1-672

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

William

Manana and Andrews and Andr

Дубна

18/11-68

P7 - 3835

Е.Д.Донец, В.А.Щеголев

попытка наблюдения *а* -распада изотопа²⁶⁰Ки 104

P7 - 3835

Е.Д.Донец, В.А.Щеголев

попытка наблюдения *а* -распада изотопа²⁶⁰ки 104

2342/2 ip

В 1964 году была опубликована работа Г.Н.Флерова и др., в которой сообщалось об открытии 104-го элемента периодической системы. впоследствии названного авторами "курчатовием". При облучении ²⁴² Ра конами²² Ne среди продуктов ядерных реакций был обнаружен спонтанно делящийся изотоп с Ту = 0,3 сек, выход которого с изменением энергии ионов ²² Ne соответствовал испарительной реакции. В 1966 году И.Звара и др. , использовав химические методы идентификации, подтвердили, что наблюдавшийся в работе спонтанно делящийся изотоп принадлежит 104 элементу. Наблюдавшееся в работах /1,2/ спонтанное деление было приписано²⁶⁰ Ка, образующемуся в реакции (²² Ne. 4a). Однако нельзя исключить и возможности того, что в работах /1,2/ наблюдался 259 Ка. который мог синтезироваться в реакции (²² Ne, 5n). Известно, что при идентификации по функциям возбуждения массы изотопов, образующихся в испарительных реакциях, возможна ошибка на одну массовую единицу /3/ В таких случаях идентификация неизвестного излучателя существенно облегчается наблюдением его дочернего (или внучатого) продукта, свойства которого хорошо известны .

В данной работе предпринята попытка идентифицировать²⁶⁰ Ка по его внучатому продукту²⁵² Fm. При этом предполагалось, что основным видом

распада²⁶⁰К∎ является а-распад , для чего имелись следующие основания. Известно, что при синтезе элементов с *z* ≥ 100 сечения испарительных реакций на тяжелых вонах уменьшаются по мере увеличения *z* составного

составляет $\approx 6.10^{-33}$ см², а реакции ²⁴³ Pu (²² Ne, 4n)²⁶⁰ Ku $\approx 1.10^{-33}$ см². Эти величины значительно больше значения 2.10^{-34} см². полученного экспериментально в работе ^{/1/}.

Объяснить это расхождение можно, предположив, что основным типом распада изотопа ²⁶⁰ Къ является а -распад и, следовательно, сечение реакции, измеряемое по количеству актов спонтанного деления, могло оказаться заниженным в $\frac{T_{sf}}{T_{a}}$ раз.

Следует отметить, что экспериментально измеренное значение $T_{\frac{1}{2}} = 0,3$ сек хорошо согласовалось с оценкой ($T_a = 0,2$ сек), приводимой для ²⁶⁰104 в систематике В.Вайолы и Г.Сиборга^{/12/}.Однако в последнее время выяснилось^{/13,14/}, что значения Q_a , в частности для изотопов 102-го элемента, в действительности больше значений Q_a , предсказываемых авторами работы^{/12/}. Если предположить, что такова же ситуация и с изотопами 104-го элемента, то для ²⁶⁰ Къ можно ожидать $T_a = 0,05$ сек. Однако эти оценки, разумеется, нуждались в экспериментальной проверке.

Метод регистрации а -распада по внучатому продукту

Для регистрации *а* -распада²⁶⁰ Ки был выбран его внучатый продукт ²⁶² Fm (²⁶⁰ Ku 4, ²⁵⁶ 102 4, ²⁵² Fm) и при постановке опытов задача сводилась к разделению дочерних и внучатых продуктов и их последующей регистрации. Наблюдение ²⁵² Fm во внучатых продуктах однозначно доказывало бы факт синтеза ²⁶⁰ Ku.

Экспериментальная техника, использовавшаяся в наших опытах, уже применялась успешно в предыдущих работах^{/4,5,9/}, где были синтезированы и изучены изотопы ²⁵⁶ 102, ²⁵⁴ 102 и ²⁵⁶ 103. Подробное описание методики содержится в работе^{/4/}. Суть метода состояла в том, что в процессе облучения происходит отделение продуктов *а* -распада изотопов, образующихся в ядерных реакциях, и их накопление на специальном сборнике. Аппаратура устроена таким образом, чтобы не допускать смешивания первичных и вторичных продуктов. После облучения проводи-

лось химическое выделение вторичных продуктов (в данном случае фермия) и измерялся а -спектр выделенной фракции. Число зарегистрированных распадов соответствовало (с учётом эффективности) числу ядер соответствующего изотопа, синтезированного в ядерной реакции.

Для отделения дочерних продуктов от внучатых был использован следующий метод. В качестве сборника использовалась золотая фольга толщиной 2 мк. Ядра²⁵⁶ 102, получающиеся после *a* -распада²⁶⁰ Ku. осаждались на ее поверхность. В результате *a* -распада²⁵⁶ 102 половина ядер ²⁵² Fm вбивалась в толщу фольги за счёт импульса отдачи. Таким образом происходила фиксация внучатых продуктов в толще фольги. Вторая половина атомов внучатого²⁵² Fm слетала с фольги в окружающий газ и с помощью электрического поля снова возвращалась на ее поверхность.

Для проверки этого метода были проведены модельные эксперименты с продуктами распада²⁸² Ть. В этих экспериментах атомы²¹⁶ Ро. получавшиеся после а -распада²²⁰ Rв, собирались на поверхности золотой фольги, помещенной в эманатор

²¹⁸ Po
$$\stackrel{a}{\rightarrow}$$
 ²¹² Pb $\stackrel{\beta^-}{\rightarrow}$ ²¹² Bi $\stackrel{\beta^-}{\rightarrow}$ ²¹² Po $\stackrel{a}{\downarrow}$ a $\stackrel{a}{\downarrow}$ a $\stackrel{a}{\downarrow}$ a $\stackrel{a}{\downarrow}$ a $\stackrel{208}{\rightarrow}$ TI $\stackrel{\beta^-}{\rightarrow}$ ²⁰⁸ Pb

После накопления достаточного количества активности фольга обсчитывалась на α -счётчике и затем кипятилась в 2N HNO₈. Было показано, что половина атомов ²¹² Ві, находящихся на поверхности сборника, в течение нескольких секунд полностью переходит в раствор, а вторая половина атомов ²¹² Ві, вбитых в фольгу, остается там даже при длительном кипячении золота в 14N HNO₈.

Опробирование этого метода в рабочих условиях было осуществлено при синтезе изотопа ²⁵⁴ 102, идентификация которого проводилась по внучатому продукту ²⁴⁶ Cf (²⁵⁴ 102 $\stackrel{a}{\rightarrow}$ ²⁵⁰ Fm $\stackrel{a}{\rightarrow}$ ²⁴⁶ Cf). При этом были полностью воспроизведены результаты по определению сечения образования ²⁵⁴ 102 и его периода полураспада, приведенные в работе ^{/5/}, в которой идентификация ²⁵⁴ 102 проводилась по дочернему подукту ²⁶⁰ Fm.

Результаты опытов с ²¹² Ві и ²⁵⁴ 102 давали уверенность в том, что отделение дочерних продуктов от внучатых с помощью данного метода может быть проведено достаточно чисто.

Постановка опытов и экспериментальные результаты

Для синтеза ²⁶⁰ Ku так же, как и в^{/1,2/}, использовалась реакция ²⁴² Pu (²² Ne, 4 n) ²⁶⁰ Ku . Применялась плутониевая мишень толщиной 1,3 мг/см², имеющая следующий состав: ²⁴² Pu (76%), ²⁴¹ Pu (5,7%), ²⁴⁰ Pu (17,1%), ²⁸⁸ Pu (1,2%).

Облучения проводились на внутреннем пучке 300-сантиметрового циклотрона ЛЯР ОИЯИ. Интенсивность пучка ионов ²² Ne составляла 4 мка. Энергия ионов, бомбардирующих мишень, изменялась смещением пробника вдоль радиуса циклотрона. Измерение энергии на рабочих радиусах проводилось перед каждым опытом по поглощению в A1 -фольгах.

Время транспортировки продуктов ядерных реакций от мишени к сборнику вторичных продуктов, определяемое скоростью движения транспортной ленты, составляло ≈ 0,1 сек. Специальные опыты, проведенные с атомами ¹⁴⁹ Tb (Nd + ¹¹ B → ¹⁴⁹ Tb), показали, что время дрейфа ато-

мов ¹⁴⁹ Ть в газе между мишенью, из которой они были выбиты, и транспортной лентой, на которой происходило их осаждение, значительно меньше 0,1 сек. Дополнительно к этим опытам были проведены эксперименты, в которых при облучении ¹⁴⁴ Sm ионами ²⁰ Ne синтезировался изотоп ¹⁵⁷ Hf, имеющий Т_½ = 0,125 сек. В результате распада ¹⁵⁷ Hf

получался ¹⁴⁹ Ть, который вбивался в золотую фольгу, служившую сборником вторичных продуктов, благодаря наличию двух последовательных α -распадов в процессе превращения ¹⁶⁷ Нf в ¹⁴⁹ Ть. Распределение ¹⁴⁹ Ть в фольге по направлению движения транспортной ленты соответствовало Т χ = 0,13 сек, т.е. периоду полураспада ¹⁵⁷ Hf.

Опыты по наблюдению а -распада ²⁶⁰ Ки были поставлены таким образом, чтобы одновремнно наблюдать и реакцию ²⁴² Рu (²² Ne, 4n)²⁶⁰ Кu, и реакцию ²⁴³ Рu (²² Ne, a 4n) ²⁵⁶ 102. Это было необходимо по сле-

дующим соображениям. Из работы ^(4/) известно, что сечения реакций (4n) и (a 4n) находятся в определенных соотношениях между собой, зависящих от энергии бомбардирующих ионов. При энергии, соответствующей максимуму (4n) -реакции, их сечения близки; при дальнейшем увеличении энергии сечение (4n)-реакции падает, а (a 4n) -реакции растет. Отношение $\frac{\sigma_{max}(a 4n)}{\sigma_{max}(4n)} \approx 10$. Таким образом, зная величину сечения (a4n)-реакции, можно предугадать $\sigma_{max}(4n)$. В условиях наших опытов наблюдение реакции ²⁴² Pu (²² Ne, a 4n) ²⁵⁶ 102 сводилось к определению количества ядер ²⁵² Fm в дочерних продуктах (²⁶⁶ 102 G ²⁵² Fm). Схема эксперимента выглядела следующим образом.

После облучения, длившегося ~ 8 часов, золотая фольга, служившая сборником вторичных продуктов, кипятилась в течение нескольких минут в 2N HNO₈ и таким образом с ее поверхности удалялись дочерние продукты. Выделение внучатых продуктов, содержащихся в толще фольги, производилось с помощью следующих операций:

растворения золота в царской водке и введения в раствор ²⁴⁴ Сm
ж²⁴² Сm, служивших отметчиками химического выхода;

 экстракции золота в органическую фазу (этиловый эфир, насышенный 6N HCl);

3) упаривания водной фазы и растворения осадка в 2N HCl;

4) выделения фракции трансурановых элементов на ионообменной колонке со смолой Дауэкс-50 х 12 (нанесение на колонку 2N H Cl, вымывание 6N HCl);

5) измерения выделенной фракции на а -спектрометре с Si - Au - детекторами.

Выделение дочерних продуктов, переведенных в раствор после кипячения в 2N HNO₃, производилось с помощью процессов, перечисленных в пунктах 3)-5).

Облучения проводились при трех значениях энергии ионов²² Nel 12, 116 и 121 Мэв. Число ионов Ne, прошедших через мишень, для каждого из этих случаев было равно 8,8.10¹⁶, 1,5.10¹⁷ и 1.10¹⁷ соответственно.

При этом в дочерних продуктах наблюдалась *а* -активность изотопов ³⁶² Fm, ²⁴⁶ Cf и *а* -активность с энергией 6,29 Мэв, которая была приписана ²⁴⁰ Cm. Это означало, что при облучения ²⁴² Pu ионами ²² Ne в первичных продуктах образуются изотопы ³⁶⁶ 102, ²⁵⁰ Fm, ²⁴⁴ Cf. На рис. 2 приводится *а* -спектр дочерних продуктов, полученный в одном из опытов при $E_{22_{Ne}} = 121$ Мэв. На рис. 3 представлена зависимость выхода указанных изотопов при изменении энергики июнов ²² Ne.

Во внучатых же продуктах не было обнаружено ни α -активности ²⁵² Fm. ни вообще какой-либо α -активности с E > 6,2 Мэв.

Отсутствие эффекта во внучатых продуктах в области 112 Мэв $\leq E \leq 121$ Мэв определяет лишь верхнюю границу сечения реакции ²⁴² Рв (²² Ne, 4n)²⁶⁰ Кв, которая составляет ~ 2.10⁻³⁴ см².

Обсуждение результатов

Результаты контрольных опытов, проведенных с²¹² Ві и²⁵⁴ 102, не вызывают сомнений относительно надежности описанной выше методики. Поэтому отсутствие эффекта во внучатых продуктах при регистрации а -распада²⁶⁰ Ки можно объяснить следующим образом:

Рис. 3. Энергетическая зависимость реакции ²⁴² Ри (²² Ne, а 4 п)²⁵⁶102 и реакций, приводящих к образованию ²⁴⁴ Сf и ²⁵⁰ Fm.

 Сечение реакции ²⁴² Рu (²² Ne, 4n) ²⁶⁰ Ku действительно составляет ≈ 10⁻³⁴ см², и основным видом распада ²⁶⁰ Ku является спонтанное деление.

Выше уже говорилось, что это обстоятельство является очень странным, если рассматривать всю совокупность данных по сечениям испарительных реакций на тяжелых ионах в области z ≥100 (см.рис. 1). С том, что сечение реакции ²⁴² Рu (²² Ne, 4n)²⁶⁰ Ku должно быть эначительно большим, чем измеренное в работах^{/1,2/}, свидетельствуют опыть по изучению реакции ²⁴² Pu (²² Ne, α 4n)²⁶⁶ 102, проведенные в настоящей работе.

Анализ результатов по измерению сечения реакции ²⁴² Рu (²² Ne a 4n)²⁶⁶ 102 приводит к следующим выводам. Сечение этой реакции оказалось равным $\approx 8 \cdot 10^{-33}$ см² при $E_{22_{Ne}} = 121$ Мэв. Если отношение $\frac{\sigma_{max}(a 4n)}{\sigma_{max}^{(4n)}} \approx 10$ имеет место и при взаимодействии ²⁴² Pu с²² Ne, как это было в случае ²⁸⁸ U + ²² Ne ^{/4/}. то для реакции ²⁴² Pu(²² Ne, 4n)²⁶⁰ Ku следует ожидать $\sigma_{max} \approx 1 \cdot 10^{-33}$ см². Это значение $\sigma_{max}(4n)$ согласуется с экстраполяциями, полученными из рис. 1.

2. Период полураспада ²⁶⁰ Ки меньше 0,1 сек и, следовательно, он распадался до того как был донесен до сборника вторичных продуктов

В этом случае следует предположить, что наблюдавшаяся в работах^{/1,2/} в f –активность с $T_{\chi} = 0,3$ сек относится к ²⁵⁹ Кв. Если это предположение верно, то, исходя из оценок сечения реакции

²⁴² Pu (²² Ne, 5n)²⁵⁹ Ku

и величины сечения, полученной в работах $^{1,2/}$, следует заключить, что для 259 Ки основным видом распада является α -распад ($\frac{T_{sf}}{T_{\alpha}}$ = 30)

В этом случае регистрация ²⁵⁹ Ки в принципе возможна по его внучатому продукту ²⁵¹ Fm. Но, поскольку для ²⁵¹ Fm <u>a</u> ≈ 0,01, это потребует увеличения чувствительности нашей методики в ≈ 30 раз, что практически невыполнимо.

Последнее объяснение представляется нам наиболее правдоподобным. Окончательно же разъяснить создавшуюся ситуацию может лишь непосредственное наблюдение а -распада ²⁶⁰ Ku и ²⁵⁹ Ku.

Мы благодарны члену-корреспонденту АН СССР Г.Н.Флерову за его инициативу и советы, способствовавшие выполнению этой работы, а также В.А.Ермакову за участие в разработке метода регистрации а -распада по внучатому продукту.

Литература

- Г.Н.Флеров, Ю.Ц.Оганесян, Ю. В Лобанов, В.И.Кузнецов, В.А.Друин, В.П.Перелыгин, К.А.Гаврилов, С.П.Третьякова, В.М.Плотко. Атомная энергия 17, 310 (1964).
- И.Звара, Т.С. Зварова, Р.Цалетка, Ю.Т.Чубурков, М.Р.Шалаевский, Б.В.Шилов. Атомная энергия <u>21</u>, 83 (1966).
- 3. В.Нойберт, К.Александер. Препринт ОИЯИ Р7-3657, Дубна 1967.
- 4. Е.Д.Донец, В.А.Шеголев, В.А.Ермаков. Атомная энергия 16, 196 (1964).
- 5. Е.Д.Донец, В.А.Шеголев, В.А.Ермаков. Атомная энергия 20, 233 (1966).
- 6. Б.А.Загер, М.Б.Миллер, С.М.Поликанов, А.М.Сухов, Г.Н.Флеров, Л.П.Челноков. Атомная энергия <u>20</u>, 230 (1966).
- 7. Д.Д.Богданов, И.Бачо, В.А.Карнаухов, Л.А.Петров. Ядерная физика <u>6</u>, 1113 (1967).
- 8. Е.Д.Донец, В.А.Шеголев, В.А.Ермаков. Ядерная физика, 2, 1015 (1965).
- 9. Е.Д.Донец, В.А.Шеголев, В.А.Ермаков. Атомная энергия 19, 109 (1965).

- 10. В.Л.Михеев, В.И.Илющенко, М.Б.Миллер, С.М.Поликанов, Г.Н.Флеров, Ю.П.Харитонов. Атомная энергия <u>22</u>, 90 (1967).
- Г.Н.Флеров, С.М.Поликанов, В.Л.Михеев, В.И.Илющенко, В.Ф.Кушнирук, М.Б.Миллер, А.М.Сухов, В.А.Шеголев. Ядерная физика <u>5</u>, 1186 (1967).
- 12. V.E.Viola, G.T.Seaborg, J. Inorg. Nucl. Chem., <u>28</u>, N 3, 697, 741 (1966).
- 13. Г.Н.Флеров. Атомная энергия 24, 5 (1968).
- 14. A.Ghiorso, T.Sikkeland, M.I.Nurmia, Phys. Rev. Lett., 18, 401 (1967).

Рукопись поступила в издательский отдел 19 апреля 1968 года.