результаты опытов. В первых четырех облучениях пучок направлялся на одну и ту же точку поверхности каждого монокристалла, временная последовательность облучений приведена в таблицах. В других облучениях воздействию ионов подвергались соседние участки монокристаллов.

#### Таблица 1

Результаты, полученные в облучениях монокристалла 🛛

| Номер<br>облучения | Время<br>облучения<br>Δt,4 | Ион             | Энергия<br>Е,МэВ | Плотность<br>дозы<br><b>Δ<u>1</u>, 10<sup>16</sup>см-2</b> | × <sup>150°</sup>    | ۵ <i>T</i>           |
|--------------------|----------------------------|-----------------|------------------|------------------------------------------------------------|----------------------|----------------------|
| I                  | 0-5                        | 4 <sub>He</sub> | 33               | 0,45                                                       | 0,341 <u>1</u> 0,009 | 0,050 <u>+</u> 0,014 |
| 2                  | 6-12                       | I2 <sub>C</sub> | 81               | I,66                                                       | 0,377 <u>1</u> 0,007 | 0,033 <u>+</u> 0,014 |
| 3                  | 162-172                    | I2 <sub>C</sub> | 81               | 0,60                                                       | 0,457 <u>1</u> 0,012 | 0,034 <u>+</u> 0,026 |
| 4                  | 173-175                    | 4 <sub>He</sub> | 28               | 0,54                                                       | 0,484 <u>1</u> 0,012 | 0,025 <u>+</u> 0,024 |
| 5                  | 0-6                        | 12 <sub>C</sub> | 8I               | I,00                                                       | 0,429 <u>+</u> 0,010 | 0,041 <u>+</u> 0,020 |
| 6                  | 7-14                       | 12 <sub>C</sub> | 81               | I,52                                                       | 0,462 <u>+</u> 0,008 | 0,035 <u>+</u> 0,017 |

#### Таблица 2

Результаты, полученные в облучениях монокристалла UO2

| Номер<br>облучения | Время<br>облучения<br>Δt,4 | Ион              | Энергия<br>Е,МэВ | Плотность<br>дозы<br>Δ <u>1</u> ,10 <sup>16</sup> см <sup>-2</sup> | × 161°               | ۵X                    |
|--------------------|----------------------------|------------------|------------------|--------------------------------------------------------------------|----------------------|-----------------------|
| I                  | 0-2                        | 22 Ne            | 174              | 0,24                                                               | 0,123 <u>+</u> 0,007 | 0,043 <u>+</u> 0,016  |
| 2                  | 3-8                        | <sup>22</sup> Ne | 114              | 0,66*                                                              | 0,169 <u>+</u> 0,011 | 0,070 <u>+</u> 0,025  |
| 3                  | 9-11                       | <sup>22</sup> Ne | 174              | 0,57                                                               | 0,236 <u>+</u> 0,008 | 0,047 <u>+</u> 0,0I8  |
| 4                  | 293-295                    | <sup>22</sup> Ne | 174              | 0,37                                                               | 0,273 <u>+</u> 0,009 | 0,021 <u>+</u> 0,018  |
| 5                  | 0I                         | 40Ar             | 24               | 0,016                                                              | 0,078 <u>+</u> 0,007 | -0,001 <u>+</u> 0,010 |

\*С включением поправки на различие энергии частиц в предположении, что повреждающее действие ионов пропорционально Е-1.

Для монокристалла W, имевшего одинаковое качество на всей поверхности, результат пятого облучения может сравниваться с результатом первого облучения. В табл.1 и 2 приведены полученные результаты для величин  $\chi_2$  и  $\Delta_X$  вместе с погрешностями их измерения. Интегральное количество ионов на мишени определялось для всех облучений на основе известного сечения процесса деле-

2

3

ния или упругого рассеяния из измеренной плотности треков частиц на детекторе в случайном направлении, не совпадающем с кристаллографическим выделенным направлением. Эти данные в виде плотности дозы  $\Delta I$ , накопленной в каждом облучении, также приведены в табл.1,2.

## 3. РАДИАЦИОННОЕ ПОВРЕЖДЕНИЕ МОНОКРИСТАЛЛОВ

Данные табл.1 по исследованию монокристалла UO, позволяют получить сведения о повреждающем воздействии пучка ионов 12С на монокристалл и о величине временной составляющей  $\chi_{\tau}$ , входящей в  $\chi^{150^{\circ}}$  для реакции  $^{238}$ U +  $^{12}$ C. Для решения задачи нужно измеренные значения  $\chi_{9} = \chi^{150^{\circ}}$  в последовательности облучений представить с помощью формулы /1/ в виде системы линейных уравнений. Предполагалось, что радиационный вклад в x<sup>150°</sup> пропорционален суммарной плотности дозы всех облучений, предшествующих данному, плюс 0,5∆I, для данного облучения:

$$\chi_{\text{pag.}} = \text{RI} = \text{R}(0.5\Delta I_1 + \sum_{k=1}^{1-1} \Delta I_k),$$
 /2/

где коэффициент R определяет повреждающее действие данного иона на исследуемый материал. Считалось возможным, что за длительное время /несколько сот часов/ количество дефектов в приповерхностной области монокристалла может измениться за счет диффузии дефектов. Специально для исследования этого вопроса была сделана временная задержка между облучениями 2 и 3. При этом для облучения 3 в величину  $\chi_{\text{ рад.}}$ включалось кроме выражения /2/ добавочное слагаемое h, отвечающее за увеличение или уменьшение повреждения мишени в результате диффузии дефектов. В таких предположениях формула /1/ имеет следующий вид, например, для облучения 3:

$$\chi_{p} = \chi_{Mer} + R(0.5 \Delta I_{3} + \Delta I_{2} + \Delta I_{1}) + h + \chi_{T}$$
 . /3/

В принципе, подобный вид имели уравнения /1/ и для других облучений. В случае ионов  ${}^{4}$ Не величина  $\chi_{r}$  была взята из работы<sup>/8/</sup> а радиационное действие ионов <sup>4</sup>Не считалось пренебрежимо малым, оставались только члены, связанные с радиационным действием ионов <sup>12</sup>С. Полученная таким образом пара систем уравнений по облучениям 1-4 и 5-6 /в отдельности/ была переопределенной по отношению к величине R и однозначно определенной для получения величин h и  $\chi_{\tau}$  (<sup>12</sup>C). Решение систем привело к наиболее вероятным значениям величин: R=3,0.10<sup>-18</sup>см<sup>2</sup>;  $h = 0,050; \chi_{\tau}(^{12}C) = 0,051.$  Погрешность их определения, связан-



Рис.1. Результаты просмотра теневых минимумов в облучениях 1,3,4 W + <sup>22</sup>Ne /174 МэВ/ при разной степени радиационного повреждения монокристалла. Минимумы соответствуют кристаллографическим осям монокристалла W <111>, ориентирован- влияющим на величину R. ным под углами 90° и 161° к пучку ионов.

ная с погрешностью измерения х<sup>150°</sup>, равна примерно +10% для R и +20% для h и X, (<sup>12</sup>C). Однако в полную погрешность для величины R нужно включить также неточность абсолютизации числа ионов, попавших на мишень, так что полная погрешность определения R составляет около +25%.

Такой же подход к результатам, полученным в облучениях 1-4 для монокристалла W /табл.2/, дает близкое к нулю значение h < 0.015 и значение  $R=10, 1\cdot \overline{10} - 18cm^2 / +20\%/.$ Величина у в этом случае должна быть получена из сравнения результатов облучений 1 и 5, что рассмотрено в следующем разделе.

Сравнение величин R для случаев UO<sub>2</sub> + <sup>12</sup>C и W+ 22 Ne позволяет использовать интерпретацию, в которой повреждающее воздействие иона примерно пропорционально его атомным тормозным потерям в веществе, в простейшем приближении равным

с<u>Z<sup>2</sup>A</u>, где Z, A и E

есть ядерный заряд, массовое число и энергия иона. При этом переход от монокристалла UO<sub>9</sub> к W оказывается менее существенным и не столь сильно Кроме того, для монокристалла UO2 получено



Рис.2. Зависимость измеренного значения разности глубин теневых минимумов  $\Delta_{\chi}$  от интегральной плотности дозы бомбардирующих частиц: 0 –  $^{238}$ U +  $^{12}$ C /81 MэB/; • – W +  $^{22}$ Ne /174 MэB/.

отличное от нуля положительное значение h=0,05, из чего следует наличие диффузии дефектов из внутренней, более сильно поврежденной области монокристалла в приповерх-

ностный слой за 150 ч. В монокристалле W диффузия дефектов не обнаружена:  $h \le 0.015$  за 290 ч. Отметим, что толщина приповерхностного слоя, дающего вклад в величины  $\chi$ , определяется пробегом осколков деления и составляет по нормали к поверхности 3-5 мг/см<sup>2</sup> для исследуемых мишеней.

Рассмотрим теперь вопрос о влиянии радиационного повреждения на измеряемую величину разности глубин теневых минимумов  $\Delta_{\chi}$ .На рис.1 сравниваются результаты просмотра теневых минимумов для облучений 1.3 и 4 монокристалла W. Видно, что, несмотря на изменение  $\chi_{\text{рад.}}$  от 0,012 для облучения 1 до 0,166 для облучения 4, разность  $\Delta_X$  в пределах погрешности измерения остается той же. На рис.2 измеренные величины  $\Delta_{Y}$  для реакций <sup>238</sup> U + <sup>12</sup>C /81 МэВ/ и W + <sup>22</sup>Ne /174 МэВ/ нанесены в зависимости от интегральной плотности дозы ионов на мишени. В пределах точности измерения величины  $\Delta_{\boldsymbol{X}}$  остаются постоянными, и не возникает возможности говорить о какой-либо корреляции  $\Delta_{\chi}$  с радиационным повреждением монокристаллов. Этот результат соответствует измерениям 191. Результаты таблиц 1 и 2 содержат 4 определения  $\Delta \chi$  для реакции <sup>238</sup>U + <sup>12</sup>C /81 МэВ/ и 3 определения  $\Delta_{\chi}$  для реакции  $W + {}^{22}$  Ne /174 МэВ/. Средние значения  $\Delta\chi$  для каждой из этих реакций равны соответственно 0,036+0,006 и 0,037+0,009. Они оказались близкими к значениям, измеренным впервые в работах /2,4/.

## 4. ВРЕМЕННЫЕ КОМПОНЕНТЫ РЕАКЦИЙ ДЕЛЕНИЯ

Для реакции W<sub>+</sub> <sup>22</sup> Ne наблюдение  $\Delta_{\chi}$  на уровне нескольких процентов соответствует временной задержке событий деления около 10<sup>-17</sup> - 10<sup>-18</sup> с. Конкретно, из величины  $\Delta_{\chi} = 0,037$  в предположении одноэкспоненциального временного распределения собы-

тий деления по формуле из работы  $^{/10/}$  с параметрами  $r_{a} = 0.4 \text{ Å}$ , С=2.5 получаем эффективное время жизни распадающихся ядер  $r_{9}$ ф $\phi^{=}$  2,5·10<sup>-18</sup> с. Для энергии ионов <sup>22</sup> Ne 114 МэВ значение  $\Delta_{\chi}$  = 0,070, совпадающее с результатом <sup>/2/</sup>, дает величину  $r_{3\Phi\Phi}^{=}$  4,0.10<sup>-18</sup> с. Такое время задержки событий деления при-водит к вкладу  $\chi_{\tau}$  в величину  $\chi^{161^\circ}$ , близкому к нулю. Поэтому наблюдение какого-либо значения X, выходящего за пределы погрешности измерения, означало бы наличие долгоживушей временной компоненты деления. Сравнение результатов облучений 1 и 5 /табл.2/ как будто говорит об увеличении x<sup>161°</sup> при переходе от упругого рассеяния к реакции деления. Отметим, что радиационный вклад в величины  $x^{161^\circ}$ в обоих случаях невелик и мало отличается для облучений 1 и 5. поскольку плотность дозы ионов 40 Аг/24 МэВ/ в 15 раз меньше, чем ионов <sup>22</sup>Ne /174 МэВ/, а радиационное действие низкоэнергичных ионов <sup>40</sup>Ar. по-видимому, в десятки раз больше, чем ионов <sup>22</sup> Ne /174 МэВ/, что уравновешивает различие в плотности дозы. Однако наблюдаемое различие x<sup>161°</sup> в облучениях 1 и 5 нельзя приписать долгоживущей временной компоненте реакции деления, поскольку имеет место значительное различие по заряду и энергии между осколками деления /обл.1/ и ионами <sup>40</sup> Ar /обл.5/. При этом немаловажное значение, вероятно, имеет следующее различие: в случае упругого рассеяния начальная кинетическая энергия частиц, вылетающих под углом 161° к пучку, уменьшается по мере углубления внутрь монокристалла точки вылета частицы, а для осколков деления начальная энергия частиц практически не зависит от точки излучения. Это различие наряду с различием в атомном номере частиц и в их максимальной энергии, вероятно, дает при использовании толстой мишени наблюдаемое различие  $\chi^{101}$ °, равное 0,045+0,014 для облучений 1 и 5. То, что это различие  $x^{161^{\circ}}$ не связано с долгоживущей временной компонентой, подтверждается результатами сравнения облучений 1 и 2. Переход к энергии ионов 114 МэВ дает изменение  $\chi^{161^\circ}$ , которое целиком объясняется радиационным действием пучка. То есть не остается места для величины  $\chi_r$ , которая не должна была быть неизменной при изменении энергии ионов /см. /5-7/ /. Поэтому результаты табл.2 говорят о том, что в реакции W+<sup>22</sup> Ne не наблюдается долгоживущая временная компонента деления при уровне чувствительности несколько процентов от полного сечения деления.

Для реакции  $2^{38}$ U +  ${}^{12}$ C /81 МэВ/ обработка данных /табл.1/ дает значение  $\chi_r = 0,051+0,010$  /см. предыдущий раздел/.С использованием расчетов /11/, выполненных с целью описания измеренных значений  $\Delta\chi$  /4/ для этой реакции, можно получить оценку величины  $\chi_r \approx 0.01$  для событий деления составного ядра с учетом многих ветвей деления после испускания нейтронов. Из-

7

меренное значение  $\chi_{\tau}$  намного больше этой оценки, поэтому полученную величину  $\chi_{\tau}$  необходимо отнести главным образом к вкладу процесса деления после прямых реакций взаимодействия ионов <sup>12</sup>С с ядрами <sup>238</sup>U.

<sup>238</sup>U + <sup>12</sup>C /81 МэВ/ обнаружена Таким образом, в реакции долгоживущая компонента деления, соответствующая главным образом вкладу деления после прямых реакций. В связи с этим необходимо вновь подвергнуть анализу вопрос о вкладе процесса деления продуктов прямых реакций в измеренные величины  $\chi$ и  $\Delta_{\chi}^{4/}$ для реакций <sup>238</sup>U + HI. Величина  $\Delta_{\chi}$  в эксперименте по изучению теневых минимумов зависит от отношения нормальных к кристаллографическим осям составляющих скорости делящегося <u>· 1</u> и от его времени жизни *г*. Поскольку *г* в функции у 150° ядра E\*, Z, A eще не измерено достаточно подробно, то применяется упрощенный расчет, в котором обходится необходимость в полных функциях  $r(E^*, Z, A)$ . Схема вычислений такова: а/ на основе кинематического рассмотрения выполняется расчет отношения для мишенеподобного продукта прямой реакции при усреднении по угловому и энергетическому распределению легкого продукта  $^{/12,13/}$ ; б/ для найденного отношения  $-\frac{v_{\perp}^{900}}{1272}$ \_\_\_\_\_\_\_\_находится максимальное значение  $\Delta_{\chi_{MAKC}}$ , соответствующее некоторому определенному значению ; в/ с учетом широкого спектра продуктов реакции и, следовательно, широкого интервала изменения т делящегося ядра предполагается, что среднее значение  $\Delta_{Y}$  для процесса равно 0,5 $\Delta_{\chi}$  макс.; г/ на основе известных данных /14/ о вкладе деления после реакций передачи нуклонов в полное сече-

$$\Delta_{\chi_{\rm P.II.}} = \frac{\sigma_{\rm f} P.II.}{\sigma_{\rm f}^{\rm non.}} 0.5 \Delta_{\chi_{\rm MAKC.}}$$

ние деления вычисляется искомое значение

Средние значения квадрата нормальной составляющей импульса тяжелого продукта реакции передачи равны

$$(p_{\perp}^{90})^{2} = 2\pi\sigma^{-1} \int_{0}^{\pi} [(p_{0} - p_{1}\cos\theta_{1})^{2} + \frac{1}{2}p_{1}^{2}\sin^{2}\theta_{1}] \frac{d\sigma}{d\Omega} \sin\theta_{1} d\theta_{1},$$

$$(p_{\perp}^{150})^{2} = 2\pi\sigma^{-1} \int_{0}^{\pi} [\frac{1}{4}(p_{0} - p_{1}\cos\theta_{1})^{2} + \frac{7}{8}p_{1}^{2}\sin^{2}\theta_{1}] \frac{d\sigma}{d\Omega} \sin\theta_{1} d\theta_{1},$$

$$/4/$$

где  $\sigma$  и  $\frac{d\sigma}{d\Omega}$  - сечение и угловое распределение легкого продукта реакции;  $p_0$  - импульс бомбардирующей частицы;  $p_1$  - импульс легкого продукта реакции при угле вылета  $\theta_1$  в л.с. Полученные по формулам /4/ отношения средних квадратичных скоростей



Рис.3. Вычисленный вклад различных процессов в величину разности глубин теневых минимумов для реакций <sup>238</sup>U + HI: — – деление составного ядра (HI, xnf) – расчетные данные<sup>/11/</sup>; ZZ – деление продуктов неполного слияния с вылетом прямой *a*-частицы (HI,*a* xnf); ZX – деление продуктов реакций передачи нуклонов (HI, <sub>7</sub>Af).

 $\frac{v_{\perp}^{90^{\circ}}}{v_{\perp}^{150^{\circ}}}$  приближаются к единице, в отличие от реакции деления составного ядра, что понижает максимально возможное  $\Delta_{\chi_{\rm MAKC.}}$ для деления продуктов реакций передачи. Величина вклада этого процесса  $\frac{\sigma_{\rm f}^{\rm p.r.}}{\sigma_{\rm I}^{\rm DOH.}}$  считалась равной 0,05 для реакции  $^{238}$ U+ $^{12}$ C /81 MэB/; 0,08 и 0,12 для  $^{238}$ U+ $^{18}$ O при энергиях ионов 108 и 121 MэB соответственно и 0,10 и 0,25 для  $^{238}$ U+ $^{22}$ Ne при энергии 128 и 174 МэB соответственно. Результат приведен на рис.3, на котором сравнивается вклад от разных процессов в полное  $\Delta_{\chi}$ .

Подобный расчет был выполнен и для процесса деления после неполного слияния взаимодействующих ядер с испусканием прямой а-частицы. Этот процесс ближе в реакции деления составного ядра, его можно сравнить с делением составного ядра после испускания двух или трех нейтронов по величине понижения энергии

8

- 9

возбуждения деляшегося ядра. В расчете величины вклада этого процесса в  $\Delta_Y$  использована временная функция  $r(E^*)$ . Полу $v_{1}^{90\,\circ}$  вычислялось по формулам /4/. Сечение образования пря- $v_{1}^{150\,\circ}$ 

мых а -частиц в реакциях с тяжелыми ионами, несмотря на некоторый разброс различных определений /15-17/ можно считать равным 0,2 ор и 0,4 ор для энергий ионов, ненамного превышающих кулоновский барьер, и для энергий около 8 МэВ/нуклон соответственно /  $\sigma_{\rm R}$  - полное сечение реакции/. Полученные значения  $\Delta_{X_{\sigma}}$  также приведены на рис.3.

С увеличением энергии ионов растет вклад деления после прямых реакций в полное сечение деления, однако вклад этих процессов в  $\Delta_X$  не увеличивается. Для величины  $\Delta_{X_{\alpha}}$  это связано с ростом средней энергии возбуждения делящегося продукта и соответствующим уменьшением г, а для величины  $\Delta_{Xn,\pi}$  - с изменением /12,13/ углового распределения легкого продукта при v,906 v<sub>1</sub>150°. Из увеличении энергии иона, приводящим к изменению данных рис.3 видно, что вклад всех трех процессов в полное значение  $\Delta_X$  сравним по величине. Тем не менее интерпретация /11/ измеренных в /4/ величин  $\Delta_X$  как факта, говорящего о сравнительно высоких временах жизни делящихся ядер т ~ ~10-17 - 10-18 с при больших энергиях возбуждения Е\*>50 МэВ. остается в силе. Если принять в расчетах временные функции r(E\*), резко убывающие к значениям r ~ 10<sup>-20</sup> - 10<sup>-21</sup> с для E\*> > 50 МэВ, то это приведет к нулевым значениям вкладов в  $\Delta_X$ деления составного ядра  $\Delta_{XC, \mathfrak{A}}$ , и деления после испускания a -частиц  $\Delta_{X_{\sigma}}$ . Остающееся, хотя и уменьшающееся, значение  $\Delta_{\chi_{\mathrm{D.\,II.}}}$  недостаточно велико для объяснения измеренных величин  $\Delta_{\mathbf{Y}}$ .

Значительный и увеличивающийся с ростом энергии иона вклад деления продуктов прямых реакций в полное сечение деления соответствует представлениям о роли критического углового момента для слияния ядер I кр. в реакциях с тяжелыми ионами и виду функций возбуждения деления в реакциях <sup>238</sup>U + HI /18/-Действительно, с ростом энергии иона увеличивается интервал между I KD, и максимальным угловым моментом, соответственно растет сечение прямых реакций и их вклад в полное сечение деления. Поэтому функция возбуждения деления монотонно возрастает с энергией несмотря на уменьшение сечения образования составного ядра при наличии І кр. в области энергий E> E кр.

В реакциях W+ HI вклад деления продуктов прямых реакций значительно меньше /пренебрежим в большинстве случаев/ из-за резкого уменьшения вероятности деления ядер с уменьшением Z и Е\* в этой области ядер. Растущие функции возбуждения деле-



Рис.4. Сравнение величин I кр. /по формуле /5// и I  $_{\rm Kp.}^{\rm f}$  по теории /19/ для реакций  $^{186}$ W+ HI, кривые 1 и 2 соответственно. На вставке показана схема, иллюстрирующая поведение потенциальной энергии ядер при их слиянии. В - барьер взаимодействия: Q - энерговыделение слияния.

ния в этом случае связаны с повышением вероятности деления составного ядра с ростом Е\*.

Для анализа величин  $\chi$  и  $\Delta \chi$  необходимо проверить, не связана ли значительная доля сечения деления с образованием динамически неустойчивой составной системы и ее делением за короткое время. Критический угловой момент вращательной динамической неустойчивости ядер І вычислен на основе капельной модели в работе /19/. Однако образование составного ядра может быть ограничено по угловому моменту более жестко самим процессом слияния ядер или захвата тяжелого иона.

В работе /20/приведена простая формула для критического углового момента захвата тяжелого иона:

T

$$\kappa_{p} = 0.155 r_0 (A_1^{1/3} + A_2^{1/3}) \sqrt{\frac{A_1 A_2}{A_1 + A_2} (B + Q)}.$$
 /5/

Обозначения объяснены на вставке рис.4. Экспериментальные значения I кn /21/ для образования составных ядер с Z от 52 до 93

11

описываются формулой /5/, а именно: при выборе параметра  $r_0 = 1,5$  Фм расчетные значения в 1,17 раз меньше экспериментальных /21/.

На <u>рис.4</u> вычисленные по формуле /5/ значения I<sub>kp</sub> для реакций W + HI сравниваются с расчетом<sup>/19/</sup> величин I<sup>f</sup><sub>Kp</sub> для тех же составных ядер. Видно, что в случае ионов с Z<15 величина I<sub>kp</sub> < I<sup>f</sup><sub>kp</sub> и, следовательно, вращательно неустойчивые составные ядра не образуются. Для мишени <sup>238</sup>U и ионов <sup>12</sup>C, <sup>18</sup>O, <sup>22</sup> Ne ситуация подобна. Поэтому практически для всех изученных с помощью эффекта теней реакций деления <sup>238</sup>U + HI и W + HI вкладом деления динамически неустойчивых ядер можно пренебречь. Таким образом, обнаруженная долгоживущая компонента деления в реакции <sup>238</sup>U +<sup>12</sup>C логически укладывается в принятую нами схему процесса деления как деления <sup>238</sup>U / деления продуктов прямых реакций.

Основные результаты работы состоят в следующем:

1. Получены данные о радиационном повреждении монокристалла W ионами  $^{22}$  Ne /174 MэB/ и монокристалла UO<sub>2</sub> ионами  $^{12}$ C /81 MэB/. Измеряемые в эксперименте величины  $\Delta_X$ , связанные с временной задержкой ядерной реакции, не зависят от радиационного повреждения монокристалла.

2. Подтверждены измерения  $^{/2,4/}$  величин  $\Delta_X$  для реакций  $W + ^{22}$  Ne /174 МэВ/ и  $^{238}U + ^{12}$  С /81 МэВ/, приводящие к значениям эффективного времени протекания реакций деления око- ло  $10^{-17} - 10^{-18}$  с.

3. В реакции  $^{238}$ U +  $^{12}$ C /81 МэВ/ обнаружена долгоживущая /  $\tau \ge 10^{-16}$  с/ временная компонента деления, имеющая интенсивность около 5% от полного сечения деления. Она связана с делением продуктов прямых реакций взаимодействия ядер мишени и бомбардирующей частицы.

4. В реакции  $W + {}^{22}$  Ne не найдено заметного вклада долгоживущей временной компоненты деления при уровне чувствительности несколько процентов от полного сечения деления, хотя такой вклад ожидался на основе результатов  ${}^{/5-7/}$ , полученных для близких реакций  $W + {}^{16}$ O и  $W + {}^{12}$ C.

Авторы благодарны Г.Н.Флерову и Ю.Ц.Оганесяну за интерес к работе, А.Ф.Тулинову и Г.Отто за предоставление монокристаллов UO<sub>2</sub> и W, группам эксплуатации циклотронов У-300 и У-200 за получение пучков ионов с нужными параметрами. ЛИТЕРАТУРА

- 1. Карамян С.А., Меликов Ю.В., Тулинов А.Ф. ЭЧАЯ, 1973, 4, с.456.
- 2. Карамян С.А., Оганесян Ю.Ц., Нормуратов Ф. ЯФ, 1971, 14, с. 499.
- 3. Каманин В.В. и др. ЯФ, 1972, 16, с.447.
- 4. Бугров В.Н. и др. ЯФ, 1977, 25, с.713.
- 5. Andersen J.U. et al. Phys.Rev.Lett., 1976, 36, p.1539.
- Andersen J.U. et al. Dan.Vid.Selsk.Mat.-fys. Medd., 1980, 40, No.7.
- 7. Andersen J.U. et al. Phys. and Chem. Fission, IAEA, Vienna, 1980, vol.1, p.387.
- 8. Бугров В.Н., Карамян С.А. ОИЯИ, Р7-80-762, Дубна, 1980.
- 9. Каманин В.В. и др. ЯФ, 1972, 16, с.252.
- 10. Gibson W.M., Nielsen K.O. Phys.Rev.Lett., 1970, 24, p.114.
- 11. Каманин В.В., Карамян С.А. ЯФ, 1978, 28, с.403.
- 12. Артюх А.Г. и др. ЯФ, 1978, 28, с.1154.
- 13. Артюх А.Г. и др. ЯФ, 1973, 17, с.1126.
- 14. Sikkeland T. et al. Phys.Rev., 1962, 125, p.1350.
- 15. Britt H.C., Quinton A.R. Phys.Rev., 1961, 124, p.877.
- 16. Капусцик А. и др. ЯФ, 1967, 6, с.1142.
- 17. Герлик Э. и др. ЯФ, 1980, 32, с.45.
- 18. Viola V.E., Sikkeland T. Phys.Rev., 1962, 128, p.767.
- 19. Cohen S. et al. Ann.Phys., 1974, 82, p.557.
- 20. Бочев Б. и др. ЯФ, 1976, 26, с.520.
- 21. Lefort M. et al. Rivista Nuovo Cim., 1974, 4, p.79.

Рукопись поступила в издательский отдел. 13 марта 1981 года.