AP, 1972, T. 16, Bun. 2, e. 249-251. 0-361 объединенный институт **ЯДЕРНЫХ** ИССЛЕДОВАНИЙ Дубна. 1138

P7 -6300

Ю.Ц. Оганесян, О.А. Орлова, Ю.Э. Пенионжкевич, К.А. Гаврилов, Ким Де Ен

ОБРАЗОВАНИЕ ИЗОТОПОВ ЗОЛОТА ²³⁸U ПРИ БОМБАРДИРОВКЕ ИОНАМИ ¹³⁶ Хе

1972

で調査を設めた

4)) (13) (4) (4) (4)

P7 -6300

Ю.Ц. Оганесян, О.А. Орлова, Пенионжкевич, К.А. Гаврилов, Ким Де Ен

ОБРАЗОВАНИЕ ИЗОТОПОВ ЗОЛОТА ПРИ БОМБАРДИРОВКЕ ²³⁸ U ИОНАМИ ¹³⁶ Xe

Направлено в ЯФ

*

²³⁸U Из анализа экспериментальных данных по делению ионами 12 0T С до ⁴⁰ Ar следует, что с ростом массы составного ядра существенно возрастает массовая и зарядовая дисперсия осколков /1,2/ Оценки показывают, что при облучении ²³⁸ U ионами Xe можно надеяться на образование осколков в области Z = 114 и N = 184 $^{/3/}$ для которой теоретически предсказывается существенное повышение стабильности по отношению ко всем типам радиоактивного распада 4,5/ Расчет этот базируется, однако, на ряде предположений относительно сечения образования составного ядра ³⁷⁴ 146 , его массы, необходимой для вычисления энергии возбуждения, механизма его деления, и нуждается в экспериментальной проверке. После получения пучка ускоренных Хе на тандеме из двух циклотронов ЛЯР ОИЯИ /6/ стала возионов можной постановка опыта по измерению выхода изотопов золота при 238 U ¹³⁶Xe. облучении ионами

Выбор золота был обусловлен следующими обстоятельствами. Если в реакции слияния образуется составное ядро ³⁷⁴ 146, то в результате симметричного деления, которое в данном случае является наиболее

вероятным, должны получаться осколки с Z ≈ 73 в широком диапазоне масс. Кроме этого, золото может быть выделено химически с достаточно высокой степенью очистки от большого количества побочных продуктов, а его изотопы имеют удобные для регистрации радиоактивные свойства.

Условия опыта

١

Мишень из металлического урана облучалась в течение 50 часов пучком ионов $^{136} Xe^{+30}$ с энергией около 850 Мэв. Полный поток ионов был равен 5.10¹⁵ частиц.

После облучения урановая мишень подвергалась химической обработке с целью выделения золота. Для этого она растворялась в концентрированной *HNO*₃ с добавлением в качестве носителя 150 мкг золота. После выпаривания раствора осадок вновь растворялся в *6 HNO*₃ и запускался в экстракционную колонку, наполненную порошкообразным тефлоном с адсорбированным на нем 100-процентным раствором трибутилфосфата. При этом золото полностью удерживалось на колонке. После промывки колонки *3 NHNO*₃ производилась реэкстракция золота *14 MHNO*₃. Дополнительная очистка его фракции велась на стандартной колонке со смолой Дауэкс-50х8. Сорбция золота осуществлялась из *12 MHCl*, десорбция – 0,5 мл дистиллированной воды. Полный химический выход золота после этой процедуры составлял не менее 50%.

В последующем измерялся спектр гамма-излучения полученного образца с помощью *Ge(Li)* -детектора и 4096-канального амплитудного анализатора. Для энергии 662 кэв полная эффективность гамма-спектрометра составляла 1,7%, энергетическое разрешение - 2,7 кэв. По

4

ł

характерным линиям у -лучей, их периоду полураспада и соотношению интенсивностей были идентифицированы изотопы ¹⁹⁴Au, ¹⁹⁶Au, ¹⁹⁶^mAu, ¹⁹⁹Au, ¹⁹⁹Au. Ввиду того, что ¹⁹⁸Au и ¹⁹⁹Au являются β -излучателями, образец измерялся также на бета-счетчике (собственный фон счетчика 0,2 имп/мин, эффективность 30%). По периоду полураспада и по граничным энергиям β - частиц были идентифицированы изотопы ¹⁹⁸Au и ¹⁹⁹Au. Результаты измерений представлены в таблице.

Табли	ца
-------	----

Ядро	Т _{1/2} (часы)	Сечение образования (мбарн)	
		Данные по спектру _у -лучей	Данные по измерению β -активности
¹⁹⁴ Au ¹⁹⁶ Au ^{196 M} Au ^{198 Au} ¹⁹⁸ Au	39,5 148,3 9,7 64,7 75,6	0,19 0,12 0.15 0,29 0,32	- - - 0,25 0,30
			1

Ошибка в определении абсолютного значения сечений образования составляет 30-40%.

Из таблицы следует, что сечения образования всех изотопов золота составляют около 2.10^{-28} см². Величина сечения для ¹⁹⁴ и может быть несколько завышенной, так как это ядро имеет кумулятивный выход (вклад от ¹⁹⁴ Hg, ¹⁹⁴ Tl, ¹⁹⁴ Pb), в то время как все другие изотопы являются экранированными.

136 Хе. Сплош-Изотопное распределение золота в реакции U + Xe. Сплоц ная кривая, взятая из работы /7/, была рассчитана в предположении о делении составного ядра 378 146 с энергией возбуждения 50 Мэв и получена экстраполяцией данных по массовым и зарядовым распреде-лениям осколков деления /1,2/

По горизонтальной оси отложена масса конечного осколка.

Представляет интерес сравнение полученных результатов с расчетными значениями, взятыми из работы ^{77/}. Расчет был проведен в предположении, что сечение образования составного ядра ³⁷⁸ 146 равно 10^{-26} см², его энергия возбуждения составляет 50 Мэв, а характер массового распределения получен экстраполяцией экспериментальных данных по делению урана ионами ¹² C , ²² Ne , ⁴⁰ Ar . Расчетная зависимость и экспериментальные значения, полученные в настоящей работе, представлены на рисунке, из которого следует согласие между экспериментальными и расчетными значениями.

Поскольку экспериментальные результаты подтверждают расчетные данные, следует предполагать, что механиэм деления урана ионами ксенона может быть эффективно использован для синтеза изотопов более тяжелых элементов вплоть до Z = 110-114, если теоретические предсказания относительно стабильности этих ядер являются справедливыми.

В заключение авторы благодарят Г.Н. Флерова за постоянное внимание и ценные замечания в процессе выполнения данной работы, С.А. Карамяна и Г.М. Тер-Акопьяна за помощь в проведении опыта и полезное обсуждение результатов, И.А. Шелаева, В.С. Алфеева и Б.А. Загера – за обеспечение повышенной интенсивности пучка ионов ¹³⁶ Xe⁺³⁰.

Литература

- 1. С.А. Карамян, Ф. Нормуратов, Ю.Ц. Оганесян, Ю.Э. Пенионжкевич, Б.И. Пустыльник, Г.Н. Флеров. ЯФ, <u>8</u>, 690 (1968).
- 2. С.А. Карамян, Ю.Ш. Оганесян, Ю.Э. Пенионжкевич, Б.Н. Пустыльник. ЯФ, <u>9</u>, 715 (1969).
- 3. С.А. Карамян, Ю.Ш. Оганесян. Сообщение ОИЯИ, Р7-4339, Дубна (1969).
- 4. W.O. Myers, W.Y.Swiatecki. Nucl. Phys., 81, (1966).

- 5. В.М. Струтинский, Ю.А. Музычка, Труды Международной конференции по физике тяжелых ионов, вып. 2, Дубна (1966).
- 6. И.А. Шелаев, В.С. Алфеев, Б.А. Загер и др. Сообщение ОИЯИ, Р9-6062, Дубна (1971).

Ş

 Yu.Oganessian, Yu.Penionshkevitch. Le Gournal de Physique, <u>31</u>, 259 (1970).

۰**ه**.

Рукопись поступила в издательский отдел 25 февраля 1972 года.