

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Million and

1968

Дубна

P7 - 3657

1

В.Нойберт, К.Александер

НЕКОТОРЫЕ ЗАМЕЧАНИЯ ОБ ИДЕНТИФИКАЦИИ ПРОДУКТОВ РЕАКЦИЙ (H.I.,xn) ПО КРИВЫМ ВОЗБУЖДЕНИЯ

P7 - 3657

В.Нойберт, К.Александер

НЕКОТОРЫЕ ЗАМЕЧАНИЯ ОБ ИДЕНТИФИКАЦИИ ПРОДУКТОВ РЕАКЦИИ (**H.I.,xn**) ПО КРИВЫМ ВОЗБУЖДЕНИЯ

J O

Симонов и Александер^{/1/} показали при исследовании функций возбуждения различных реакций типа (Н. I., ха), приводящих к образованию « –активных ядер ^{149, 150, 151} Dy , что величина _

где

$$\langle \mathbf{E} \rangle_{\mathbf{x}} = \frac{\int_{0}^{\infty} d\mathbf{E} \mathbf{F}_{\mathbf{x}}(\mathbf{E}) \mathbf{E}}{\int_{0}^{\infty} d\mathbf{E} \mathbf{F}_{\mathbf{x}}(\mathbf{E})}$$

$$= \frac{\sigma \cdot (\mathbf{H}. \mathbf{I}. \mathbf{x} \mathbf{n}) \Sigma \Gamma}{\sigma_{\alpha} \Gamma_{\mathbf{n}}},$$
(1)

В. - энергия связи і-того нейтрона в составном ядре,

 $\epsilon_{x} \leq E > - \sum_{i=1}^{\infty} B_{in}$

число испарившихся нейтронов,

σ(H.I., x в)- экспериментальное сечение реакции,

σ - полное сечение реакции,

Г. - нейтронная ширина,

 $\Sigma\Gamma$ – суммарная ширина всех процессов распада составного ядра независимо от сорта бомбардирующего иона (¹² 14 18 16 18 19 19 20 Ne, ²² Ne) лежит в пределах

$$\frac{\epsilon_x}{x} = (6,0 - 6,5) \text{ M}_{\text{3B}}.$$
 (2)

Данные работы приводятся в таблице 1.

Большинство альфа-активных излучателей нейтронодефицитных ядер и трансурановых элементов было синтезировано в реакциях типа ((H.I., xn). Надежность идентификации массовых чисел проверялась сопоставлением результатов с выводами из систематики альфа-распадных ядер.

Экспериментальных данных о синтезе нейтронодефицитных изотопов более легких ядер при помощи реакций (Н.І.,кв) значительно меньше, чем в случае тяжелых ядер. Идентификация продуктов реакций часто проводилась химическим выделением и измерением распадных свойств дочерних ядер. При синтезе очень короткоживущих активностей, в том числе и изомеров, использовать химические методы трудно. Поэтому все больше применяется метод идентификации массового числа по кривой функции возбуждения. Однако соотношение Симонова и Александера нельзя распространять на любые массовые числа потому, что соотношение (2) установлено только для ядер с А около 150.

Мы изучали зависимость величины $\frac{\epsilon_x}{x}$ от массового числа путем анализа функций возбуждения 58 реакций типа (Н. I., x в), для которых продукты реакций сравнительно надежно идентифицировались (см. таблицу 2). Были рассчи- ϵ_x по уравнению, аналогичному соотношению (1):

$$\frac{\epsilon_{x}}{x} = \frac{\sum_{i=1}^{\log_{x}} - \sum_{i=1}^{\log_{x}} B_{in}}{x}$$
(3)

В отличие от уравнения Симонова и Александера в этом уравнении средняя энергия возбуждения $\langle E \rangle_x$ заменена энергией максимума функции возбуждения E_{exc}^{max} (в системе центра масс). Эта замена оправдывается тем, что рассчитанные Симоновым и Александером величины $\langle E \rangle_x$ не сильно отличаются от E_{exc}^{max} . Максимальное отличие величин $\langle E \rangle_x$ и E_{exc}^{max} не превышает +3 Мэв. Рассчитанное по уравнению (3) значение $\frac{\epsilon_x}{x}$ совместно с данными работы /1/ рассматривалось в зависимости от массовго числа A (рис. 1) (черные точки). На этом рисунке также показаны значения

(открытые круги), чтобы дать представление о возможных погрешностях при идентификации массовых чисел продуктов реакций. Совокупность экспериментальных данных показывает:

4

1) величина _____убывает с ростом А;

2) флуктуация экспериментальных эначений сравнительно большая и разделение "правильной" и "неправильной" областей идентификации, т.е. разница величин $\begin{array}{c} \varepsilon_x \\ \varepsilon_x \\ \varepsilon_x \end{array}$ и $\left(\begin{array}{c} \varepsilon_x \\ \varepsilon_x \end{array}\right)_1$ и $\left(\begin{array}{c} \varepsilon_z \\ \varepsilon_z \end{array}\right)_{+1}$ не во всех случаях однозначно определена; 3) в области А \leq 100 не существует достаточно экспериментальных дан-

ных для удовлетворительного анализа.

Зависимость величин — т от массового числа прямо следует из простой оценки для положения максимума функции возбуждения:

$$E_{exc}^{max} = \sum_{i=1}^{\infty} B_{in} + E_n + E_{ret} + E_{\gamma},$$

которая получается из баланса энергии ядерной реакции. $E_n = \sum_{i=1}^{x} 2T_i$ средняя энергия испарившихся нейтронов; $T_i = T_i$ температура ядра в процессе испарения i -того нейтрона; $E_{rot} = \frac{E_{y_i}}{2J_0}$; $J_0 = \frac{2}{5} \mu r_0^2 A_c^3$ - момент инерции составного ядра с массовым

числом А.

$$- = 1,4$$
 . 1,5 10^{-13} cm;

г - = 1,4 . 1,5 Г -µ - масса нуклона;

 \bar{l}^2 - среднее значение квадрата момента количества длижения составного ядра, \bar{l}^2 взято из работы²².

Вследствие зависимости величин $E_n = A^{-\frac{1}{2}}$ и $E_{rot} = A^{-\frac{5}{3}}$ значение xубывает с ростом массового числа составного ядра.

Флуктуация экспериментальных точек может быть обусловлена тем, что величина $\frac{\epsilon_x}{x}$ увеличивается с ростом числа испарившихся нейтронов и при увеличения массового числа бомбардируюшего иона. Так, например, в работе Кумпфа и Карнаухова ^{/3/}говорится, что $\frac{\epsilon_x}{x}$ для реакций Cd + ⁴⁰ Ar, приводящих к образованию ядер 149, 150, 151 Dy, достигает эначения (8,5-11,0) Мэв. Кроме того, в температуру ядра входит параметр плотности уровней ($T = a^{-4}$), который не плавно меняется с массовым числом как в модели газа Ферми $a = \frac{A}{8,5}$ /Мэв⁻¹, но зависит от оболочной структуры данного ядра

Из-за показанных неопределенностей в методе Симонова и Александера мы пытались определить массовое число расчётом каскадного испарения нейтронов из составного ядра, причём в качестве начальной энергии возбуждения составного ядра мы брали энергию максимума в кривой возбуждения Е

Температура t,, характеризующая термодинамическое равновеске между

5

первым испарившимся нейтроном и оставшимся составным ядром, равняется в мо-

дели Ферми

$$t_{1} = \sqrt{\frac{(E_{exc}^{max} - E_{net} - B_{1n}) 8,5}{A}}.$$
 (5)

Из величины t₁ вычисляется температура ядра T₁, определяющая спектр первого испарившегося нейтрона

$$\frac{1}{T_1} = \frac{1}{t_1} - \frac{2}{E_{\text{exc}}^{(1)}}$$

$$E_{\text{exc}}^{(1)} = E_{\text{exc}}^{\text{max}} - E_{\text{met}} - B_{1\text{m}}.$$
(6)

Для испарения второго нейтрона имеем в термодинамическом равновесии следующую, оставшуюся после испарения первого нейтрона энергию возбуждения:

$$(E_{exc} - B_{1n} - E_{ret} - 2T_1) - B_{2n}$$

Зная эту энергию, можно аналогичным путем вычислить величины t и T. Если энергия возбуждения оставшегося после испарения i -ого нейтрона (не считая ротационной энергии) стала меньше энергии связи следующего нейтрона, то кончается процесс каскадного испарения нейтронов.

При проведении наших расчётов предполагалось, что ротационная энергия не меняется и только после окончания испарения нейтронов излучается в виде гамма-квантов. Это справедливо, так как испарение нейтронов несущественно меняет распределение спинов оставшегося ядра.

В таблице 3 приведены данные, полученные описанным путем. Сравнение экспериментальных значений \vec{E}_n Симонова и Александера⁵⁷ с теоретическими значениями показывает, что этот метод позволяет довольно точно, рассчитать среднюю энергию испарившихся нейтронов и тем самым служит средством для идентификации продуктов реакций (H.I., **xn**). Последние столбцы таблицы 3 показывают, что каскадным расчётом в большинстве случаев получается правильное число, т.е. что он дает правильное число испарившихся нейтронов. Только в случае реакции ¹⁴² Nd (¹²C, 3n)¹⁵¹ Dy по расчёту каскадного испарения не получается правильная идентификация.

Для тех точек на рис. 1., которые лежат вне "правильной" области или на ее границе, например, реакции ²⁰³ Tl (12 C, 8 m) ²⁰⁷ Fr, ²³⁸ U (12 C, 6 m) ²⁴⁴ Cf, ¹³⁷ Ba(²² Ne, 9 m)¹⁵ Dy и т.п., мы проверили идентификацию продуктов реакций каскадным

6

ТАБЛИЦА І

Реакция	E	[A]	B	C	D	F	F	-
¹⁴² Nd(C, 3n) Dy	45,4	26,7	16,9	34,6	6,2	14,2	2,7	
¹⁴² Nd (¹² C, 4g) ¹⁵⁰ Dy	59,8	34,6	26,7	44,8	6,3	II,0	3,0	
¹⁴² Nd(¹² C, 5n) ¹⁴⁹ Dy	75,6	44,8	34,6	53,2	6,2	10,2	3,7	
¹⁴¹ Pr (¹⁴ N, 4n) ¹⁵¹ Dy	54,0	33,8	24,0	41,7	5,0	10,0	2,5	
¹⁴¹ Pr (¹⁴ N, 5n) ¹⁵⁰ Dy	70,2	4I,7	33,8	5I,9	5,7	9,1	3,I	
¹⁴¹ Pr (¹⁴ N, 6n) ¹⁴⁰ Dy	86,I	5I,9	41,7	60,3	5,7	8,9	3,7	
¹⁴⁴ Nd (¹² C, 5n) ¹⁵¹ Dy	68,6	42,8	33,0	50,7	5,I	8,9	3,0	
¹⁴⁴ Nd (¹² C, 6n) ¹⁵⁰ Dy	85,2	50,7	42,8	60,9	5,7	8,5	3,5	
¹⁴⁸ Pr (¹⁵ N, 6π) ¹⁵⁰ Dy	85,5	50,7	42,8	60,8	5,8	8,5	3,5	
Pr (N, 7 n) 149 Dy	100,8	60,9	50,7	69,3	5,7	8,4	3,9	
¹⁴⁰ Ce (¹⁶ O, 5 n) ¹⁵¹ Dy	71,4	42,8	33,0	50,7	5,7	9,6	3,5	
140 Ce (16 O, 6n) 150 Dy	87,2	50,7	42,8	60,9	6,I	8,9	3,8	
140 16 149 Ce (O, 7n) Dy	102,3	60,9	50,7	69,3	5,9	8,6	4,I	
136 Bg (Ne, 5n) Dy	73,0	42,8	33,0	50,7	6,0	10,0	3,7	
¹³⁶ Ba (²⁰ Ne, 6n) ¹⁵⁰ Dy	88,0	50,7	42,8	60,9	6,2	9,0	3,9	
¹³⁶ Ba (²⁰ Ne, 7n) ¹⁴⁹ Dy	102,5	60,9	50,7	69,3	5,95	8,6	4,I	
¹³⁷ Ba (² Ne, En) ¹⁵¹ Dy	88,2	49,6	39,8	57,5	6,3	9,7	4,4	
¹³⁷ Ba (² Ne, 7n) ^{15°} Dy	101,9	57,5	49,6	67,7	6,3	8,7	4,2	
¹³⁷ Be (Ne, 8 n) Dy	116,9	67,7	57,5	76,I	6,4	8,5	4,5	
⁴ Ce (¹⁶ C, 7n) ¹⁵³ Dy	100,4	58,3	48,5	66,2	6,0	8,6	4,3	
¹²⁹ La (¹⁹ F, 7n) ¹⁵¹ Dy	99,8	58,3	48,5	66,2	5,9	8,6	4,2	
¹³⁹ La (F ¹⁹ F, 8n) ¹⁵ Dy	II4,5	66,2	58,3	76,4	6,0	8,0	4,2	
¹³⁹ La (¹⁹ F, 9n) ¹⁴⁵ Dy	129,0	76,4	66,2	84,8	5,9	7,8	4,4	
¹³⁸ Ba (²⁰ F, 7 n) ¹⁵¹ Dy	100,1	58,3	48,5	66,2	6,0	8,6	4,2	
13. 20 150 Ba (Ne, 8n) Dy	115,5	66,2	58,3	76,5	6,2	8,2	4,3	
158 Be (Ne, 9n) 140 Dy	Į29,4	76,5	66,2	84,8	5,9	7,9	4,5	
¹³⁷ Ba (²² Ne, 8n) ¹⁵¹ Dy	II6,9	64,8	55,0	72,7	6,5	8,8	4,9	
$^{137}Be(^{22}Ne, 9n)^{150}Dy$ $^{140}Ce(^{16}O, 7n)^{149}Dy$	I3I,0 I28,7	72,7 73,I	64,8 63,4	80,6 81,I	6,5	8,3	5,0	

ТАБЛИЦА 2

.

ķ	Реакция	Лите- ратура	E ^{mex} exo	•	B	c	D	E	F
61	⁸¹ V (¹⁵ N, 5 n) ⁶¹ Zn	171	89 <u>+</u> 2	53,0	40,I	63,6	7,2	12.2	4,2
	⁵¹ V(¹³ C, 3 n) ⁶¹ Ca	171	59+2	27,6	18,8	39,8	10,0	20,I	4,8
	⁵¹ V(¹² C, 2 m) ⁶¹ Cu	/8/	53,5	19,8	II,I	32,I	16,8	42,4	7,I
62	⁵¹ V (¹⁴ N, 3n) ⁶² Zn	171	52 <u>+</u> 4	29,5	20,I	42,3	7,5	15,8	2,4
64	⁵¹ V (. ³⁶ O, 3n) ⁶⁴ Ga	/9/	63	32,6	20,3	42,7	10,1	21,4	5,I
121	¹¹³ In (C, 4 n) Cs	/10/	60,6	39,7	30,5	51,3	5,2	10,3	I,9
130	¹²² Sn (¹² C, 4 n) ¹³⁰ Ba	/II/	54,3	34,4	26,6	44,6	5,0	9,2	·I,9
134	¹²⁸ Te(¹² C, 6a) ¹³⁴ Ce	/12/	85	51,8	43,7	62,2	5,5	8,3	3,3
	130 12 134 Te(C,8n) Ce	/12/	104,5	64,5	56,4	75,0	5,0	6,9	3,3
	¹²⁴ Sa (¹⁶ 0, 6n) ¹³⁴ Ce	/12/	80±5	51,8	43,7	62,4	4,7	7,3	2,5
	¹²⁷ J(¹² C, 5 n) ¹³⁴ Pr	/23/	79	47,5	36,7	56,4	6,3	10,6	3,75
135	¹²⁸ Te(¹² C, 5n) ^{1,35} Ce	/12/	70,5	43,7	33,7	51,8	5,4	9,2	3,4
	¹⁵⁰ Te(¹² C,7n) ¹⁵⁵ Ce	/12/	85,9	56,4	48,3	64,5	4,2	6,3	2,1
	¹²⁴ Sn (¹⁰ O, 5n) ¹³⁵ Ce	/12/	65 <u>+</u> 2	43,7	33,7	51,8	4,25	7,8	2,5
137	¹³⁰ Te(¹² C, 5 n) ^{137m} Ce	/12/	68,4	38,7	29,2	48,3	5,9	9,8	4,0
138	¹³⁰ Te(¹² C,4a) ^{138m} Ce	\$/II/	47,3	29,2	22,0	38,7	4,5	8,4	I,7
I49	Nd (C, 7n) Dy	/13/	97	60,9	50,7	69,3	5,15	7,7	3,5
-	¹³⁶ Ba (²⁰ Ne, 7n) ¹⁴⁹ Dy	/I3/	100	60,9	50,7	69,3	5,6	8,2	3,8
150	144 Nd (¹² C, 6n) ¹⁵⁰ Dy	/13/	84	50,7	42,8	60,9	5,55	8,2	3,3
	136 20 150 Bat (Ne, 6n) Dy	/13/	85	50,7	42,8	60,9	5,7	8,4	3,4

 x
 x-1
 x+1

 |A|: Σ
 B_{in} (MeV)
 |B|: Σ
 B_{in} (MeV)
 |C|: Σ
 B_{in} (MeV)

 Причём
 i=1
 i=1
 i=1
 i=1

продолжение таблицы 2

A	Реакция	Лите- ратура	Eeze	A	B	C	D	E	F
151	¹⁴⁰ ¹⁶ Ce (0, 5n) ¹⁵¹ Dy	/I4/	71	42,8	33,0	50,7	5,65	9,5	3,4
	¹⁴¹ Pr(¹⁶ O, 6n) ¹⁵¹ Ho	/14/	84	52,6	44,4	6I,3	5,23	7,9	3,2
	¹⁴⁴ Nd (¹² C, 5n) ¹⁵¹ Dy	/I3/	67	42,8	33,0	50,7	4,8	8,5	2,7
	Nd (0, 6n) Er	/I3/	70	42,8	33,8	50,7	5,4	9,I	3,2
152	¹⁴¹ Pr (¹⁶ O, 5n) ¹⁵² Ho	/15/	85	54,5	45,9	65,4	5,I	7,8	2,8
	Pr (¹⁶ O, 5n) ¹⁵² Ho	/14/	72	44,4	34,3	52,6	5,5	9,4	3,2
153	Nd (¹⁶ 0, 5n) ¹⁵³ Er	/15/	71	45,9	35,5	54,5	5.0	8.9	2.8
I54	Nd (0, 4 n) Er	/15/	55	35,5	27,4	45,9	4,9	9,2	I,8
156	¹⁴⁴ Sm (¹⁰ F, 7n) ¹⁵⁰ Lu	/22/	102	68,6	57,4	78,I	4,8	7,4	3,0
157	¹⁴⁴ Sm (²⁰ Ne, 7n) ¹³⁷ Hí	/22/	104 <u>+</u> 3	70,5	59,0	80,2	4,8	7,5	3,0
158	¹⁴⁴ Sm (²⁰ Ne, 6n) ¹⁵⁸ Hf	/22/	93	59,0	49,7	70,5	5,7	8,7	3,2
177	^{1^8} Yb (^{1^} 0, 7n) ¹⁷⁷ Pt	/16/	94	66,6	55,9	75,6	3,9	6,4	2,3
180	¹⁷² Yb (¹⁶ O, 8a) ¹⁸⁰ Pt	/16/	105	71,2	62,6	8I,6	4,2	6,I	2,6
I8I	¹⁷² Yb (¹⁶ O, 7n) ¹⁸¹ Pt	#I6 /	92	62,6	52,5	71,2	4.2	6,6	2.6
182	¹⁷² Yb (¹⁸ O, 6a) ¹⁸² Pt	/16/	78	52,5	44,2	62,6	4,3	6,I	2.2
	¹⁷⁴ Yb (¹⁶ 0, 8n) ¹⁸² Pt	/16/	108	68,7	60,4	78,8	4,9	8.8	3.2
183	¹⁷⁴ Yb (¹⁶ 0, 7n) ¹⁸³ Pt	/16/	9 I	60,4	50,6	68,7	4,4	6,8	2,8
187	¹⁷⁹ Hf (⁸⁴ N, 6n) ¹⁸⁷ Au	/17/	74,6	50,5	42,4	60,3	4,I	6;5	2.0
189	¹⁸¹ Ta (¹² C, 4 n) ¹⁸⁹ Au	/17/	53,0	33,0	25,3	42,4	5,0	9,2	2,6

продолжение таблицы 2

A	Реакция	Лите- рату- ра	E exc		B	c	D	E	F
205	¹⁹⁷ Au (¹⁶ O, 8 n) ²⁷⁵ Fr	/7/	99	66,3	58,0	76,I	4,I	5,9	2,5
	¹⁹⁷ Au (¹⁴ N, 6n) ²⁰⁵ Ra	171	77,5	48,8	39,5	56,9	4,8	5,4	2,9
206	¹⁹⁷ Au (¹⁴ N, 5n) ²⁰⁸ Rn	171	67 <u>+</u> 3	39,5	31,8	48,8	5,5	8,8	3,0
207	¹⁹⁷ Au (¹⁴ N, 4 m) ²⁰⁷ Ra	/7/	55 <u>+</u> 2	31,8	22,9	39,5	5,8	10,7	3,I
	²⁰³ Ti (¹² C, 8n) ²⁰⁷ Rn	/18/	82	62,0	54,I	7I,4	2,5	4,0	1,2
212	²⁰⁵ TI (¹² C, 5n) ²¹² Fr	/18/	54	34,5	26,I	4I,7	3,9	7,0	2,1
217	209 Bi $\binom{12}{C}$, $4n$ $\binom{217}{Ac}$	/19/	40,5	27,8	21,3	35,8	3,2	6,4	1,0
218	²⁰⁹ Bi (¹² C, 3n) ²¹⁸ Ac	/19/	30,8	21,3	13,6	27,8	3,I	8,6	8,5
244	238 U (³² C, 6n) ²⁴⁴ Cf	/20/	49,2	38,3	32,2	46,0	I,8	3,0	0,5
246	236 U (¹² C, 4n) ²⁴⁶ Cf	/20/	36,3	24,9	19,1	32,2	2,9	5,7	0,8
248	²³⁸ U (¹⁶ O, 6 n) ¹⁴⁸ Fm	/21/	68	39,0	32,7	47,5	4,9	7,I	2,9
	²³⁸ U (¹⁸ 0, 8 n) ²⁴⁶ Fm	/21/	74,2	50,7	44,5	58,5	2,9	4,2	Ι,7
249	²³⁸ U (¹⁶ O, 5n) ²⁴⁰ Fm	/21/	53,5	32,7	25,3	39,0	4,2	7,I	2,4
250	238 U (¹⁶ 0, 6n) ²⁵⁰ Fm	/21/	56,2	37,0	3I,I	44,5	3,2	5,0	I,7
	²³⁸ U (¹⁰ F, 7n) ²⁵⁰ My	/21/	70,2	45,9	38,3	52,3	3,5	5,3	2,I
	²⁴² Pu (¹² C, 4n) ²⁵⁰ Fm	/20/	37	25,3	19,4	32,8	2,9	5,9	0,8
251	²³⁸ U (¹⁸ O, 5n) ²⁵¹ Fm	/21/	49,2	3I,I	24,0	37,0	3,6	6,3	2,5
254	²³⁸ U(²² Ne, 6n) ²⁵⁴ 10	⁰² /2I/	63,9	37,6	31,6	45,2	2 4,4	6,5	2,2
256	²⁴⁴ Am (¹⁸ O, 5n) ²⁵⁸ I	w /2I/	47,5	32,7	25,3	38,8	3 3,0	5,6	1,5

расчётом числа испарившихся нейтронов. Во всех этих случаях исключением является только реакция ²⁰³ TI (¹² C, 8a) ²⁰⁷ Fr , результаты расчёта согласуются с экспериментально установленной идентификацией. Поэтому мы считаем каскадный расчёт дополнительным методом для идентификации продуктов реакций.

	Таблица З			
Реакция	Е _л эксп.(<u>+</u> 15%)` /5/	E_ pacy.	Оставшаяся термич.энерг. после испарен. и нейтр.	Энергия связи (x+1}-ого нейтр. x') /
¹⁴⁴ Nd (¹² C, 5n) ¹⁸¹ Dy	Ĩ2,8	13,7	6,0	7,9
¹⁴⁴ Nd(¹² C, 6n) ¹⁵⁰ Dy	18,5	17,7	6,7	10,2
¹⁴² Nd (¹² C, 3n) ¹⁵¹ Dy	7,6	7,I	9,1	7,8
¹⁴² Nd (¹² C, 5n) ¹⁵⁰ Dy	9.8	10,0	8,3	10,2
¹⁴² Ce (¹² O, 45n) ¹⁴⁹ Dy	12,5	14,0	7,3	8,4
¹⁴⁰ Ce(¹⁶ O, 6n) ¹⁵¹ Dy	14,2	12,0	I,7	7,9
¹⁴⁰ Ce(¹⁶ O, 7n) ¹⁵⁰ Dy	17,5	15,7	0,5	10,2
¹⁴⁰ Ce (¹⁶ O, 7 n) ¹⁴⁹ Dy	22,0	19,0	0	8,4

x/ взята из таблиц'Сигера^{/6/}.

Следует отметить, что ни один из вышерассмотренных методов не позволяет с полной уверенностью установить массовые числа продуктов реакции. Наиболее надежным путем идентификации является сравнение функции возбуждения данной реакции (H.I., xn) с функцией возбуждения каналов (H.I.(x-1)n) или (H.I., (x+1)n), если продукты этих реакций известны.

В заключение авторы выражают благодарность В.А.Карнаухову и Г.Юнгклауссену за дискуссии.

Литература

- 1. G.N. Simonoff, J.M.Alexander, Phys. Rev., 133, B93 (1964).
- 2. В.В.Бабиков. Препринт ОИЯИ Р-1351, Дубна 1963.
- Г.Кумпф, В.А.Карнаухов. ЖЭТФ <u>46</u>, 1545 (1964).
- 4. N.N.Abdelmalek, V.S.Stavinsky. Nucl. Phys., 58, 601 (1964).
- 5. G.N.Simonoff, J.M.Alexander, Phys. Rev., 133, B104 (1964).
- 6. P.A.Seeger, Nucl. Phys., 25, 1, (1961).
- 7. А.С.Карамян и др, ЖЭТФ 36, 621 (1959).
- 8. А.С.Карамян, А.А.Плеве. ЖЭТФ 40, 1541 (1961).
- 9. А.С.Карамян, А.А.Плеве. ЖЭТФ 37, 654 (1969).
- 10. К.Александер, В.Нойберт, Х.Роттер. Препринт ОИЯИ Р7-3185, Дубна 1967г.
- 11. H.F.Brinckmann, C.Heiser, K.F.Alexander, W.Neubert, H.Rotter. Nucl. Phys. <u>81</u>, 233 (1965).
- 12. T.J.Klingen, G.R.Choppin. Phys.Rev., 130, 1990 (1963).
- 13. G.N.Simonoff, J.M.Alexander, Phys.Rev., 133, B93 (1964).
- 14. R.D.Macfarlane, Phys.Rev., 130, 1491 (1963).
- 15. R.D.Macfarlane, Phys.Rev., 131, 2176 (1963).
- 16. A.A. Siivola, Nucl. Phys., 84, 385 (1966).
- 17. C.Heiser, K.F.Alexander, H.F.Brinckmann, N.Nenov, W.Neubert, H.Rotter. Nucl. Phys., <u>A96</u>, 327 (1967).
- 18. R.D.Macfarlane, Phys. Rev., 133, B1373 (1964).
- Х.Роттер, А.Г.Демин, Л.П.Пашенко, Х.Ф.Бринкманн. Препринт ОИЯИ Р-2465, Дубна 1965.
- 20. T.Sikkeland, S.C. Thompson, A. Ghiorso. Phys. Rev., <u>112</u>, 453 (1958).
- 21. Е.Д.Донец. Диссертация ОИЯИ Дубна, 1966
- 22. R.D.Macfarlane, Phys. Rev., 137, B1448 (1965).
- 23. J.E.Clarkson, R.M.Diamond, F.S.Stephens, I.Perlman. Nucl. Phys., A93, 272 (1967).

Рукопись поступила в издательский отдел З января 1968 года.

