ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Manna

C 341.36

Дубна

P7: 3732

18/10-62

С.А.Карамян, Ф.Нормуратов, Ю.Ц.Оганесян, Ю.Э.Пенионжкевич, Б.И.Пустыльник, Г.Н.Флеров

AP, 1968, 7.8 6.4 C. 690-691

МАССОВОЕ РАСПРЕДЕЛЕНИЕ ОСКОЛКОВ ДЕЛЕНИЯ ЯДЕР ВИСМУТА И УРАНА ТЯЖЕЛЫМИ ИОНАМИ

P7 - 3732

С.А.Карамян, Ф.Нормуратов, Ю.Ц.Оганесян, Ю.Э.Пенионжкевич, Б.И.Пустыльник, Г.Н.Флеров

МАССОВОЕ РАСПРЕДЕЛЕНИЕ ОСКОЛКОВ ДЕЛЕНИЯ ЯДЕР ВИСМУТА И УРАНА ТЯЖЕЛЫМИ ИОНАМИ

Направлено в ЯФ

7263/ up

Одной из основных характеристик процесса деления является распределение осколков деления по массе и заряду.

Данные характеристики экспериментально достаточно хорошо изучены только для деления ядер при низкой энергии возбуждения (спонтанное деление, деление тепловыми и быстрыми нейтронами). Однако в этом случае теоретическая трактовка полученных экспериментальных данных чрезвычайно затруднена, что связано с сильным влиянием на массовое и зарядовое распределения оболочечной структуры образующихся в процессе деления ядер-осколков.

В работе^{/1/} показано, что при высокой энергии возбуждения делящегося ядра массовое и зарядовое распределения могут быть рассмотрены в рамках статистического описания возбужденного ядра.

В связи с этим чрезвычайно важно экспериментальное измерение массовых и зарядовых распределений осколков деления ядер тяжелыми ионами для проверки правильности статистической теории и определения ее параметров.

Выбор бомбардирующей частицы объясняется тем, что только с помощью ускоренных тяжелых ионов можно получать компаунд-ядра с вполне определенными Z и A и с высокой энергией возбуждения (вчлоть до 200 Мэв) в широком интервале значений Z²/A.

Экспериментальных данных по делению ядер тяжелыми ионами немно-

Наиболее систематически изучено поведение массового распределения осколков деления в зависимости от энергии возбуждения для сравнительно легких ядер при x < 0,7 (3). Полученные в работе /3/ данные неплохо согласуются с теоретическими расчётами Никса /5/, однако эти

расчёты неприменимы в области $Z^2/A/(Z^2/A) > 0,7$, а экспериментальные данные для этого случая чрезвычайно скудны.

Ввиду изложенных причин в настоящей работе были измерены массовые распределения осколков деления в реакциях 2^{288} U (20 Ne, f); 2^{388} U (40 Ar, f); 209 20 Bi (Ne, f) при различных энергиях бомбардирующих частиц.

Экспериментальная процедура измерения массовых распределений в этих реакциях была следующей:

1. На выведенном пучке ускоренных тяжелых ионов циклотрона МЗИ У-300 производилось облучение тонкого (1 мг/см²) слоя делящегося вещества, нанесенного на толстую алюминиевую подложку, охлаждаемую водой, током ионов 2-3 мка в течение нескольких часов. Осколки деления, вылетавшие из мишени в интервале углов от $\theta^{\circ} = 120^{\circ}$ до $\theta^{\circ} = 170^{\circ}$. попадали на алюминиевый сборник толщиной 20 мк.

2. После окончания облучения сборник с накопленной активностью осколков деления подвергался химической обработке для выделения элементов группы редких земель и иттрия. Химическое выделение занимало время не более одного часа.

3. у - радиоактивность полученного таким образом источника измерылась с помощью полупроводникового спектрометра у -лучей, собранного на основе Ge (Li) - дрейфового коаксиального детектора объемом 8 см³. Энергетическое разрешение спектрометра составляло 5,5 Кэв и слабо зависело от энергии у -квантов. у - спектр регистрировался с помощью многоканального амплитудного анализатора Аи-4096.

4. Полученный у-спектр редкоземельных элементов - продуктов деления в энергетическом интервале 100-2000 Кэв обрабатывался с целью идентификации пиков и определения их интенсивности. По интенсивноу - линии того или иного изотопа с введением поправок на эффек-СТИ Ge (Li) - детектора, на эффективность временного режима тивность облучение - обсчёт, на выход у - лучей для одного акта распада данного изотопа и на геометрическую эффективность сбора осколков разной массы в процессе облучения рассчитывался выход этого изотопа в реакции деления и относительных единицах. Обрабатываемый спектр у -лучей, был, как правило, достаточно сложным из-за присутствия в источниках большого количества радиоизотопов, поэтому ряд слабых

линий этих изотопов не проявлялся в спектрах, а в некоторых случаях происходило наложение близких по энергии линий.

В таблице 1 приведены изотопы, выход которых определялся для построения массового распределения. Выбор этих изотопов объясняется удобным для измерения периодом полураспада, наличием,как минимум, одной у – линии с хорошо известным абсолютным выходом на акт интенсивной распада изотопа, достаточным для измерения выходом изотопа по зарядовому распределению.

Изложенная методика измерения выходов выбранных нами изотопов была достаточно надежной и давала точность получаемых результатов не хуже 15%, в которую входит статистическая неточность определения интенсивности у -линии и неточность табличных данных о периоде полураспада изотопа и об абсолютном выходе у -квантов на акт распада /6/.

Для построения массового распределения осколков деления на основе измеренных выходов избранных изотопов требовались сведения о зарядовом распределении осколков.

Ввиду отсутствия экспериментальных данных о зарядовом распределении были приняты обычные в этом случае предположения.

1. Массовое распределение является гладкой функцией массы осколка.

2. Для каждой массы А, существует значение Z (А,), для которого выход изобара максимален, выход же изобаров с Z, отличным от (Z - Z_p) от Z_p , описывается функцией Гаусса $W(Z-Z_p) = \frac{1}{\sqrt{\pi C}}e^{-\frac{1}{C}}$ где константа С универсальна для всех масс.

З. Зависимость величины Z от А, является гладкой функцией и рассчитывается по одной из трех моделей.

а) гипотеза равного смещения зарядов $Z_{D}(A) = \frac{Z_{C}}{2} + \frac{Z_{A} - Z_{A}}{2}$

где величины рассчитываются с помощью формулы Вайцзеккера в варианте Грина /7/ т

б) гипотеза пропорциональности заряда массе;

в) гипотеза распределения заряда из условия минимума потенциальной энергии формирующихся осколков в момент разделения ядра /1/,

4. Из осколков испаряются нейтроны в количестве, пропорциональном массе осколка

4

На основании этих предположений производилось конструирование массового распределения из измеренных выходов изотопов.

 $\nu_t = \frac{\nu}{A_t} A_t$

С помощью электронно-счётной машины методом наименьших квадратов производился подбор параметров ν и С в какой-либо гипотезе о функции Z_p (A_f), дающих наименьшее отклонение экспериментальных точек на массовом распределении от некоторой плавной кривой, проходящей между этими точками. В процессе работы стало ясно, что данная плавная кривая может быть удачно описана гауссовской функцией, характеризующейся одним параметром ширины σ^2 , что согласуется с экспериментальными данными о виде массовых распределений осколков деления в реакциях с тяжелыми ионами /2,3,4/.

$$\Psi(A) = -\frac{1}{\sqrt{\pi\sigma^2}} e^{-\frac{(A_f - A_C/2)}{\frac{1}{2}\sigma^2}}$$

В данном подходе наилучшее самосогласование экспериментальных точек свидетельствует о том, что полученное массовое распределение близко к истинному, разумеется, при условии, что подбираемые параметры принимают при этом разумные значения.

В таблице 2 приведены результаты, полученные при обработке массовых распределений описанным способом. Оказалось, что значения ширины данного массового распределения получаются близкими в разных гипотезах о зарядовом распределении. Самос огласование точек получается наихудшим в гипотезе о том, что заряд Z пропорционален массе, а в случае двух других гипотез средние квадраты отклонения точек от плавной кривой не сильно различаются между собой, и значительно меньше, чем в первом случае. Разумеется, параметры ν и C в гипотезе о пропорциональности заряда массе сильно отличаются от ν и C из двух других гипотез.

Если рассмотреть все массовые распределения, то наилучшей является гипотеза распределения заряда из условия минимума потенциальной энергии (рис. 1). Поэтому в дальнейшем будут обсуждаться ширины массового распределения (σ^2) и параметры С и ν , полученные при обработке массового распределения в последней гипотезе о функции Z_p(A_f). На рисунке (2) представлены массовые распределения осколков деления в реакции ²⁸⁸ U (²⁰ Ne, f) при трех значениях энергии возбуждения делящегося ядра, на рисунке (3) даны массовые распределения в реакциях ²⁸⁸ U (⁴⁰ Ar, f) при двух значениях энергии частиц.

Из рисунков видно, что массовое распределение сильно уширяется с увеличением энергии возбуждения и Z²/A делящегося ядра.

Расчёт показал, что σ^2 с увеличением энергии возбуждения увеличивается более резко, чем $\sigma \approx T$, в отличие от массового распределения осколков деления ядер при Z²/A/(Z²/A) $_{\rm kn} < 0.7$.

На рис. 4 представлена зависимость ширины массового распределения (σ^2) от параметра Z²/А при энергии возбуждения E*= 110 Мэв. Наблюдается резкое уширение массового распределения при Z²/A > 38. Константа С зарядового распределения также увеличивается с ростом энергии возбуждения, причём более слабо ,чем С = T. В то же время константы С в реакциях ²³⁸U(²⁰Ne, f) и ²³⁸U(⁴⁰Ar, f) не сильно отличаются друг от друга, но значительно превышают значения для С, полученные при делении ядер с Z²/A < 38.

Полученные данные свидетельствуют о необходимости дальнейшего теоретического и экспериментального изучения массовых распределений осколков сильно возбужденных ядер в районе

$$Z^{2}/A/(Z^{2}/A)_{kp} > 0,7$$

Авторы благодарны А.М.Сухову и Б.В.Фефилову за разработку электронной части полупроводникового спектрометра у –лучей, а также А.Г. Пилькову за помощь в проведении экспериментов, и Н.С.Мальцевой за проведение химических операций.

Литература

1. Г.А.Пик-Пичак, В.М.Струтинский. Физика деления ядер, Госатомиздат, Москва, 12, 1962.

7

2. I.Zvara, Proceedings of the Third Conference ou Reaction between Complex Nuclei University of California, Press, 389 (1963).

3. F.Plasil , D.S.Burnett, H.C.Britt, S.G.Thompson, Phys. Rev., . <u>142</u>, 696 (1966).

4. H.M.Blann, Phys. Rev., 123 , 1356 (1961).

5. I.R.Nix, W.I. Swiatecki, Nucl. Phys., 71, 1 (1965).

6. C.M.Lederer, I.M.Hollander, I.Perlman, Table of Isotopes, Sixth Edition John Willy Sous, Inc. New York, London, Sidney (1967).

7. A.E.S.Green, Phys. Rev., 95, <u>1006</u> (1954).

Рукопись поступила в издательский отдел 22 февраля 1968 года.

8

Таблица 1. Список изотопов, выход которых измерялся в данной работе.

Изотоп	Период полураспада в час	Энергия используемых у -линий в кэв	Выход у -квантов данной энергии на акт распада изотопа в \$ 95		
Y ⁹¹	0,83	551			
Y 92	3,53	934	I4		
Y 98 89	10,3	940	2,3		
Pr 188	2 , I	79 0	IOO		
La ¹⁴⁰ 57	. 40,2	I040 I597	96		
La ¹⁴² 57	I,35	650	48		
58 Ce	33	293	46		
Nd 149	I,9	114	,18		
Pm 150 61	2,7	334	71		
52 Sm ¹⁵⁸	47	103	28		
52 Sm ¹⁵⁵	0,4	I04	73		
66 Dy 167	8,1	326	91		
.Er 68	3,I	826	63		
59 Tm ¹⁰⁶	7,7	780	32		
Er 171	7,52	305	63		
		9			

Peakyus	Ep. (N36)	²² /A	E*(M ∍6)	46²>	ν	۷.
Bi ²⁰⁹ (Ne ²⁰ , t)	200	37.7	100	7 1 0	10.8	0.56
$U^{238}(Ne^{20}; f)$	200	40.5	120	2280	12.6	3.35
	180	40.5	95	1660	11.5	2.92
	130	40.5	65	1130	<i>8.9</i>	2.72
$U^{238}(Ar^{40}, t)$	300	43.5	110	2790	13.3	3.0
	250	43.5	. 75	1980	10.6	2.9

Таблица 2. Результаты обработки измеренных массовых распределений.

Рис. 1. Зависимость Z (A) для реакции ²⁸⁸ U (³⁰ Ne. f). 1. Гипотеза о пропорциональности заряда массе осколка. 2. Гипотеза равного смещения заряда. 3. Гипотеза о распределении заряда согласно минимуму потенциальной энергии формирующихся при разделении осколков. Точки - экспериментальные данные.

Рис. 4. Зависимость ширины массового распределения (σ²) от параметра 2⁹/А при энергии возбуждения делящихся ядер Е^{*} = 110 Мэв.