C 341.15 A-461 311 1967 объединенный ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ Дубна P7 - 3185 and the state of the

1967.

К. Александер, В. Нойберт, Х. Роттер

новый нейтронодефицитный изомер цезия

P7 - 3185

К. Александер, В. Нойберт, Х. Роттер

НОВЫЙ НЕЙТРОНОДЕФИЦИТНЫЙ ИЗОМЕР ЦЕЗИЯ

OGSQUERIGENSA REACTION I ENCLOSED ARAD GOVERNMENT

4884/ 20-

1. Введение

Целью настоящей работы являлось дальнейшее исследование ядер в области Z ≥ 54 и N ≥ 78, в которой ядра должны быть деформированными ^{/1,2/}. Описание экспериментальной методики дано ранее ^{/3/}.

2. Экспериментальные результаты

При облучении ускоренными ионами ${}^{14}_{5+}$ N мишени кадмия, обогащенной изотопом 112 Cd (89,7%), была найдена новая активность с периодом полураспада Т $_{4} = (0,5\pm0,05)$ сек. Гамма-спектр и распад этой активности показаны на рисунках 1 и 2. В гамма-спектре кроме рентгеновского пика наблюдается линия с энергией $E_{\gamma} = 98\pm10$ кэв. Такая же активность была возбуждена при облучении ускоренными ионами ${}^{12}_{4+}$ С мишени индия, обогащенной изотопом 113 In (66%).

Идентификация новой активности проводилась с помощью перекрестных реакций. Функции возбуждения реакций ^{1/12}Cd + ¹⁴N и ¹¹³In + ¹² Симеют вид реакций с образованием составного ядра. Наиболее вероятные реакции с испарением нейтронов:

¹¹²Cd (¹⁴ N, xn)^{126 - x} Cs ¹¹³ In (¹² C, xn)^{125 - x} Cs.

Чтобы ясключить реакции типа (HI, a xn) и (HI, pxn), были изучены реакции, указанные в левом столбце следующей таблицы 1:

Отсутствие данной активности среди продуктов этих реакций позволяет исключить реакции, указанные на правом столбце. Отсюда следует, что новая активность принадлежит цезию. Массовое число определялось следующим образом. Александер и Симонов^{/4/} показали, что в области массовых чисел А = 149 - 151 для различных реакций с испарением х нейтронов выполняется соотношение

$$\frac{E_{exc} - \sum_{i=1}^{\infty} Bin}{x} = \frac{E_{exc} - \sum_{i=1}^{\infty} Bin}{x} = 5.0 - 6.5 \text{ Mag},$$

где Е_{етс} – энергия возбуждения, соответствующая положению максимума сечения образования данной активности с учетом полного сечения^{/8/} Віп – энергия связи і-ого нейтрона^{/9/}.

В данном случае величина $\frac{\epsilon_x}{x}$ принимает следующие значения: ¹¹² Cd (¹⁴ N, xn) ^{126-x}Cs $\frac{\epsilon_4}{4} = 7,0 \pm 1,0$ Мэв $\frac{\epsilon_5}{5} = 3,75 \pm 0,8$ Мэв ¹¹³ Jn (¹² C, xn) ^{125-x}Cs $\frac{\epsilon_9}{3} = 6,1 \pm 1,3$ Мэв $\frac{\epsilon_4}{4} = 2,3 \pm 0,9$ Мэв.

На основе этих данных трудно сделать однозначный вывод о величине массового числа. Для исключения этой неоднозначности была измерена функция возбуждения реакции ¹¹³ In (12 C, 4n) 121 Cs. Изотоп ¹²¹ Cs был обнаружен недавно ${}^{/10/}$. Период

полураспада $T_{\chi} = 2,3\pm0,3$ мик согласуется с данными этой работы $^{/10/}$ (рис.4). Значение $\frac{\epsilon_4}{4}$ для реакции образования активности с $T_{1/2}=2,3$ мин равно 5,2 ± 1,0, что согласуется с идентификацией этой активности как 12 Cs. Рассчитанная по интенсивности рентгеновской линии с учетом отношений $\frac{K}{\beta^+}$ и $\frac{\epsilon_k}{\epsilon_{L_1}}$ и $\frac{\epsilon_k}{\epsilon_{L_1}}$ функция возбуждения реакции 113 Га (12 C, 4n) 121 Cs. показана на рис. 3. Сечение образования основного состояния 121 Cs. показана на рис. 3. Сечение образования основного состояния 121 Cs. превышает сечение образования активности с периодом полураспада 0,5 сек в 3-4 раза и максимум расположен примерно на 10 Мэв выше максимума функции возбуждения активности с $T_{1/2}$ = =0,5 сек. Такие данные можно интерпретировать следующим образом:

- а) Ядро ¹²² Сѕ претерпевает К -захват с периодом $T_{\chi} = 0,5$ сек. Такой период в ядре ¹²² Хе должен иметь сильную компоненту β^+ -распада, т.е. отношение $\frac{\beta^+}{K}$ должно превышать 25. В распаде аннигиляционного пика отсутствует компонента с периодом полураспада 0,5 сек. Кроме того, величина периода полураспада противоречит систематике периодов полураспада нечетно-нечетных нейтронодефицитных изотопов цезия (¹³² Сѕ Т_и = 6,48 дн.; ¹³⁰ Сѕ Т_и = 30 мин; ¹²⁶ Сѕ Т_и = 3,9 мин; ¹²⁶ Сѕ Т_и = = 1,6 мин, ¹²⁴ Сѕ Т_и = 12 мин).
- б) Другой возможностью является, таким образом, только испускание гаммаквантов с возбужденного состояния ядра ¹²² Cs , т.е. активность с Т , =0,5 сек обусловлена распадом изомера ^{122m} Cs .

2) Активность с периодом полураспада 0,5 сек является изомером ¹²¹ Сs. Сдвиг положения максимума функции возбуждения образования активности с Т_½= 0,5 сек в область более низких энергий и уменьшение сечения образования обусловлены сравнительно малым спином изомерного состояния. Такой сдвиг максимума функции возбуждения наблюдался при образовании основного состояния ¹⁴⁹ Тb , спин которого меньше спина изомерного состояния⁵.

Определение мультипольности изомерного перехода проводилось путем сравнения экспериментального эначения $\frac{1}{1_{Y}} = \alpha_{K} = 7,3 \pm 1,2$ с теоретическими значениями α_{K} , приведенными в таблице $\frac{2}{9}$.

	Таблица 2							
α	EĪ	E2	E3	E4	M 1	M2	M 3	M4
a _K	0,178	1,13 .	5,82	28,9	0,728	6,64	44,4	283
α _{κ+м}	0,033	Q.69	16 ,8 4	310,8	Q.135	1,995	30,05	454
<u>к</u> L+м	5,4	1,64	0, 3 5	0,0 93	5,4	3, 31	1,48	0,625

Такое сравнение показало, что возможны мультипольности ЕЗ и М2. В случае мультипольности ЕЗ в спектре конверсионных электронов должен присутствовать сравнительно сильный пик, связанный с конверсией на L + M - оболочках. Сравнение спектров электронов внутренней конверсии изомерного перехода ^{128 m} La ($T_{1/2} = 0.56$ сек, $E_{\gamma} = 104$ кэв, мультипольность ЕЗ) ^{/7/} и данного перехода кода, измеренных с помощью кремниевого детектора S(L1) (рис. 5), показывает, что мультипольность ЕЗ исключается. По-видимому, изомерный переход имеет мультипольность М2. Фактор запрета в этом случае составляет $F = \frac{T_{1/2} - 3KC}{T_{1/2} - MOW} = 1.5 \cdot 10^4$.

3. Обсуждение

Обнаруженный изомер относится к сильно нейтронодефицитным изотопам пезия. У ядер подобных изотопов Ва и Хе обнаружены признаки деформации. Ожидается, что ядра цезия с $A \leq 122$ также будут деформированными^{/10/}. По исследованиям Кумар и Баренже^{/11/} ядра с нечетным Z должны иметь небольшой положительный параметр деформации. Если изомер с периодом полураспада $T_{ij} = 0,5$ сек принадлежит¹²¹ Св., то наиболее вероятным изомерным уровнем является уровень $1/2^{-}/550/$, близкий основному состоянию $5/2^{+}/413/$. Данный переход – сильный запрещен правилами отбора по асимптотическим квантовым числам. Если изомерный переход принадлежит¹²² Св., то трудно делать какие-либо предположения относительно природы изомерного состояния, поскольку характеристики основного состояния неизвестны. В заключение авторы выражают благодарность проф. Г.Н. Флерову за интерес к работе, группе эксплуатации цаклотрона У-150 во главе с В.С. Алфеевым, обеспечившей четкую работу ускорителя, Х. Хайзеру и М. Гирр за помощь при измерениях и обработке данных.

Лятература

- 1. R.K. Sheline, T. Sikkeland, R. Chanda, Phys. Rev.Letters 7, 446 (1961)
- 2. E. Marshalek, L. Whu Person, R.K. Sheline, Rev.Mod.Phys.35, 108(1963)
- 3. H.F. Brinckmann, C. Heiser, K.F. Alexander, H. Rotter, W. Neubert Nucl. Phys. <u>81</u>, 233 (1966)
- 4. G.N. Simonoff, J.M. Alexander, Phys. Rev. 133, B93 (1964)
- 5. R.D. Maciarlane, Phys. Rev. <u>126</u>, 274 (1962)
- 6. Л.А. Слив. Гамма-лучи, изд. АН СССР, Москва-Ленинград 1961.
- 7. В. Нойберт, Х. Бринкманн, Х. Роттер, К. Александер, Х. Хайзер. Препринт ОИЯИ, Р7-2966, Дубна 1966.
- 8. В.В. Бабиков. Препринт ОИЯИ Р-1351, Дубна 1963.
- 9. P.A. Seeger, Nucl. Phys. 25, 1 (1961)
- 10. J.D'Auria, Thesis Yale University 1967
- 11. M.Baranger, K.Kumar, Phys. Rev. Letters 12, 73 (1964)

Рукопись поступила в издательский отдел 1 марта 1967 г.

Число импульсов 10³ ta (MHH)

Рис. 4. Распад основного состояния ¹²¹Сs (измеренный на рентгеновской линии).

- Рис. 5. Сравнение спектров электронов внутренней конверсии из реакций Sb + ¹²C и ¹¹³ In + ¹²C. Нормирование на одинаковую тоящину мишеней и интенсивность потока нонов. Спектры были измерены полупроводниковым детектором Si(Li) эффективной толщиной 2 мм и площадью 19 мм². Толщина мишени 113
 - $1,1 \text{ MF CM}^{-2}$ Sb : 0,8 MF CM $^{-2}$. In :