5-865 объединенный институт ЯДЕРНЫХ ИССЛЕДОВАНИЙ Дубна. 216. -----Site and a state

P7 - 6415

26/4-72

Б.Бочев, С.А.Карамян, Т.Куцарова, Я.Ухрин, Е.Наджаков, Ц.Венкова, Р.Калпакчиева

164 ВРЕМЕНА ЖИЗНИ РОТАЦИОННЫХ УРОВНЕЙ УЬ, ИЗМЕРЕННЫЕ МЕТОДОМ ЭФФЕКТА ДОППЛЕРА НА ЯДРАХ ОТДАЧИ

P7 - 6415

Б.Бочев, С.А.Карамян, Т.Куцарова, Я.Ухрин, Е.Наджаков, Ц.Венкова, Р.Калпакчиева

164 ВРЕМЕНА ЖИЗНИ РОТАЦИОННЫХ УРОВНЕЙ УЬ, ИЗМЕРЕННЫЕ МЕТОДОМ ЭФФЕКТА ДОППЛЕРА НА ЯДРАХ ОТДАЧИ

Направлено в ЯФ

Изучение электромагнитных свойств короткоживущих ядерных состояний дает ценную информацию о структуре ядра. В частности, экспериментальное определение времен жизни уровней позволяет получить абсолютные матричные элементы переходов и провести проверку существутющих модельных волновых функций.

В работе $^{/1/}$ нами была описана аппаратура для измерений времен жизни ядерных состояний, в основе которой лежит использование эффекта допплеровского смещения гамма-излучения возбужденных ядер, образованных в реакции и распадающихся на лету $^{/2/}$. Данный метод применим в диапазоне ($10^{-9} - 10^{-12}$) сек и особенно эффективен при использовании реакций с тяжелыми ионами и Ge(Li) детекторов для регистрации гамма-лучей. При помощи этой методики в настоящей работе были измерены времена жизни уровней ротационной полосы 164 Yb , полученного в реакции $^{128}Te(^{40}Ar, 4n)$.

2. Эксперимент

Опыты проводились на выведенном пучке тяжелых ионов циклотрона У-300 ЛЯР. Использовалась реакция ¹²⁸Te(⁴⁰ Ar, 4n)¹⁶⁴Yb . Пучок ионов аргона коллимировался диафрагмами из висмута до размеров

 $\phi = 8$ мм. Мишень толщиной 800 мкг/см² изготовливалась испарением металлического ¹²⁸ Te в вакууме на подложку из Al (0,7 мкм). Она укреплялась на решетке из висмута. При использовании тонкой мишени ядра отдачи, образованные в реакции (⁴⁰ Ar, 4n), движутся в узком конусе по направлению пучка ионов. На разных расстояниях от мишени их можно останавливать металлическим стоппером и изучать изменение интенсивностей гамма-лучей от заторможенных ядер и от ядер, распавшихся на лету, которые дают гамма-кванты, смещенные по энергии в результате эффекта Допплера. Стоппер в наших опытах был покрыт слоем висмута и перемещался по отношению к мишени при помощи ми-крометра. Расстояние между мишенью и стоппером можно было определять с точностью ± 5 мкм. Гамма-излучение регистрировалось под углом 0⁰ к направлению пучка Ge(Li) детектором с активным объемом 0,9 см³ и разрешением 1,2 кэв для $E_{y} = 122$ кэв (5 Co)и 1,7 кэв для $E_{y} = 662$ кэв (137 Cs).

При данной геометрии энергетическое смещение для гамма-лучей с энергией E_0 дается выражением: $\Delta E = E_0$ (v/c), где v - компонента скорости ядер отдачи по направлению пучка. При хорошем разрешении использованного детектора энергетическое смещение, а следовательно, и v можно было определять непосредственно из спектра гаммалучей. Для средней скорости ядер отдачи в нашем опыте было получено значение $v = (0,0205 \pm 0,0004)$ с.

3. Обработка экспериментальных данных

Интенсивности гамма-лучей смещенного пика J_s и несмещенного пика J_u для распада изолированного возбужденного уровня даются выражениями:

$$J_{s} = n \left(1 - e^{-t/\tau} \right), \qquad (1)$$
$$J_{u} = n e^{-t/\tau},$$

где n - полное число гамма-квантов, образованных в реакции, t = D / v время пролета расстояния D от мишени до стоппера составным ядром со скоростью v, t - среднее время жизни возбужденного уровня.

Зависимость доли интенсивности несмещенного пика $[R(D)=J_{\mu}/(J_{\mu}+J_{\mu})]$ от времени после реакции представляет кривую распада возбужденного уровня $R(D) = e^{-D/\nu t}$. Последнее соотношение имеет место в том случае, когда угловое распределение гамма-лучей не зависит от времени.

При последовательном распаде нескольких возбужденных уровней извлечение значений их времен жизни из данных об отношениях R (D) несколько усложено. В реакциях составного ядра с использованием тяжелых частиц, таких как $4^{60} Ar$, $3^{2} S$ и $3^{1} P$, заселение коллективных полос происходит почти полностью при высоких значениях спина /3/. Поэтому нужно рассмотреть последовательные переходы между уровнями і (среднее время жизни г) основной ротационной полосы. Если считать, что каждый последующий ротационный уровень питается только распадом предыдущего, а не прямыми переходами от более высоких уровней. то число ядер отдачи $N_i(t)$, находящихся на уровне i в моменте времени t после окончания реакции, можно найти по правилам цепочки радкоактивных распадов. Будем аппроксимировать все переходы. имеющие место в ядре после испарения последнего нейтрона и приволяшие к заселению высшего наблюдаемого уровня 1 ротационной полосы, распадом одного уровня 0 со временем г. Тогда имеем цепочку 0 → 1→ $\rightarrow 2 \rightarrow \dots$ с начальными условиями $N_0(0) = 1$, $N_i(0) = 0$, i = 1, 2...

Можно считать

$$J_{u} + J_{s} = n \sum_{i=0}^{\infty} N_{i} (0) = n N_{0} (0) = n$$

$$(J_{u})_{j} = n \sum_{i=0}^{j} N_{i} (t), \quad t = D / v_{i},$$

тогда

и

$$R_{j} = [J_{u} / (J_{u} + J_{s})]_{j} = \sum_{i=0}^{j} N_{i} (t).$$

5

(2)

Используя формулы для N_i (t) нашей цепочки, получаем:

$$R_{j} = \sum_{i=0}^{j} \mu_{ji} e^{-t/\tau_{i}}, \qquad (3)$$

$$\mu_{ji} = \prod_{\substack{\ell=0\\ (l\neq i)}}^{j} \tau_{i} / (\tau_{i} - \tau_{\ell}).$$

$$(4)$$

Если сделать приближение $\tau_j \gg \tau_i$, j > i, что обычно оправдано за исключением, может быть, высших переходов j = 1, (2), и для $t \ge \tau_j$ пренебречь в (3) всеми экспонентами кроме i = j, то

$$R_{j} \approx \{ \prod_{\ell=0}^{j-1} \tau_{j} / (\tau_{j} - \tau_{\ell}) \} e^{-t/\tau_{j}} \approx e^{-(t-\sum_{m=0}^{j-1} \tau_{j}) / \tau_{j}}$$
(5)

Получается одна экспонента, но со смещенным в точку $\sum_{m=0}^{j-1} r$ нулем.

Если вместо этого использовать экспоненту с несмещенным нулем:

$$R_{j} \approx e^{-t/\nu_{j}} \tag{6}$$

и определять ν_{i} , приравнивая (5) и (6) для $t = \nu_{i}$, то получим:

$$\nu_{j} = \sum_{m=0}^{j} r_{m} .$$
⁽⁷⁾

т.е. в этом приближении время для перехода $j \rightarrow j + l$ от конца реакции складывается из времен жизни всех предыдущих переходов.

Изменение относительной интенсивности смещенного и несмещенного пиков для ряда переходов между ротационными уровнями ¹⁶⁴ Yb проиллюстрировано на рис. 1. При обработке спектров определялись плошади смещенного и несмещенного пиков и находились отношения $R = J_u / (J_u + J_s)$. Прежде чем обрабатывать полученные зависимости R(D) по формулам, описанным выше, необходимо было внести поправки в R(D) на ряд систематических погрешностей, имеющих место в эксперименте ^{/2/}. Обозначим через $R_0 = e^{-t/\tau}$ исправленное значение, а через $R = J_u / (J_u + J_s)$ неисправленное значение данного отношения, которые связаны так:

Рис. 1. Спектры у -лучей для переходов между ротационными уровнями в ядре ¹⁶⁴ Yb при разных расстояниях между мишенью и стоппером.

$$R = (1+\delta) R_0 = (1+\delta) e^{-t/r}, \qquad (8)$$

и будем оценивать влияние разных поправок на R фактором ($l + \delta$).

3.1. Распределение скоростей υ ядер отдачи (компонент по направлению пучка) в зависимости от распределения скоростей ионного пучка, конечной толщины мишени и разных углов отдачи. Это даст для скоростей υ + Δυ :

$$\delta \approx \left[\left(\frac{1}{2} \right) \left(\frac{t}{f} \right)^2 - \frac{t}{f} \right] \left(\frac{\Delta v}{v} \right)^2, \tag{9}$$

т.е. при $t = \tau$, $\delta = -0.01$ при разбросе в скорости $\Delta v = \pm 0.14 v$. У нас обычно $|\delta| < 1\%$, и мы можем этой поправкой пренебречь.

3.2. Распределение расстояний D из-за неточной планарности и параллельности мишени и стоппера (дающее поправку при конечных поперечных размерах пучка и разных углах отдачи). Это дает (для равномерного разброса D в пределах $\pm \Delta D$):

$$l + \delta = (v_{\tau} / \Lambda D) sh (\Delta D / v_{\tau}), \qquad (10)$$

1.01

что означает для t = t, $v_T = D$, $\delta = +0,01$ при $\Delta D = +0,25$ D. Этой поправкой тоже можно пренебречь, так как она весьма мала при допустимых в эксперименте величинах ΔD .

9.3. Конечная глубина проникновения ядер отдачи в стоппер, равная пробегу Δ x . Обозначим Δι = Δx / ν , тогда:

$$l + \delta \approx \left[\left[e^{(3/2)(\Delta t/\tau)} + e^{-t/\tau} - e^{-(t-\Delta t)/\tau} \right]^{-1}, \qquad (11)$$

что дает для $t = \tau$, $\delta = -0,01$ при $\Delta t = 0,009t$ и $\delta = -0,1$ при $t\Delta t = 0,09t$. Это означает, что поправка важна для малых расстояний. Для расстояний $D \leq 11 \Delta x$ (у нас $\Delta x \approx 5$ мкм) эту поправку надо учитывать ($\delta < -0,1$).

3.4. Гамма-излучение из ядер отдачи, образованных в реакциях составного ядра с тяжелыми ионами, неизотропно и имеет максимум при угле 0⁰ по отношению к направлению пучка^{/4/}. Анизотропия углового распределения ослабляется во времени под влиянием больших сверхтонких полей, действующих на ядра, которые получают отдачу в вакуум^{/5/}. Зависимость углового распределения ^γ -лучей от времени для нашей геометрии можно выразить в виде:

$$W(t) = 1 + \sum_{k=2,4} A_k Q_k G_k(t)$$
; $G_k(t) = e^{-t/\tau_k}$

где *с* – время после вылета ядра из мишени, *г*_k – мера сверхтонкого ослабления, *А*_k – параметры углового распределения, *Q*_k – коэффициенты конечного телесного угла детектора. Интенсивности смещенного и несмещенного пиков изменяются соответственно:

$$(J_{s})_{0} = n \{ 1 - e^{-t/\tau} + \sum_{k=2,4} \frac{\tau_{k}}{(\tau_{k}+\tau)} [1 - e^{-t(\tau+\tau_{k})/\tau\tau_{k}}] A_{k} Q_{k} \}$$
(12)

$$(J_{u})_{0} = n \{ e^{-t/\tau} + \sum_{k=2,4} e^{-t(\tau+\tau)/tt} A_{k} Q_{k} \}.$$
(13)

Оценка величины поправки, связанной с изменением углового распределения, проводилась с использованием данных ^{/5/} о параметре G_2 . Она максимальна для перехода $4^+ \rightarrow 2^+$ и приводит к увеличению R на ~3% при $t \approx \tau$, ($\delta = -0,029$).

3.5. Релятивистское изменение телесного угла, под которым виден детектор из подвижных по отношению к покоящимся ядрам отдачи:

$$l + \delta = [l + (l - R_0)_X]^{-1},$$
(14)

где

$$\chi = \{ [1 + v/c] / [1 - (v/c) \cos \theta_{c}] \} - 1 \approx 2v/c$$
(15)

(θ_c - половина угла раствора, под которым виден детектор). Это означает для t = r, $\delta \approx -1.3 v/c$, или для $v/c \approx 0.02$, $\delta \approx -0.025$.

3.6. Изменение эффективности детектора для смещенного ϵ_s по отношению к несмещенному пику ϵ_u ,

$$l + \delta = [l - (l - R_o) \Delta \epsilon]^{-1}, \quad \Delta \epsilon = (\epsilon_u - \epsilon_s) / \epsilon_u, \quad (16)$$

rue $\Delta \epsilon = 0.025, \text{ orkyga gas } t = t, \quad \delta = 0.015.$

Это показывает, что обе поправки 5 и 6 компенсируются с точностью до 1% и поэтому ими тоже можно было пренебречь.

3.7. Изменение телесного угла, под которым виден детектор из более отдаленных ядер, излучающих на лету, по отношению к более близким ядрам в стоппере:

$$1 + \delta = [1 - (1 - R_0)\kappa]^{-1},$$
(17)

где

$$\kappa = (2/t_0)[[t/(1-e^{-t/\tau})-\tau]],$$
(13)

1101

 $t_0 = D_0 / v$, D_0 — расстояние от мишени до детектора ($D_0 - D$ — от стоппера до детектора). Для t = r, $\kappa \approx 1,2 t / t_0$ или $\delta = 0,75 t / t_0 = 0,75 D / D_0$. У нас $D_0 = 45$ мм. Это означает, что для перехода $2^+ \rightarrow 0^+$, для которого $D \approx 4-8$ мм, эту поправку нужно учитывать ($\delta \approx +0,1$), тогда как для следующих (D < 0,5 мм) ею можно пренеб-речь ($0 < \delta < 0,01$).

Результаты подсчета поправок для всех переходов представлены для иллюстрации в таблице 1.

4. Экспериментальные результаты

Средние времена жизни были получены решением системы уравнений относительно τ_i на ЭВМ с использованием регуляризованных итерационных процессов типа Ньютона ^{/6a/}. Была использована стандартная программа *AUTORE* ^{/66/}. На рис. 2,3 показаны кривые распада для переходов между ротационными уровнями ¹⁶⁴ Уb , полученные из значений τ_i . Экспериментальные точки приведены с ошибками, соответствующими статистическим ошибкам в определении отношений Rиз площадей пиков.

Переход	t (cer. 10 ⁻¹²)	. 8.	δ_{z}	63	δ.	5	5.	5.	d
8-+6	7	-0,2	+0,2	-10,0	-0,4	-2,4	+3,0	+0,0	-9,
6 +4	7	-0,2	+0,0	-5,0	-0,3	-I,4	+2,0	+0,0	-4,
4 + 2	4 0	-0,2	+0,0	-0,0	-2,9	-I,7	+2,0	+0,0	-2
2-+0	780	-0,2	+0,0	-0,0	-0,3	-I,8	+2,0	+6,3	+6
	Табляца 2 веденные В (Е2; 2 Эмерічия	2. Времева ж вероятности → 0)	вэна уровней нормализован	ротационной кы к экспери	164 Полосы Чевталь вому	Уь х/При значению В(Е2•Т	- I_2) e'		
Переход	Таблица 2 реденные В (Е2; 2 Энергия (кав)	2. Времена ж вероятности → 0) Т _{I/2} (IC	вэни уровней нормализован Ј ⁻¹² сек)	ротационной ны к эксперия «Д	іолосы Цолосы Цевталь Кому	Уь х/При значению В(Е2;І- ЭКО	- I-2) e'	.10 ⁻⁴⁸ ci	⁴ .≠)
Переход	Таблица 2 веденные В (Е2; 2 Энергия (кэв)	2. Времена ж вероятности → 0) T _{I/2} (IC	вэни уровней нормализован J ^{-I2} cek)	ротацяокной ны к эксперия Ст	іслосы Цолосы Цевтальному	Уь х/При значению В(Е2;І- эко	- ▶ I-2) e'	2.10 ⁻⁴⁸ ci por	⁴ • •)
Переход 2 -> 0	Таблица 2 веденные <i>В (Е2; 2</i> Энергия (кав) 123,5 202 8	2. Времева ж. вероятности → ⁰) T _{I/2} (IC 882±86	вэнх уровней нормализован J ⁻¹² cer) B	ротационной кы к эксперия С _Т І,44	164 Полосы Чевтальному	Уь х/При значению В(Е2;І- экс 0,9І	- ► I-2) e'	2.10-48 _{c1} por	⁴ .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Переход 2 + 0 4 + 2	Таблица 2 эеденные <i>В (Е2; 2</i> Энергия (кэв) 123,5 262,8	2. Времена ж вероятности → 0) T _{I/2} (II 882±86 29,9±3	изни уровней нормализован у ^{- I2} cek) 8 3,0	ротационной кы к эксперия « _T I,44 O,III	164 Полосы ментальному	УБ Х/При эначению В(Е2;І- экс 0,9І 1,35	- >I-2) e' >I. ±0,09 ±0,13	2.10-48 _{ci} por (0,; 1,;	⁴ .•) 91) 30
Переход 2 → 0 4 → 2 6 → 4	Таблица 2 эаленные <i>В (Е2; 2</i> Энергия (кэв) 123,5 262,8 375,0	2. Времена ж вероятности → 0) T _{I/2} (IC 882±86 29,9±3 5,2±0	вэнк уровней нормализован J ^{-I2} cek) 8 3,0),7	ротационной ым к эксперия Ст I,44 0,111 0,039	іслосы Цевталь вому	Уь х/При значению B(E2;I- экс 0,9I I,35 I,40	- - I-2) e' ⊃II. - 0,09 - 0,13 - 0,20	(0,1 (0,1 (0,1) (0,1)	91) 30 43

Таблица 1. Результаты подсчета поправок к экспериментальным эначе-ниям R для наблюдаемых переходов. /- время от конца реакция. Значеняя поправок даны в процентах.

....

.

Рис. 2. Расчетная кривая распада для перехода $2^+ \rightarrow 0^+$, полученная на ЭВМ. Точки – экспериментальные результаты отношения R_{r} .

Рис. 3. Расчетные кривые распада для переходов $4^+ \rightarrow 2^+$, $6^+ \rightarrow 4^+$ и $8^+ \rightarrow 6^+$, полученные на ЭВМ. Точки – экспериментальные результаты отношения R_0 .

В таблице 2 суммированы данные об энергиях изучаемых переходов ¹⁶⁴ У b, периодах полураспада T_{y_2} , полных коэффициентах конверсии a_T и приведенных вероятностях переходов $B(E_2)$. Ошибки в определении T_{y_2} включают в основном статистические погрешности в определении площадей пиков и ошибку для средней скорости v. Для первого наблюдаемого перехода $8^+ \rightarrow 6^+$ в ошибку входит также неопределенность обработки, т.к. его период определяется по отношению к суммарному времени распада всех ненаблюдаемых переходов.

Экспериментальные значения $B(E_2)$ сравниваются в таблице 2 с расчетными данными для жесткого ротатора. В пределах точности эксперимента наблюдается неплохое согласие между ними, как можно ожидать для ротационного ядра ¹⁶⁴ Yb

По известным формулам ⁷⁷ из полученного экспериментального значения $B(E_2, 2 \rightarrow 0)$ были далее определены внутренний квадрупольный момент Q_0 и параметр квадрупольной деформации β^{164} у $b_{,}$ которые равны соответственно $(6,7 \pm 0,4) \cdot 10^{-24}$ см² и $0,28 \pm 0,01$. Значения квадрупольного момента, определенные из экспериментальных эначений $B(E_2)$, для уровней 4^+ , 6^+ и 8^+ в пределах экспериментальных ошибок совпадают со значением Q_0 , определенным из $B(E_2; 2 \rightarrow 0)$.

Авторы выражают благодарность академику Г.Н.Флерову за постоянный интерес к работе, Ю.Ц. Оганесяну за полезные обсуждения, Л.Александрову за составление программы и многочисленные консультации при обработке данных, коллективу эксплуатации циклотрона У-300 за обеспечение четкой работы ускорителя.

<u>Литература</u>

- 1. Б. Бочев, С.А. Карамян, Т. Куцарова, Е. Наджаков, В.Г. Субботин, Я. Ухрин, В.А. Чугреев. Препринт ОИЯИ, Р6-6229, Дубна, 1972.
- 2. K.W. Jones, A.Z.Schwarzschild, E.K.Warburton, D.B.Fossan. Phys.Rev., 178, 1773 (1969).
- 3. J.O.Newton, F.S.Stephens, R.M.Diamond, W.H.Kelly, D.Ward. Nucl.Phys., A141, 631 (1970).
- 4. J.O.Newton, F.S.Stephens, R.M.Diamond, R.Kotajima, E.Matthias. Nucl. Phys., A95, 357 (1967).
- R.Nordhagen, G.Goldring, R.M.Diamond, K.Nakai, F.S.Stephens. Nucl. Phys., A142, 577 (1970).
- 6. а) Л. Александров. Журнал выч.матем. и матем. физ. 11, № 1,(1971).
 - б) Л. Александров. Сообщение ОИЯИ Р5-5515, Дубна, (1971).
- 7. Сборник "Гамма-лучи". Изд. АН СССР, гл. 1, (1961).

Рукопись поступила в издательский отдел 24 апреля 1972 грда.