591<u>2343c</u> 0-361

Собъщения опустивного общетитата Нарвых неслодований

2988/2-21

30/011-71

- 5912

P7

Ю.Ц. Оганесян, Ю.Э. Пенионжкевич, А.О.Шамсутдинов, Нгуен Так Ань

ИЗУЧЕНИЕ ОБРАЗОВАНИЯ И РАСПАДА Составных ядер в реакциях с высокоэнергичными тяжелыми ионами

P7 - 5912

Ю.Ц. Оганесян, Ю.Э. Пенионжкевич, А.О.Шамсутдинов, Нгуен Так Ань

ИЗУЧЕНИЕ ОБРАЗОВАНИЯ И РАСПАДА Составных ядер в реакциях с высокоэнергичными тяжелыми ионами

Одним из наиболее вероятных каналов ядерной реакции, идушей при взаимодействии тяжелых ионов с ядрами мишени при энергиях выше кулоновского барьера, является образование составной системы. Получающееся при этом составное ядро имеет большое значение энергии возбуж-Дения и углового момента и распадается путем испарения нейтронов. Заряженных частиц и гамма-квантов. Для тяжелых составных ядер (Z²/A >30) с большой вероятностью происходит их деление. Нейтроны и заряженные частицы испаряются с различной вероятностью в зависимости от величины энергии возбуждения, углового момента и массового числа составного ядра /1/. Зависимость величины сечения образования составного ядра от энергии хорошо описывается моделью, в которой потенциал взаимодействия берется в виде прямоугольной ямы /2/. Однако при энергии возбуждения составных ядер больше нескольких десятков Мэв наблюдается разница между результатами, полученными в расчетах по этим моделям. и экспериментально определенными эначениями сечений образования составного ядра, что, по-видимому, связано с наличием критического значения углового момента, выше которого образование составной системы маловероятно /3,4/. Эта разница между расчетными и экспериментальными Эначениями существенно увеличивается с ростом энергии ионов. С учетом критического углового момента сечения образования составного ядра можно оценить по приближенной формуле /2/

and the second second

 $\sigma_{e}(E) = \frac{\pi h^{2} \left(\ell_{\text{Kput.}} + 1/2 \right)^{2}}{2\mu E},$

3

(1)

которая удовлетворительно описывает экспериментальные результаты ^{/5/}. Все имеющиеся в настоящее время экспериментальные данные по изучению образования и распада составных ядер были получены при энергиях бомбардирующих ионов до 10 Мэв/нуклон. Однако в связи с тем, что при больших энергиях бомбардирующих ионов эффект влияния критического углового момента, по всей вероятности, увеличивается и вероятность испарения из высоковозбужденного составного ядра заряженных частиц также возрастает, эначительный интерес представляет изучение закономерностей образования и распада составных ядер в реакциях с тяжелыми ионами с энергией больше 10 Мэв/нуклон. Большие перспективы в этом отношении открылись с вводом в эксплуатацию циклотрона Лаборатории ядерных реакций У-200, позволяющего ускорять большой ассортимент тяжелых ионов с энергиями до 18 Мэв/нуклон. Данная работа является одной из первых работ, выполненных на пучке тяжелых ионов циклотрона У-200 с использованием их максимальной энергии.

В работе изучались функции возбуждения в следующих реакциях полного слияния: 130 Te(12 C, xn) ${}^{142-x}$ Ce; 130 Te(13 C, xn) ${}^{143-x}$ Ce; 130 Te(12 C, xn) ${}^{138-x}$ Ba; 130 Te(13 C, axn) ${}^{139-x}$ Ba, при энергиях ионов углерода до 150 Мэв.

Постановка эксперимента

Для получения функций возбуждения реакций с образованием составных ядер использовался гамма -спектрометрический метод измерения выходов продуктов реакции в стопке мишеней, которая состояла из двадцати мишеней, чередующихся со сборниками ядер отдачи.

В качестве мишеней был использован изотоп ¹³⁰ Te, обогащенный до 98,0%. Выбор этого изотопа был обусловлен следующими причинами. Во-первых, удобством ядерных характеристик получаемых продуктов реакций для их идентификации и определения сечения образования изотопов; во-вторых, возможностью вычисления функций возбуждения для реакций, идущих с испарением от 3 до 12 нейтронов включительно и, в-третьих, принадлежностью составного ядра ¹⁴² Се к средней области масс

ядер, где можно пренебречь конкуренцией деления. Мишени изготавливались путем напыления вещества в вакууме на алюминиевую подложку. Количество вещества мишени определялось взвешиванием и равнялось ≈ 200 мкг/см². Точность определения толщины мишени составляла 5%.

Сборники ядер отдачи изготавливались из алюминиевой фольги толщиной 7-10 микрон. Стопка мишеней и сборников зажималась в охлаждаемой кассете, которая помещалась внутри камеры циклотрона У-200 и облучалась пучком ионов ¹² С или ¹³ С. Величина тока ионов была \approx 1 мка. Время облучения составляло \approx 1 час. После облучения производилось измерение гамма-активности каждой мишени со сборником на γ -спектрометре, состоящем из Ge(Li)-детектора в сочетании с 4096-канальным амплитудным анализатором "INTERTECHNIQE". Энергетическое разрешение спектрометра равнялось 2,5 кэв, что давало возможность надежно разделить γ -линии в энергетическом спектре, принадлежащие γ -переходам изучаемых изотопов, без применения методов радиохимического разделения.

Относительный выход изотопа определялся по интенсивности его γ перехода с учетом выхода γ -квантов на один акт β -распада. При этом использовались данные работ /6,7/. Погрешность в определении относительных выходов не превышала 15%. Абсолютное определение сечений производилось двумя способами: путем измерения тока ионов при повторении опыта на выведенном пучке ионов циклотрона У-300 и с помощью использования мониторной реакции ${}^{27}AI({}^{12}C, -2p-n){}^{24}Nau$ данных работы /8/.Погрешность в величине полученных абсолютных значений сечений образования изотопов была не хуже 30%.

Ввиду отсутствия воэможности точного определения энергии бомбарлирующих ионов для внутреннего пучка циклотрона У-200 калибровка по энергии производилась на выведенном пучке циклотрона У-300, с помощью которого снимались функции возбуждения этих же реакций до энергий ионов 6 Мэв/нуклон. Энергетический интервал между последовательно расположенными в стопке сборниками определялся с использованием зависимостей пробег-энергия из данных работы ^{/9/}. Погрешность в определении энергии составляла ±5 Мэв в области энергий ионов больше 10 Мэв/нуклон, что было обусловлено ошибкой экстраполяции зависимос-

тей пробег-энергия в область больших энергий и энергетическим разбросом при прохождении ионами стопки мишеней.

Экспериментальные результаты

В табл. 1 и 2 представлены сечения образования изотопов, полученных в реакциях ¹³⁰ Te(¹²C, xn)^{142-x} Ce, ¹³⁰ Te(¹³C, xn)^{143-x}Ce, ¹³⁰ Te(¹²C, axn)^{138-x}Ba, 130 Те(¹³С, ахп) ^{139-х}Ва, которые были исследованы в настоящей работе. Сечение образования 137 се принято за полное сечение реакции с испарением 5,6 нейтронов, т.к. сечение образования основного состояния в этом случае сравнительно мало/10/, что связано, очевидно, с увеличением вероятности заселения изомерных уровней с высоким спином в реакциях с тяжелыми ионами. .133 m Ba В этом же предположении сечения образования изотопов можно принять близкими к полному сечению реакции с испарением из составного ядра а -частицы и 4,6 нейтронов. Сечение образования Ва определялось по дочернему изотопу ¹²⁹Сs , имеющему период полураспада 32 часа и хорошо известные у -переходы. Так как период полураспада ¹²⁹ Ва равен 2.6 часа, то через 50-60 часов после облучения практически все ядра ¹²⁹Ва переходят в ¹²⁹Ся . Непосредственным образованием ¹²⁹ С. в других ядерных реакциях, например в реакции многонуклонных передач типа ¹³⁰ Te(H1.+3p-4n), можно пренебречь из-за их малого сечения /11/. Кроме того, вид функции возбуждения для 129 С. довольно сильно отличается от вида функции возбуждения реакции многонуклонной передачи типа ¹³⁰ $Te(H1, +3p-n)^{132}$ Cs. На рис. З приведены обе функции возбуждения, полученные в одном опыте. Выход изотопа с периодом полураспада 10 мин определялся также по дочернему продукту 131 La с периодом полураспада 56 мин. Возможно, здесь имеется вклад продуктов реакций типа (H1, pxn), приводящих к образованию La при испарении из составного ядра протона и 10,11 нейтронов. Однако нам не удалось надежно идентифицировать другие продукты, образующиеся в подобных реакциях, что, возможно, свидетельствует о небольших сечениях реакций испарения протонов из составного ядра 142 Се /12/. На рис. 1,2 и 5 приводятся функции возбуждения реакций (H1, xn) и (H1, axn).

Таблица 1

С ¹² Елаб (мэb)	Евозо. (мэв)	Ce ¹³⁹ 3n G(mot)	Се ¹³⁷ т 50 G(но)	Ce ¹³⁵ 7n G(md)	C_133 9n G(Md)	Ce ¹³² 10n G(md)	Ce ^{1311Ca131} 11n+P10n G(MO)	Ba ¹³³ m 45n G(HO)	Ba ¹³¹ «7n G(мб)	Bo ¹²⁹ 49n G(Md)
41	34	13		1.1		11.000			1	
51	44	55	5						, î	
60	52	8.	124					. 7		1
68	59		434	3				26		
75	66		532	11				32		
82	72		308	39				35		1.11
· 89	78	(x_i,y_i)	130	68				62	3	
94	83		49	75	0,9			100	4	-
99	87		27	171	7			65	10	
104	92	$(x_i) \in \mathbb{N}$	29	210	-11			23	24	
110	98		17	198	13	4		18	48	
115	102		15	139	24	10 ·		16	106	19
120	107			42	55	17			105	27
126	112			35	86	26	0,9		70	40
132	118			32	87	38	2,0		112	50
137	122		1	15	100 :	60	5		92	46
142	127		1.1	9	92	68	8		131	74
148	132			11	60	69	14		115	107
153	137			5	47	60	20		129	114

Таблица	2
---------	---

C ¹³		Ce139	Ce ¹³⁷ m	Ce135	Ce133	C-132	C131_013	Bal35m	100133m	131	B-129
Enad.	(мэб)	4n G(md)	6n G(Hd)	8n G(Hd)	10n Gradu	11n G(wd)	12n+P11n	d4n	alon	aßn	4 10n
38	37	2,7	/						O(HO)		GINO
48	46	41	1,0						1. ·	ŀ .	
56	53	237	9					1.7		1	1.1
64	60	128	22	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -		$\{i_{1}, M_{i}\}_{i \in I}$		5		l •	
71	67	44	90					13	24		
78	73	17	226	2,3				26	- 4		
85	. 79 .	3	249	20				18	15		
91	85		150	43				9	26		
97	90		73	72		• · · ·		8	34	6	14 1 • •
103	. 96		52	122	3			11	52	9	
109	101		25	140	6				43	13	
114	106		14	133	7	1,1			42	27	
. 119	110		6	109	16	22			19	38	
125	116		5	65	27	3	1 		7	39	1,5
130	120		5	59	45	6				67	23
135	125	6.55		34	68	8	2,3	: - : : [-		74	5
140	129			24	66	16	5			66	8
145	134	. 1		21	70	32	10		· .]	90	15

Обсуждение результатов

Ввиду того, что составные ядра ¹⁴² Се и ¹⁴³ Се, образующиеся в наших экспериментах, являются почти тождественными, можно объединить данные по функциям возбуждения, полученные нами для этих двух ядер.

На рис. 4 представлены совмещенные результаты исследования xn реакций при облучении ¹³⁰ Te ионами ¹² C и ¹³ C. По оси абсцисс отложена энергия возбуждения составного ядра, рассчитанная с использованием таблиц /13/.

Как видно из рисунка, ширина функций возбуждения растет с увеличением х , что является характерным для реакций с испарением нейтронов из составных ядер, образующихся в реакциях с тяжелыми ионами. "Хвосты" в области больших энергий, вероятно, связаны с процессом прямого выбивания нейтронов. На основании полученных функций возбуждения можно рассчитать среднюю энергию, уносимую каждым испарившимся в каскаде нейтроном. Эта величина согласно работе /20/ равна:

$$\epsilon / x = \langle E \rangle_{x} - \sum_{i=1}^{x} B_{in} = (6-6,5) M \Im B_{in}$$

где <**E**>, - средняя энергия возбуждения, соответствующая максимуму функции возбуждения. Значения є/х , приведенные в табл. З, удовлетворительно согласуются с оценками работ /14,15/.

		· .	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	· · ·					_
×	3	4	5	6	7	8	9	10	_
ε/x	7	7	5	6	5	5	5	5	

Таблица 3

На рис. 5 показаны функции возбуждения реакций испарения a -частиц из составных ядер¹⁴² Се и ¹⁴³ Се . Функции возбуждения, соответствующие испарению a -частицы и 4,6.8,10 нейтронов из составного ядра, получены при облучении ¹³⁰ Те ионами ¹³ С , а функции возбуждения, сосоответствующие испарению a -частицы и 5,7,9 нейтронов из составного ядра, – в реакции ¹³⁰ Те(¹² С, $a \times n$).

Видно, что функции возбуждения реакций с испусканием а -частиц при взаимодействии ионов ¹² С с ядрами ¹³⁰ Те существенно отличаются по величине сечения, а также по форме от тех, которые получены с ионами 13 С . На наш взгляд, эту разницу можно объяснить следующим образом. Известно, что с увеличением энергии бомбардирующих частиц сильно увеличивается вероятность вылета прямых а -частиц из налетающего иона /1/. В этом случае с ядром 130 Те сливается ядро бериллия. Образующееся при этом составное ядро бария имеет достаточную энергию возбуждения для испарения до 10 нейтронов в зависимости от энергии иона углерода. Таким образом, выход изотопов бария в реакции представляет собой суммарный выход про-¹³⁰ Te(¹² C. axn)^{138-x} Ba дуктов, образующихся двумя способами: испарением а -частицы из составного ядра и вылетом прямой а -частицы из налетающего чона. Очевидно, это явление имеет место при облучении ионами как ¹² С . так и 13 С . Однако в связи с тем, что ядро 12 С имеет более сильно выраженную а -частичную структуру, вклад реакций с вылетом прямых а -частиц в этом случае может быть больше, чем при облучении ионами ¹³ С. Это может выражаться как в увеличении сечения а xn - реакций, так и в характерной форме кривых функций возбуждения, которые наблюдаются в опыте.

Кривая 1 на рис. 4 представляет собой зависимость полного сечения образования составного ядра от его энергии возбуждения, рассчитанную с помощью соотношений, выведенных в работе ^{/2/}. Квадратными точками на этом рисунке обозначены результаты, полученные сложением сечений *м* – и *ам* – реакций при данной энергии возбуждения составного ядра. Видно, что с увеличением энергии возбуждения разница между расчетной зависимостью сечения образования составного ядра и экспериментальным значениями увеличивается. Это расхождение, по всей вероятности, связано с существованием некоторого критического значения углового момента, выше которого реакции полного слияния протекают с малой вероятностью. В этом случае, начиная от эначения энергии, при которой образовавшееся составное ядро приобретает критический угловой момент (*l* _{крит.}), сечение его образования должно уменьшаться обратно пропорционально энергии согласно формуле (1). Как видно из рис. 4,

 $\sigma_{c \ 3KCII.} \approx \frac{l}{E}$. Кривая 2 на этом же рисунке является рассчитанной по формуле (1) с использованием эначения $\ell_{KPUT.} \approx 30$ зависимостью сечения полного слияния от энергии возбуждения составного ядра. Некоторое несоответствие расчетной кривой 2 экспериментальным эначениям в области энергий возбуждения $E^* > 120$ Мэв можно объяснить вкладом в сечение образования составного ядра реакций неполного слияния с вылетом прямых а -частиц, сечение которых увеличивается с ростом энергии бомбардирующих иснов.

Как уже отмечалось, нам не удалось надежно идентифицировать продукты реакции, соответствующие испарению протонов из составного ядра. Поэтому возможно, что действительное значение $\ell_{\rm крит.}$ с учетом этого будет несколько больше. Кривая 3 на рис. 4 проведена через точки, полученные сложением сечений кл -реакций при данной энергии возбуждения. Очевидно, что площадь, заключенная между кривыми 2 и 3, соответствует доле реакций, идущих с испусканием а -частиц. Пользуясь этим, можно оценить величину отношения $\frac{\sigma_a}{\sigma_n}$ в зависимости от энергии возбуждения. Эта зависимость представлена на рис. 6. В предположении, что испарение а -частиц в основном происходит на первой ступени испарительного каскада, величина $\frac{\sigma_a}{\sigma_n}$ приближенно может выражать отношение полных ширин $\frac{\Gamma_a}{\Gamma_n}$, которое, как это видно из рис. 6, довольно быстро растет с увеличением энергии возбуждения составного ядра.

В заключение авторы считают своим приятным долгом поблагодарить академика Г.Н. Флерова за постоянное внимание к работе и ценные советы в процессе ее выполнения. Мы признательны С.А. Карамяну, Б.И. Пустыльнику и В.А. Карнаухову за полезные замечания при обсуждении работы, группе эксплуатации циклотрона У-200 под руководством В.С. Алфеева за большую работу по получению высокоэнергичных ионов, а также З.Д. Покровской за помощь в обработке результатов.

Литература

T.D.Thomas. Ann. Rev. Nucl. Sci., <u>18</u>, 343 (1968).
 B.B. Бабиков. Препринт ОИЯИ, P-1351, Дубна, 1963.

Г. Кумпф, В.А. Карнаухов, ЖЭТФ, <u>46</u>, 1554 (1964).

4. Б.Н. Калинкин, И.Ж. Петков. Препринт ОИЯИ, Р-1347, Дубна, 1963.

- 5. J.B.Natowitz. Phys. Rev., <u>C</u> 1, 623 (1970).
- C.M.Lederer, I.M.Hollander, I.Perlman, Table of Iosotopes.
 VI th Edit., John Willey & Sons, Inc. N.Y.-Lond. Sydney (1967).
- 7. З.Г. Гритченко и др. Препринт ОИЯИ, Р7-4387, Дубна, 1969.
- 8. Ingre-Maria Labenbauer-Bellis et al., Phys. Rev., 125, 606 (1962).
- 9. Northcliffe, L.C. Shilling. Nucl. Data Tables, A.7, 233 (1870).
- 10. R.L. Kiefer, K.Jr. Street. Phys. Rev., 173, 1202 (1968).
- 11. Ю.Ц. Оганесян, Ю.Э. Пенионжкевич и др. ЯФ, XI, 492, 1970.
- 12. G.R. Choppin, T.J. Klingen. Phys. Rev., 130, 1990 (1963).
- 13. W.D.Myers, W.J.Swiatecki. Preprint UCRL-11980 (1965).
- 14. J.M. Alexander, G.N. Simonoff. Phys. Rev., 133, B 93 (1964).

15. В. Нойберг, К. Александер. Препринт ОИЯИ, Р7-3657, Дубна, 1968.

Рукопись поступила в издательский отдел

2 июля 1971 года.

Рис. 4. Функции возбуждения реакций испарения 3-12 нейтронов из составного ядра, полученного при облучении ¹³⁰ Те ионами ¹² С и ¹³ С. Кривая 1 - зависимость сечения составного ядра от энергии возбуждения согласно работе ^{/2/}. Кривая II - зависимость сечения образования составного ядра от энергии возбуждения, полученная в настоящей работе. Квадратные точки соответствуют экспериментальным значениям, черные кружки - расчетные значения, вычисленные с учетом ^l крит. по формуле (1). Кривая III - сумма сечений всех хл -реакций, идущих при данной энергии возбуждения составного ядра (светлые кружки).

Рис. 6. Зависимость $\frac{\sigma_a}{\sigma_n}$ от энергии возбуждения.