<u>C 341; 1r</u> -19

СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ

2226/2-73

18/11-

P7 - 702

Ю.П.Гангрский, Б.Н.Марков, Нгуен Конг Кхань, Ю.Ц.Оганесян, Фам Зуй Хиен

КУЛОНОВСКОЕ ВОЗБУЖДЕНИЕ СПОНТАННО ДЕЛЯЩИХСЯ ИЗОМЕРОВ ТЯЖЕЛЫМИ ИОНАМИ

P7 - 7022

Ю.П.Гангрский, Б.Н.Марков, Нгуен Конг Кхань, Ю.Ц.Оганесян, Фам Зуй Хиен

КУЛОНОВСКОЕ ВОЗБУЖДЕНИЕ СПОНТАННО ДЕЛЯЩИХСЯ ИЗОМЕРОВ ТЯЖЕЛЫМИ ИОНАМИ

> объединенный институт адерных исследований БИБЛИЮТЕКА

Гангрский Ю.П., Марков Б.Н., Нгуен Конг Кхань, P7 - 7022 Оганесян Ю.Ц., Фам Зуй Хиен

Кулоновское возбуждение спонтанно деляшихся изомеров тяжелыми ионами

Приводятся результаты опытов по кулоновскому возбуждению спонтанно деляшегося изомера ^{238}U с периодом полураспада 200 нсек. Получены верхние границы сечений: 10-31 см² для ионов ^{136}Xe с энергией 750 Мэв и 10-33 см² для ионов ^{12}C с энергией 60 Мэв. Обсуждаются различные способы заселения изомерного состояния при кулоновском возбуждении.

Сообщение Объединенного института ядерных исследований Дубна, 1973

Gangrsky Yu.P., Markov B.N., P7 - 7022 Nguyen Cong Khanh, Oganesyan Yu.Ts., Pham Zuy Khien

Coulomb Excitation of Spontaneously Fissioning Isomers by Heavy Ions

The results of the experiments on the Coulomb excitation of a spontaneously fissioning isomer of ^{238}U with the half-life of 200 ns are presented. Upper limits for cross sections are obtained to be 10^{-31} cm² for 750 MeV ^{136}Xe ions and 10^{-33} cm² for 60 MeV ^{12}C ions. Different

ways of population of the isomer state at the Coulomb excitation are discussed.

Communications of the Joint Institute for Nuclear Research. Dubna, 1973

Введение

Согласно современным представлениям зависимость потенциальной энергии от деформации в тяжелых ядрах при В >0 представляет собой кривую с двумя горбами и двумя минимумами /рис. 1/1,2/. При такой форме потенциального барьера процесс деления при низких энергиях возбуждения можно рассматривать состоящим из ряда ступеней: концентрация энергии на колебательных степенях свободы, переход через первый барьер, затухание колебаний во второй яме. Далее энергия либо снова концентрируется на колебательных степенях свободы /тогда ядро переходит через второй барьер и делится/, либо часть ее испускается в виде у -квантов, и ядро оказывается в нижнем квазистационарном состоянии второй ямы. В последнем случае деление происходит с задержкой, соответствующей времени жизни изомерного состояния. Отношение сечений задержанного и мгновенного деления (σ_i / σ_f) определяется отношением при-веденных ширин для γ -излучения и для вынужденного деления из состояний во второй яме: $\Gamma_{\gamma 2}/\Gamma_{f2}$. При энер-гии возбуждения, близкой к высоте второго барьера, это отношение составляет ~10⁻⁴ /^{3,4} /малая величина отношения объясняется малой плотностью уровней во второй яме/.

Существенное влияние на процессы мгновенного и задержанного деления оказывают уровни /в особенности колебательные/ во второй яме. Сведения об этих уровнях, а также о форме потенциального барьера получают путем исследования процессов деления и образования споштанно делящихся изомеров при низких энергиях воз-

буждения ^{/5,6,7/}. Однако особый интерес представляет изучение этих процессов при кулоновском возбуждении, т.к. в этом случае энергия может быть передана непосредственно колебательным степеням свободы. Электрическое поле налетающего иона может вызвать большую деформацию ядра мишени ^{/8/} или возбудить в нем колебания с достаточно большой амплитудой ^{/9,10/}. В результате этого происходит либо мгновенное деление, либо задержанное деление, протекающее через образование изомерного состояния. Успешное ускорение тяжелых ионов вплоть до ионов Хе ^{/11/} открывает реальные возможности для исследования этих явлений.

В данной работе описывается попытка наблюдения кулоновского возбуждения спонтанно делящегося изомера ²³⁸ U. Для возбуждения использовались ионы ¹² C, ускоренные на циклотроне У-ЗОО, и ионы ¹³⁶ Xe, ускоренные на тандеме циклотронов У-ЗОО и У-200 в. Лаборатории ядерных реакций ОИЯИ:

Теоретические оценки сечения кулоновского возбуждения спонтанно делящихся изомеров

Проведем оценки сечения кулоновского возбуждения спонтанно делящихся изомеров. На рис. 1 показаны различные возможные пути заселения изомерного состояния при кулоновском возбуждении.

1. Электрическое дипольное или многократное электрическое квадрупольное возбуждение уровней, лежащих вблизи первого барьера, с последующей разрядкой этих состояний на уровни во второй яме.

2. Электрическое квадрупольное возбуждение уровней во второй яме.

Сечения кулоновского возбуждения спонтанно делящегося изомера ^{238}U , рассчитанные для указанных выше способов заселения изомерного состояния, представлены в таблице. Расчеты были проведены для различных бомбардирующих частиц / ^{12}C , ^{40}Ar , ^{84}Kr , ^{136}Xe / и для энергий вплоть до высоты кулоновского барьера /при этих значениях энергии и приведены сечения в таблице/. Сечения электрического дипольного фотопоглощения, приводящего к делению /12/ и образованию спонтанно делящихся изомеров /7/, известны для целого ряда ядер. Сечение фотоделения: при поглощении электрических дипольных γ -квантов с энергией E в интервале энергий dE определяется выражением

$$dE = \frac{8\pi^3 e^2 E}{9hc} B(\epsilon 1)\rho(E) \frac{\Gamma_f}{\Gamma_t} dE, \qquad /1/$$

Где $B(\epsilon 1)\rho(E)$ - произведение приведенной вероятности электрического дипольного перехода на плотность уровней при энергии возбуждения E, а Γ_f / Γ_t - отношение делительной и полной приведенных ширин для возбуждаемых уровней. Это же произведение $B(\epsilon 1)\rho(E)$ определяет также и сечение кулоновского возбуждения, приводящего к делению или образованию спонтанно делящегося изомера. Например, в случае изомера

$$\sigma_{\epsilon,1} = \int \frac{z^2 e^2}{h^2 v^2} f(\xi) B(\epsilon 1) \rho(E) \frac{\Gamma_i}{\Gamma_i} dE, \qquad /2/$$

la para na sel se sente sel en di construcción de la dela serie de la dela secto de la dela dela secto de la de

где v, z - скорость и заряд бомбардирующей частицы, $f(\xi)$ - функция кулоноьского возбуждения, Γ_i / Γ_t - отношение приведенной ширины для перехода ядра в изомерное состояние к полной ширине /это отношение можно получить из измеренных на опыте сечений образования спонтанно делящихся изомеров/. Наибольший вклад в сечение вносят уровни, лежащие вблизи вершины первого барьера /с уменьшением энергии экспоненциально падает отношение Γ_i / Γ_t , а с ростом энергии возбуждения быстро уменьшается функция $f(\xi) / /$. Таким образом, из известных значений сечений фотоделения можно получить достаточно определенные оценки сечения кулоновского возбуждения спонтанно делящихся изомеров.

Наряду с электрическим дипольным имеет место электрическое квадрупольное кулоновское возбуждение. При этом высоколежащие коллективные состояния воз-

буждаются в результате многократного кулоновского возбуждения, которое можно представить как ряд последовательных электрических квадрупольных переходов. происходящих в момент одного соударения налетающего иона с ядром. Расчет сечения кулоновского деления при многократном возбуждении проведен в ряде работ /9,10/. Используя известное из опыта отношение σ_i / σ_f , можно на основании этих расчетов оценить сечение кулоновского возбуждения спонтанно делящихся изомеров. Однако в отличие от оценок электрического дипольного возбуждения эти оценки будут значительно менее определенными, т.к. практически нет сведений о свойствах коллективных высоколежащих состояниях в тяжелых ядрах. Поэтому в работах ^{/9/} и ^{/10/} где исходили из различных предположений о свойствах коллективных состояний, участвовавших в процессе многократного кулоновского возбуждения, получены существенно различающиеся значения сечений кулоновского деления.

Предполагается, что в ряде изомеров U и N_p вероятность у -перехода в первую яму превышает вероятность спонтанного деления. Поэтому наблюдаемое время жизни изомерного состояния относится к у -излучению с этого состояния. Можно считать, что основная доля у-переходов идет на уровни основной ротационной полосы, а также на вибрационные состояния в первой яме /сечение кулоновского возбуждения этих уровней извест. и достаточно велико/. Время жизни изомерного но состояния определяет матричный элемент перехода на указанные выше уровни и позволяет вычислить сечение кулоновского возбуждения спонтанно делящегося изомера. Изомерное состояние может заселяться и при кулоновском возбуждении других /в первую очередь вибрационных/ уровней во второй яме. Сечение такого процесса будет, очевидно, определяться парциальным временем жизни для у -переходов с этих уровней на уровни в первой яме. Согласно работе /13/ вероятность у -перехода с уровня во второй яме при энергии Е на уровень в первой яме определяется выражением

 $\lambda_{\gamma} = \lambda_{\gamma 0} P_A(E) \frac{h \omega_{II}}{D(E)},$ /3/

где $\lambda_{\gamma 0}$ - вероятность γ -перехода согласно статисти-ческой модели, $D_I(E)$ - среднее расстояние между уровнями в первой яме при энергии возбуждения E, hw₁₁ энергия квадрупольных колебаний во второй яме, Р. (Е) проницаемость первого барьера. Проведенные расчеты показали, что сечение кулоновского возбуждения значительно возрастает при переходе к возбужденным состояниям во второй яме /растет плотность уровней в первой яме и проницаемость внутреннего барьера/. В расчетах использовались следующие параметры барьера деления: энергия изомерного состояния З Мэв, высота внешнего и внутреннего барьера 6 Мэв, параметры $h\omega$ характеризующие кривизну внешнего и внутреннего барьеров, соответственно 0.65 Мэв и 1.3 Мэв. Оценки сечения для данного способа возбуждения спонтанно делящих ся изомеров являются достаточно неопределенными изотсутствия достоверных сведений об уровнях во за второй яме и о параметрах внутреннего барьера. Кроме того, проницаемость внутреннего барьера, а следовательно, и сечение кулоновского возбуждения могут значительно возрасти в случае резонанса между уровнями первой и второй ям.

Проведенные расчеты показали, что различные способы возбуждения спонтанно делящихся изомеров характеризуются существенно разной зависимостью от атомного номера и энергии бомбардирующей частицы. Из таблицы видно, что в ряде случаев сечения возбуждения достаточно велики и их можно измерить на опыте.

Результаты эксперимента

Основная трудность в наблюдении спонтанно делящихся изомеров при кулоновском возбуждении связана с регистрацией малого числа осколков из изомерного состояния на очень высоком уровне фона осколков вынужденного деления и рассеянных ионов. При устранении фона обычно используют то обстоятельство, что деление из изомерного состояния происходит с задержкой, соответствующей времени жизни изомерного состояния. Если это время достаточно велико/в выбранном для наших

7

измерений ядре ^{238}U оно составляет 200 нсек/, то выбитые из мишени в результате взаимодействия с налетающим ионом ядра отдачи пролетят до распада значительное расстояние (до нескольких сантиметров).Поэтому можно так расположить детектор, чтобы он регистрировал лишь осколки тех ядер, которые уже вылетели из мишени, а попадание на детектор осколков деления непосредственно из мишени исключено.

На рис. 2 представлены два варианта методики, используемой в наших опытах. При облучении мишени из ^{238}U ионами ^{12}C на выведенном пучке циклотрона У-ЗОО применялась методика, описанная в работах/14,15/. В такой методике /рис. 2а/ регистрировались лишь осколки от деления ядер отдачи, пролетающих между диэлектрическими детекторами /силикатное стекло/.Эта установка применялась в опытах по поискам спонтанно делящихся изомеров в реакциях с тяжелыми ионами. В реакции $^{238}U + ^{I2}C$ при энергиях ионов более 65 Мэв /выше кулоновского барьера/ наблюдались осколки запаздывающего деления, связанные с распадом образуюшихся в данной реакции изомеров ²⁴⁰ Pu и²⁴³ Cm. При энергиях ионов 60 Мэв и менее /ниже кулоновского барьера/ осколков задержанного деления не наблюдалось. Отсутствие осколков соответствует верхней границе сечения кулоновского возбуждения спонтанно леляшегося изомера²³⁸ U: 10^{-33} см².

Облучение мишени из ^{238}U ионами ^{136}Xe производилось на внутреннем пучке циклотрона У-2ОО, который служил второй ступенью тандема циклотронов. Поэтому использовался другой вариант методики /рис. 26/. Поскольку скорость ядра отдачи в реакциях с ксеноном может достигать 2.10° см/сек /на порядок больше, чем в реакциях с углеродом/, то для получения достаточно высокой эффективности регистрации осколков деления ядер отдачи, пролетающих между детекторами, необходимо использовать детекторы длиной более 1 м, что нецелесообразно. Поэтому на пути ядер отдачи помещался сборник из чистого полупроводникового кремния, расположенный под углом 20° к направлению пучка, а напротив него- детектор осколков /кварцевое стекло/. Этот детектор был защищен коллиматором от осколков деления и рассеянных ионов ксенона из мишени. Применение в качестве сборника материала с низким атомным номером /Z = 14/ исключало попадание на детектор рассеянных на сборнике ионов ксенона. Контрольные опыты с платиновой мишенью /в этом случае не должно быть осколков задержанного деления/ показали полное отсутствие треков на диэлектрическом детекторе.

Было проведено несколько опытов по облучению мищени из ^{238}U ионами ^{136}Xe с энергией – 750 Мэв. В каждом опыте /интегральный поток составлял 10^{14} ионов/ наблюдалось 1-2 трека на детекторе осколков. Столь малое, число треков разумно рассматривать как верхнюю границу сечения кулоновского возбуждения спонтанно делящегося изомера ^{238}U при облучении ионами ксенона: 10^{-31} см².

Измеренные на опыте границы сечений позволяют сделать ряд заключений о способе заселения изомерного состояния при кулоновском возбуждении. Из опытов с ионами ксенона следует, что возникновение большой деформации ядра, приводящей к делению или образованию спонтанно делящегося изомера, характеризуется меньшим сечением, чем следует из проведенного в работе /8/ расчета. Можно также полагать, что многократное кулоновское возбуждение высоколежащих колебательных состояний имеет сечение ниже, чем рассчитанное в работе/10/. или изомерное состояние заселяется с аномально малой вероятностью при разрядке этих уровней. Низкая граница сечения в опытах с ионами углерода, по-видимому, означает, что нижние вибрационные состояния во второй яме характеризуются, как и изомерный уровень, большим запретом для переходов в первую яму.

В заключение авторы выражают благодарность Г.Н.Флерову за постоянный интерес к работе, С.П. Третьяковой за просмотр диэлектрических детекторов, А.Г.Белову за помощь в подготовке экспериментальной методики и эксплуатационной группе тандема циклотронов за бесперебойную работу ускорителей.

Литература

- I. V.M.Strutinsky. Nucl. Phys., A95, 420 (1967).
- 2. V.M.Strutinsky. Nucl. Phys., A122, 1 (1969).
- 3. B.Dalhsuren, G.N.Flerov et al. Nucl. Phys., A148, 492 (1970).
- 4. J.Pedersen, B.Rasmussen. Nucl. Phys., A178, 449 (1972).
- 5. G.N.Flerov, A.A.Pleve et al. Nucl. Phys., Al02, 443 (1967).
- 6. I.Boca, N.Martalogu et al. Nucl.Phys., A134, 541 (1969).
- 7. Ю.П.Гангрский, Б.Н.Марков, И.Ф.Харисов, Ю.М.Ципенюк. Письма ЖЭТФ, 14, 370 /1971/.
- 8. L.Wilets, E.Guth, J.S.Tenn. Phys.Rev., 156, 1349 (1967).
- 9. K.Beyer, A.Winther. Phys.Lett., 30B, 296 (1969).
- 10. H.Holm, W.Greiner. Nucl. Phys., A195, 333 (1972).
- II. И.А.Шелаев, В.С.Алфеев и др. Сообщение ОИЯИ, Р9-6062, Дубна, 1971.
- 12. А.В.Игнатюк, Н.С.Работнов и др. ЖЭТФ, 61, 1284 /1971/.
- 13. J.E.Lynn. Preprint AERE-M2505, Harwell, 1971.
- 14.Ю.П.Гангрский, Б.Н.Марков и др. Письма ЖЭТФ, 4,429 /1966/.
- 15,Ю.П.Гангрский, Б.Н.Марков и др. Изв. АН СССР, сер. физ., XXXII, 1664 / 1968/.

Рукопись поступила в издательский отдел 23 марта 1973 года.

Рис. 1. Уровни в первой и второй потенциальных ямах и способы заселения их при кулоновском возбуждении.

Sec. 1 19

(8)

Рис. 2. Схемы экспериментальных установок при облучении ионами ${}^{12}C/a/$ и ионами ${}^{136}Xe/6/$: 1 - коллиматор, 2 - мишень ${}^{238}U$, 3 - диэлектрический детектор осколков, 4 - сборник ядер отдачи.

1

V() M36

Таблица

Сечения кулоновского возбуждения спонтанно делящегося изомера ²³⁸U

Бомбардирурл частица Способ во збуждения	цая I36 _{X054} 740 Мэв	⁸⁴ Kr ₃₆ 450 ¥38	⁴⁰ Аг ₁₈ 220 мэв	I2 _{С6} 60 Мэв
Во збуждение колебательных состояний в первой яме	10 ⁻³² -5.1C ⁻³¹ CM ²	5.10 ⁻³⁴ - 5.10 ⁻³² cx ²	5.10 ⁻³⁶ - 5.10 ⁻³⁴ cm ²	10 ⁻³⁹ c ²
Возбуждение колебательных состояний во второй яме	10 ⁻³² -10 ⁻³⁴ cm ²	5.10 ⁻³⁵ 5.10 ⁻³³ cm ²	3.10 ⁻³⁵ - 3.10 ⁻³³ cm ²	^{10⁻³⁵ - 10⁻³³c⊯²}
Дипольное возбуждение состояний квази- непрерывного спектра	6.10 ⁻³³ cm ²	4.10 ⁻³³ c⊯ ²	2.10 ⁻³³ c# ²	7•10 ⁻³⁴ c# ²
Эксперимент	<10 ⁻³¹ cm ²		an an tha an an air anns an an an airte	<10 ⁻³³ cm ²