<u>C343e1</u> 5/11/3 ОБЪЕДИНЕННЫЙ ИНСТИТУТ ядерных ИССЛЕДОВАНИЙ Дубна. 865/2-73 P7 - 6815 А.Г.Артюх, Я.Вильчински, В.В.Волков, Г.Ф. Приднев, В.Л. Михеев ПРЯМЫЕ РЕАКЦИИ ПРИ ВЗАИМОДЕЙСТВИИ Ne²² C Th²³²

P7 - 6815

А.Г.Артюх, Я.Вильчински, В.В.Волков, Г.Ф.Гриднев, В.Л.Михеев

ПРЯМЫЕ РЕАКЦИИ ПРИ ВЗАИМОДЕЙСТВИИ Ne²² C Th²³²

Направлено в ЯФ

Объединенный институт пдеринх всследоваещ БИБЛИЮТЕКА Артюх А.Г., Вильчински Я., Волков В.В., Гриднев Г.Ф., Р7 - 6815 Михеев В.Л.

Прямые ракции при взаимодействии ²²Ne с ²³²Th

²³² Th облучался ионами ²² Ne с энергией 174 Мэв. С помощью методики ΔE , E получены угловые распределения, энергетические спектры и сечения образования продуктов прямых реакций с $3 \le Z \le 12$.

Препринт Объединенного института ядерных исследований. Дубна, 1972

P7 - 6815

Artukh A.G., Wilczynski J., Volkov V.V., Gridnev G.F., Mikheev V.L.

Direct Reactions in $^{22}Ne-^{232}Th$ Interaction

 232 Th was bombarded with 22 Ne ions of 174 MeV energy. Angular distributions, energy spectra and cross sections of direct reaction products with $3 \le Z \le 12$ were obtained using the $\Delta E, E$ method.

Preprint. Joint Institute for Nuclear Research. Dubna, 1972

1. Введение

Сечение прямых реакций составляет значительную часть полного сечения ядерного взаимодействия ускоренных тяжелых ионов с тяжелыми ядрами /1/. Как показано в наших работах (2,3), реакции передачи нуклонов при взаимодействии тяжелых ионов с тяжелыми ядрами являются эффективным способом получения нейтроноизбыточных изотопов легких ядер. Знание характеристик прямых реакций существенно и при синтезе новых трансурановых элементов.

and the second second

and the second

Значительная часть исследований прямых реакций на тяжелых ядрах выполнена путем радиохимического выделения отдельных продуктов $^{/4-7/}$. Однако этот метод не позволяет получить полные сечения прямых реакций, при его использовании затруднительно измерение энергетических спектров. Предложенная нами^{78/} комбинация методов магнитного анализа и $\Delta E, E$ позволяет однозначно идентифицировать атомный номер Z и массовое число A продуктов реакций вплоть до аргона. Однако ее применение для сиятия угловых распределений требует затраты значительного времени работы ускорителя. Менее трудоемкими являются измерения с методикой $\Delta E, E .^{9/}$. Но в этом случае возникает сложность с разделением изотопов, в особенности при Z > 8.

Получение некоторых общих характеристик прямых реакций не требует разделения продуктов по массовому числу при надежном разделении по Z. Сюда относится измерение полных сечений прямых реакций и сечений образования отдельных элементов, а также изучение кулоновских эффектов, которые в основном определяются зарядами взаимодействующих ядер и сравнительно слабо варьируются при изменении массовых чисел. Некоторые из характеристик, как например, угловые распределения, различаются для соседних изотопов незначительно $\frac{4.5}{10.5}$. Основной же вклад в сечение, как показали наши эксперименты $\frac{10.5}{10.5}$ по изучению прямых реакций в системе $\frac{232}{10.5}$ Th + C разделением изотопов под углом 40 °, дают именно 2-3 соседних изотопа.

Это послужило основанием для исследования в настоящей работе прямых ядерных реакций в системе $^{232}Th + ^{22}Ne$ с помощью методики $\Delta E, E$ без разделения изотопов.

2. Методика эксперимента 🧹

Опыты проводились на 310-сантиметровом циклотроне тяжелых ионов ОИЯИ. Мишень из металлического 232 Th толщиной 2,5мг/см² облучалась ионами 22 Ne с энергией 174 Мэв. Продукты ядерных реакций регистрировались телескопом из тонкого / толщиной 27 мкм/ ΔE и толстого. E / ~ 0,5 мм/ кремниевых поверхностно-барьерных детекторов. Телескоп находился в реакционной камере на расстоянии 25 см от мишени и охватывал телесный угол ~ 3.10⁻⁴ стерадиана. Перемещение телескопа по углам в горизонтальной плоскости осуществлялось дистанционно. Точность установки угла составляла $\pm 0,1^{\circ}$. Размер пучка на мишени составлял бх6 мм², его угловая расходимость не превышала $\pm 0,5^{\circ}$. Входное отверстие телескопа имело диаметр 5 мм. В этих условиях угловое разрешение было не хуже $\pm 1,5^{\circ}$.

Импульсы с детекторов ΔE и E после усиления попадали в амплитудный анализатор, работавший в двумерном режиме $128(\Delta E) \times 32(E)$ канала. Продукты с определенным Z выделялись по соответствующим гиперболам в двумерных спектрах. Мониторирование пучка осуществлялось по упруго рассеянным ионам кремниевым детектором, расположенным под углом 30° к пучку.

3. Результаты и обсуждение 3.1. <u>Угловые</u> распределения

На рис. 1 представлены угловые распределения продуктов с $3 \le Z \le 12$ в системе центра масс. Энергия продукта при пересчете из лабораторной системы в систему центра масс принималась равной энергии в максимуме энергетического спектра. Считалось, что в конечном канале реакции имеются две частицы, массовое число легкого продукта принималось равным массовому числу изотопа, дававшего максимальный выход в опытах с разделением изотопов под углом $40^{0/10/}$. Отметим, что за счет значительной разницы в массах легкого и тяжелого продуктов максимальное различие

в углах для лабораторной системы и системы центра масс не превышает 7⁰. Абсолютные величины сечений определялись путем нормировки по упруго рассеянным ионам. Наши измерения под углами 20, 25, 30, 35^o показали, что здесь $d\sigma_{\rm ynp}' d\sigma_{\rm peg} - const(1\pm0,03)$. В соответствии с данными /11/ сечение упругого рассеяния под этими углами было принято равным резерфордовскому (const-1) и использовано для нормировки.

Выделение канала передач нейтронов и неупругого рассеяния неона мы проводили путем вычитания из энергетнческого спектра неона: пика упругого рассеяния, отнормированного по форме на аппаратурные пики при углах 10-15°, где упругое кулоновское рассеяние резко превосходит другие каналы реакций. При этом надежно удавалось выделить лишь часть спектра, отстоящую более чем на 7 Мэв от положения максимума пика упругого рассеяния. Именно эта часть спектра использовалась для вычисления сечений продуктов с Z=10, представленных на рис. 1. Надо отметить, что при такой обработке исключались эффекты кулоновского возбуждения, поскольку в соответствии с теорией 12^{I} кулоповским путем ионами $2^{22}Ne$ с энергией 174 Мэв в $2^{32}T\hbar$ можно возбудить лишь уровни с $E^* \leq 6$ Мэв.

Некоторое представление о доле продуктов с Z = 10, учитываемой при принятом нами способе обработки результатов, можно получить из данных с разделением изотопов при 0 = 400 / 10/ Полное сечение передач нейтронов здесь составляет 80 мбн/стерад, из них продукты с энергией меньше величины / E_{ynp} - 7 Мэв/ составляют 65%:

Особенностью угловых распределений, приведенных на рис. 1, является систематическое изменение их формы с увеличением числа переданных протонов ΛZ . Отметим, что общее число переданных нуклонов для изотопов, дающих наибольший вклад в сечение, как показали наши измерения при $\theta - 40^{0.10}$ близко к удвоенному числу переданных протонов.

Из рис. 1 видно, что прямые реакции с относительно небольшим числом переданных нуклонов имеют в угловом распределении максимум при угле, близком к углу резерфордовского рассеяния при упругом касательном столкновении, а дифференциальные сечения многонуклонных передач монотонно растут с уменьшением угла вылета. Этот результат согласуется с данными по изучению реакций передачи на средних ядрах ^{13,14}

Теоретическому анализу угловых распределение продуктов прямых реакций посвящен ряд работ $^{15-19}$. Применение результатов этих работ к нашим данным затруднено тем, что полученные нами угловые распределения включают в себя продукты, образовавшиеся в процессах с. разными энергиями возбуждения конечных ядер. Величина же энергии возбуждения, как показано в работе 14 , существенно влияет на вид угловых распределений.

В наших экспериментах получены систематические данные для значительно более широкого круга прямых реакций, чем в ранее выполненных работах, например /13/, с результатами которой удовлетворительно согласуются все теоретические подходы;

Мы сделали попытку проанализировать наши данные в рамках модели, развитой В.Струтинским^{/17,18/}, поскольку она наиболее удобна для анализа. Полученное В.Струтинским в работе^{/17/} аналитическое выражение для углового распределения опирается на предположения о квазиупругости и краевом характере реакций передач. Оно имеет вид:

人名马马斯特 化合金

 $\frac{d\sigma}{d\Omega} = A \cdot \frac{\theta}{\sin\theta} \left\{ \begin{array}{l} G(\theta, \theta_0, \Delta \ell) \\ E(\theta, \theta_0', \Delta \ell) \end{array} \right\},$

где A - величина, не зависящая от θ , а G и Е - аналитические функции, полученные в предположении соответственно гауссовой и экспоненциальной зависимости парциальной амплитулы реакции от орбитального момента ℓ . Параметрами в модели В.Струтинского являются $\Delta \ell$ - ширина пакета по орбитальному моменту и θ_0 угол отклонения для касательной траектории. В последующей работе /18/ В.Струтинский распространил свой подход на случай неупругих процессов. Поскольку математическая форма выражений для угловых распределений в работе /18/ оказалась формально совпада-ющей с выражениями в работе /17/, мы проводили анализ угловых распределений с параметрами θ_0 и $\Delta \ell$. Согласно /18/, при неупругих процессах θ_0 будет соответствовать углу рассеяния для некоторого среднего значения ℓ в выходном канале. Ширина же углового распределения будет определяться не только квантовомеханической угловой дисперсией, обусловленной волновой природой частиц, но и динамической угловой дисперсией, вызванной ядерным взаимодействием. В результате параметр $\Delta \ell$, формально получаемый из анализа углового распределения, может быть меньше реальной ширины выходного пакета по l.

При расчете теоретические кривые нормировались к экспериментальным сечениям при $\theta = \theta_0$. Величины θ_0 и $\Delta \ell$ для расчетных кривых на рис. 1 приведены в таблице 1.

С функцией Е было получено завышение эффекта на больших углах для всех кривых /см., например, на рис. 1 штрих-пунктирные кривые для магния, кислорода и бериллия/. Результаты расчета с функцией G представлены на рис. 1 пунктиром. Ряд особенностей угловых распределений удается удовлетворительно описать, по имеется большое различие с экспериментом на малых углах для кислорода-магния. В этой области для удовлетворительного описания экспериментальных данных требуется наложение по меньшей мере двух кривых, одна из которых соответствует экспоненциальной, а другая гауссовой зависимости вероятности реакции от l° . Это служит указанием на то, что продукты с $8 \leq Z \leq 12$ могут образовываться как в квазиупругом, так и пеупругом процессах, с каждым из которых, как отмечено в $\frac{18}{3}$, можно связать некие эффективные значения θ_0 и Δl .

3.2. Энергетические спектры

На рис. 2 и 3 представлены энергетические спектры продуктов прямых реакций с 4 < Z < 12. Спектры лития не приведены, поскольку Из-за малого выхода статистика недостаточна для построения спектров, хотя и позволяет оценить сечения. Из рис. 3 и 4 видно, что форма и положение максимума энергетических спектров зависят от числа переданных нуклопов и угла регистрации. Спектры имеют значительную ширину, достигающую на половине высоты 30-40Мэв. Из наших измерений при 0=40° с разделением изотопов 10/ следует, что уширение спектров за счет наложения эффектов от разных изотопов невелико. В ряде спектров наблюдаются пизкоэнергичные части в области энергий ниже выходного кулоповского барьера, рассчитанного для сферических ядер. Контрольные опыты показали, что возможными примесями углерода и кислорода в ториевой мишени весь эффект в области низких энергий объяснить нельзя. Учитывая неясность механизма образования низкоэнергичной части спектров, мы для получения угловых распределений и сечений использовали лишь колоколообразную часть спектров, показанную. пунктиром. Sec. 1 ×12

На рис. 4 показана разность кинетических энергий конечных продуктов реакций в максимумах энергетических распределений и их кулоновских барьеров в системе центра масс в зависимости от

угла вылета легкого продукта. Кинетические энергии конечных продуктов были получены суммированием исходной кинетической ²² Ne в системе центра масс с поправкой на поглощение энергии 4 в половине толщины мишени и величины энергетического баланса реакций О, рассчитанного по кинематике двухтельного процесса из данных по энергиям легких конечных продуктов. Кулоновские барьеры рассчитывались для сферических ядер с r 0 = 1,46 ф. Из рис. 4 видно, что максимальные кинетические энергии продуктов-/и, соответственно, минимальные возбуждения в системе ядер/ наблюдаются для углов вблизи резерфордовского при касательном столкновении. На углах, отличных от резерфордовского, даже малонуклонные передачи протекают как глубоко неупругие процессы с сильным возбуждением взаимодействующих ядер. Для всёх исследованных продуктов реакций при больших и малых углах регистрации характерно приближение кинетических энергий к величине, равной соответствующему кулоновскому барьеру.

3.3. Полные сечения прямых реакций

Сечения реакций, полученные интегрированием экспериментальных угловых распределений в диапазоне углов 10-80⁰ / для неона 30-80⁰ / представлены в таблице 1. Там же даны значения сечений в диапазоне O-80⁰, полученные путем экстраполяции угловых распределений в область малых углов. Сумма сечений образования продуктов прямых реакций с $3 \le Z \le 12$ в диапазоне углов $0 \le \theta < 80^{\circ}$ составляет 800 мбн. С учетом уменьшения сечения прямых реакций с уменьшением энергии ^{/20/} величина 800 мбн находится в удовлетворительном согласии со значением 983+120 мбн, полученным для сечения прямых реакций в системе ²³⁸U + ²⁰ Ne при, энергии ионов 208 Мэв из угловых корреляций осколков деления /21/. В опытах по угловым корреляциям осколков деления случаи, когда с ядроммишенью сливается более половины иона, трудно отличить от случаев с полным слиянием. Поэтому совпадение суммы сечений прямых реакций, полученной нами без учета прямых а -частии. протонов и нейтронов, с данными из угловых корреляций осколков деления представляется естественным. Учет вклада продуктов с Z<З в сечение прямых реакций требует специальных исследований, поскольку каждый из этих продуктов может образовываться в нескольких разных процессах.

Примечание

В настоящей работе кинематические расчеты проведены для двух частиц в выходном канале. Как видно из таблицы 2, сечения продуктов падают от Ne, к Li, поэтому трехтельные процессы с развалом неона, например, на N + Li, C + Beне могут дать определяющего вклада в измеряемые продукты. Существенный вклад могут дать лишь процессы с образованием а -частиц, протонов и нейтронов. Испускание их из тяжелого ядра влияет лишь на оценку его энергии возбуждения и практически не сказывается на кинематике легкого продукта. Испускание из легкого ядра ведет к некоторому размытию энергетических спектров и угловых распределений. Полученных нами данных недостаточно для анализа этого эффекта. Но расчеты по кинематике двух частици в этом случае позволяют более четко выявить некоторые особенности прямых реакций, в частности, изменение кинетической энергии регистрируемого продукта на разных углах /рис. 4/.

В заключение авторы выражают глубокую признательность академику Г.Н.Флерову за стимулирующий интерес к работе и профессору В.М.Струтинскому за ценные обсуждения.

Литература

- I. T.Sikkeland. Arkiv for Fysik, 36, No. 62, 1967.
- 2. A.G.Artukh, G.F.Gridnev, V.L.Mikheev, V.V.Volkov. Nuc.Phys., A137, 348, 1969.
- 3. A.G.Artukh, V.V.Avdeichikov, G.F.Gridnev, V.L.Mikheev, V.V.Volkov, J.Wilczynski. Nucl.Phys., A176, 284, 1971.
- 4. Г.Кумпф, Е.Д.Донец. ЖЭТФ, 44, 798, 1963.
- 5. V.V.Volkov. JINR, E7-3155, Dubna, 1967.
- 6. E.Lozynski. Nucl. Phys., 64, 321, 1965.
- 7. Ю.Ц.Оганесян, Ю.Э.Пенионжкевич, А.О.Шамсутдинов. ЯФ, 14, 54, 1971.
- A.G.Artukh, V.V.Avdeichikov, J.Ero, G.F.Gridnev, V.L.Mikheev, V.V.Volkov, Nucl. Instr. and Meth., 83, 72, 1970.
- 9. M.W.Sachs, C.Chasman, D.A.Bromley. Nucl. Instr and Meth., 41, 213, 1966.
- 10. A.G.Artukh, G.F.Gridnev, V.L.Mikheev, V.V.Volkov, J.Wilczynski. JINR, E7 -6764, Dubna; 1972.
- II. С.А.Карамян, Ю.Ц.Оганесян, Ю.Э.Пенионжкевич, Б.И.Пустыльник. ОИЯИ, Р7-5884, Дубна, 1971.
- 12. K.Alder, A.Bohr, T.Huus, B.Mottelson, A.Winter. Rev.Mod.Phys., 28, 432, 1956.
- 13. R.Kaufman, R.Wolfgang. Phys.Rev., 121, 192, 1961.

- 14. J.Galin, D.Guerreau, M.Lefort, J.Peter, X.Tarrago. Nucl.Phys., A159, 461, 1970.
- 15. T.Kammuri. Prog. Theor. Phys., 28, 934, 1962.
- 16. B.N.Kalinkin, J.Grabowski. Proc. Third Conf. on Reactions between Complex Nuclei, Asilomar, 1963, Univ. Calif. Press, 1963, p.129.
- 17. В.М.Спрупинский. ЖЭТФ, 46, 2078, 1964.
- 18. V.M.Strutinsky. Nucl.Phys., to be published.

Start Start

- 19. R. da Silveira. Communications European Conf. on Nucl. Physics, Aix-en-Provence, (France), 1972.
- 20. С.А.Карамян, Ю.Ц.Оганесян, Ю.Э.Пенионжкевич, Б.И.Пустыльник. ЯФ, 9, 715, 1969.

and the set of the set

21. T.Sikkeland, V.E.Viola. Proc. Third Conf. on Reactions between Complex Nuclei, Asilomar, 1963, Univ. Calif. Press, 1963, p. 232.

Рукопись поступила в издательский отдел 28 ноября 1972 года.

Рис. 1. Угловые распределения продуктов прямых реакций при облучении ²³² Th ионами ²² Ne с энергией 174 Мэв. Сплошные кривые проведены по экспериментальным точкам.Штрих-пунктир и пунктир - результаты расчета по теории В.Струтинского /^{17,18}/ В предположении соответственно экспоненциальной и гауссовой зависимости парциальной амплитуды реакции от орбитального момента. Параметры расчетных кривых приведены в таблице 1.

ा

Рис. 3. Энергетические спектры *F*, *Ne*, *Na*, *Mg*, полученные при облучении ^{232}Th ионами ^{22}Ne с энергией 174 Мэв.

I3

Рис. 4. Разность кинетических энергий конечных продуктов реакций в максимумах энергетических распределений и их кулоновских барьеров в зависимости от угла вылета легкого продукта.

Charles and the second second

4

 $|\mathcal{L}| \geq |\mathcal{L}|$

Таблица I

	Элемент		Mg		Na	Na Ne			0		С	В	Be		Li	
	Вариант		E	G	G	G	G	E	G	G	G	G	E	G	G	
	Ө., град	•	IO	43	46	47	45	42	42	31	3I	31	31	31	3I	
	sl, h		5,7	5,3	6,2	7,3	6,4	4,I	6,I	3,7	3,7	3,7	2,8	3,3	2,8	
5							Ta	аблиц	a II							
	Элемент	hi	Ê	Se	В	С	N	C)	F	N	2	Va	Mg	Ċyı	има
•	бизмер. мон	4,6	6	5,9	. II	42	40		30	120	26	0	26	9	~6	50
	бизме р ⁺															
)экстрап. мон	5,2	7	; ,6	• I4····	48	45	. I	47	I45	32	0	44	21	~ 81	00