

P7 - 3022

29/1 -66

В.И. Илющенко, М.Б. Миллер, В.Л. Михеев, С.М. Поликанов, В.А. Щеголев

СИНТЕЗ ИЗОТОПОВ ФЕРМИЯ С МАССОВЫМИ ЧИСЛАМИ 247 и 246

P7 - 3022

В.И. Илющенко, М.Б. Миллер, В.Л. Михеев, С.М. Поликанов, В.А. Щеголев

СИНТЕЗ ИЗОТОПОВ ФЕРМИЯ С МАССОВЫМИ ЧИСЛАМИ 247 и 246

Направлено в журнал "Атомная энергия"

A679/1 mp

Введение

К настоящему времени изотопы фермия изучены от Fm²⁴⁸ до Fm^{257^{/1/}} Сообщение о свойствах Fm²⁴⁶ (E_a = 8,23+0,02 Мэв и T₁₄ =1,4+0,6 сек имеется лишь в работе^{/2/}, в которой исследовалась реакция U²³⁸(0¹⁶,5m)Fm²⁴⁸ Целью данной работы было исследование свойств нейтронодефицитных изотопов фермия в реакциях с испарением четырех и пяти нейтронов при облучении Pu²³⁹ ионами C¹². Методика эксперимента была аналогична использованной ранее в работах^{/3-6/}. Использовался метод сбора атомов отдачи с помошью направленной газовой струи и последующая регистрация а -излучения продуктов реакций Si(Au) -детекторами. Двухмерный анализ полученных а спектров осуществлялся на время-амплитудном анализаторе с числом амплитудных каналов 400 и временных - 32.

Ниже приводятся результаты для отдельных изотопов.

Результаты экспериментов

Fm²⁴⁷, Fm^{247m}. На рис. 1а представлен один из спектров а -частип, полученный при энергии ионов С¹², равной 74 Мэв в лабораторной системе координат. Цикл накопления активности на сборнике г, равный циклу измерения ее Si(Au) -детектором, составлял 25 сек. В спектре наблюдаются группы а -частип с энергией E_a = 7,87±0,05; 7,93±0,05 и 8,18±0,03 Мэв. Обращает на себя внимание тот факт, что аппаратурная ширина групп с E_a =7,87 и

 $E_{\alpha} = 7,93$ существенно больше, чем ширина линии с $E_{\alpha} = 8,18$ Мэв. Это служит указанием на то, что, по-видимому, первые две группы α -частиц имеют сложную структуру.

Кривые распада активностей приведены на рис. 2. Они получены при регистрации *а* -спектров последовательно расположенными Si(Au) -детекторами, один из которых регистрировал *а* -активность со сборника первые 25 сек после конца облучения, а другой - последующие 25 сек. Измеренные периоды полураспада равны 32+7; 35+10 и 9,2+2,3 сек для *а* -групп с

E_a = 7,87+0,05; 7,93+0,05 и 8,18+0,03 Мэв соответственно. На рис. 3 приведены функции возбуждения для этих активностей. Точки на кривых для каждой из трех активностей были получены в одних и тех же облучениях, что исключает ошибки в определении относительного положения этих точек. Сечения рассчитывались в предположении, что атомы отдачи выбиваются полностью из слоя мишени толщиной 500 мкг/см², а коэффициент сбора атомов отдачи фермия равен 50%. Значение 50% было экспериментально получено для атомов отдачи тербия в реакции Pr¹⁴¹ (С¹², 4n) Ть¹⁴⁹в. По форме и положению все три функции возбуждения находятся в хорошем согласии с расчетными значениями для реакции Ри (С ,4n) Fm . Наблюдаемый максимум функций возбуждения при энергии ионов С¹² 74-72 Мэв находится в хорошем согласии не только с расчетом для реакции Ри (С¹²,4m), но и с экспериментальными данными по положению максимума функции возбуждения для реакции Ри²⁴⁰ (С¹²,4m) Fm²⁴⁸. Максимум функции возбуждения для последней реакции находится при энергии ионов С 12, равной 70 Мэв, как по данным работы , так и по результатам наших измерений.

На основании совпадения периодов полураспада и функций возбуждения можно сделать вывод, что активности с $E_{\alpha} = 7,87\pm0,05$ и $7,93\pm0,05$ Мэв связаны с распадом Fm^{247} из одного состояния. Для более точного определения периода полураспада Fm^{247} в этом состоянии производились измерения в цикле с r = 200 сек. Результаты измерений приведены на рис. 2, при этом получено значение $T_{14} = 35\pm4$ сек.

В соответствии с положением функции возбуждения можно сделать вывод, что α -активность с $E_{\alpha} = 8,18\pm0,03$ Мэв и $T_{\chi} = 9,2\pm2,3$ сек также относится к изотопу Fm^{247} . По-видимому, эта активность связана с распадом Fm^{247} из изомерного состояния. Однако, конечно, имеющихся данных недостаточно для четкого определения того, какие из активностей связаны с распадом из основного состояния, а какие с распадом из изомерного.

Нами были поставлены опыты по наблюдению а -распада Е 247 /6/

которые дали для верхней границы соотношения ветвей *а* -расцада и электронного захвата Fm²⁴⁷ величину *а*/ Е.С.≥1. Таким образом, из имеющихся данных следует, что изотоп Fm²⁴⁷ испытывает в основном *а* -раснад. В заключение необходимо отметить, что полученные при облучении Pu²³⁹ ионами C¹² данные о свойствах Fm²⁴⁷ находятся в хорошем согласии с результатами, полученными нами при синтезе изотопа Fm²⁴⁷ в реакции Np²³⁷ (N¹⁵, 5n)Fm²⁴⁷.

<u>Fm²⁴⁶</u>. В спектре на рис. 16, измеренном при энергии ионов 78 Мэв и *r* = 6,4 сек, имеется *a* -группа с $E_a = 8,25\pm0,03$ Мэв. Измерения периода полураспада дают для этой активности $T_{ij} = 1,6\pm0,4$ сек. Полученные нами значения энергии *a* -частиц и периода полураспада находятся в хорошем согласии с $E_a = 8,23\pm0,02$ Мэв и $T_{ij} = 1,4\pm0,8$ сек, определенными в работе^{/2/} для Fm^{246} . Функция возбуждения этой активности приведена на рис. 3. К сожалению, из-за недостатка энергии ионов С¹² удалось снять только левую часть функции возбуждения. Ее положение хорошо согласуется с расчетным для реакции Pu^{239} (C^{2} , 5n). Таким образом, совпадение наших данных с данными работы^{21/2} и положение функции возбуждения позволяют сделать вывод, что эта *a* - активность принадлежит Fm^{246} .

Обсуждение результатов

В работах по синтезу *а* -активных изотопов трансурановых элементов было показано^{/8/}, что примеси висмута, свинца и таллия, которые могут присутствовать в облучаемой мишени, приводят к появлению существенных фоновых эффектов. Нами были цоставлены опыты по определению влияния предполагаемых примесей.

На рис. 1 в представлен спектр α -частиц, измеренный при облучении мишени из естественной смеси изотопов свища ионами С¹² в тех же условиях, что и спектр на рис. 16. Сравнение приведенных на рис. 1 спектров показывает, что возможное загрязнение свинцом мишени Pu²³⁹ не может дать заметного фонового эффекта в спектрах (рис. 1 а и 16). Контрольные облучения висмутовой и таплиевой мишеней ионами С¹² также показали, что наблюдаемые при облучении Pu²³⁹ а -активности не могут быть связаны с загрязнением мишени висмутом и таплием.

Одна из наблюдаемых нами групп a -частиц имеет $E_a = 7,87+0,05$ Мэв и $T_{\frac{1}{2}} = 35+4$ сек, что совпадает со значениями энергии a -частиц и периода полураспада изотопа Fm^{248} /1,2,5/

В наших опытах этот изотоп мог образовываться в реакции Ри²⁴⁰ (С¹², 4u) Fm²⁴⁸ на примесях Ри²⁴⁰ в нашей мишени. Однако содержание в мишени составляет ≈ 1%, а сечение реакции Рu (C .4n) Fm 248 Pn 240 составляет = 5.10 -31 см 2 /7/, так что таким путем мы могли получить вклад от Fm²⁴⁸ в наблюдаемую активность лишь ≈ 2%. Fm²⁴⁸ в наших опытах мог образовываться также за счет реакции Рu (C , 3n) Fm . Оценки по модифицированной модели Джексона показывают, что при энергии ионов С¹², равной 78 Мэв. вклад от реакции Ри (С¹², 3n)Fm²⁴⁸ не превышает 5%, а при энергии 74 Мэв не превышает 10% наблюдаемого эффекта. При меньших энергиях вклад может быть более существенным. С этим, возможно, связана несколько менее острая форма кривой выхода активности с Е а = 7,87 Мэв по сравнению с кривыми выхода других активностей. Однако даже на малых энергиях наблюдаемый эффект не может быть целиком объяснен реакцией Ра (С , 3n) Fm²⁴⁸ Следует отметить, что в реакциях с тяжелыми ионами выход реакции с испарением трех нейтронов вообще существенно подавлен по сравнению с выходом реакции с испарением четырех нейтронов за счет большой величины кулоновского барьера. Так, в работе показано, что сечение реакции U (0¹⁸, 3n) Fm²⁵⁸ примерно в 200 раз меньше сечения реакции U²⁸⁸ (0¹⁸, 4n) Fm²⁵².

Рассмотрение схемы Нильссона^{/10/} показывает, что при числе нейтронов N = 147 возможно образование изомерного состояния, связанного с наличием уровня i_{1%/2}. Однако для установления природы изомерного состояния имеющихся данных совершенно недостаточно и требуются дополнительные исследования. Тем не менее хочется отметить некоторые характерные черты в поведении энергий *а* -распада для четно- нечетных ядер с N = 147. Для Fm²⁴⁷ мы имеем два состояния, одно из которых имеет энергию *а* -распада, очень близкую к энергии *а* -распада Fm²⁴⁸, *а* другое-к энергии *а*-распада Fm²⁴⁶.

Для Сf²⁴⁵ известно состояние, в котором испускаются a -частицы с энергней $E_a = 7,11$ Мэв, что очень близко к значению $E_a = 7,17$ Мэв для Сf²⁴⁴. У Cm²⁴³ энергия наиболее интенсивной группы a -частиц $E_a = 5,78$ Мэв практически совпадает с энергией a -частиц Cm²⁴⁴ (5,80 Мэв). То же самое

наблюдается и у Pu²⁴¹ (E_a = 4,89 Мэв при E_a = 4,90 Мэв у Pu²⁴²). Не исключено, что у *a* -активных изотопов с N = 147 имеется два состояния, в одном из которых испускаются *a* -частицы с энергией, близкой к энергии *a* частиц соседнего четно-четного изотопа с числом нейтронв N = 148, а в другомс энергией, близкой к соседнему четно-четному изотопу с N = 146.

В заключение авторы считают необходимым поблагодарить коллектив циклотрона У-300 во главе с Б.А. Загером за обеспечение четкой работы ускорителя, А.М. Сухова и Л.П. Челнокова за разработку высокостабильной аппаратуры и А.Г. Белова за помощь в проведении экпериментов.

Литература

- E.K. Hyde, I. Perlman, G.T. Seaborg. The Nuclear Properties of the Heavy Elements. v.II, Prentice-Hall Inc., 1964.
- Г.Н. Акапьев, А.Г. Демин, В.А. Друин, Э.Г. Имаев, И.В. Колесов, Ю.В.Лобанов, Л.П. Пащенко. Препринт ОИЯИ, Р-2704, Дубна, 1966.
- В.Л. Михеев, В.И. Илющенко, М.Б. Миллер, С.М. Поликанов, Г.Н. Флеров, Ю.П. Харитонов. Препринт ОИЯИ, Р-2839, Дубна, 1966.
- 4. В.Л. Михеев. ПТЭ, № 4, 22 (1966).
- 5. Б.А. Загер, М.Б. Миллер, В.Л. Михеев, С.П. Поликанов, А.М. Сухов, Г.Н.Флеров, Л.П. Челноков. Ат.энергия, <u>20</u>, в. 3, 230 (1968).
- 6. В.Л. Михеев, В.И. Илющенко, М.Б. Миллер. Препринт ОИЯИ, Р-2694, Дубиа, 1966.
- E.K. Hyde, I. Perlman, G.T. Seaborg. The Nuclear Properties of the Heavy Elements. v. I, Prentice-Hall Inc., 1964.
- Г.Н. Флеров, С.М. Поликанов, А.С. Карамян, А.С. Пасюк, Д.М. Парфанович, Н.И. Тарантин, В.А. Карнаухов, В.А. Друин, В.В. Волков, А.М. Семчинова, Ю.Ц. Оганесян, В.И. Хализев, Г.И. Хлебников, Б.Ф. Мясоедов, К.А.Гаврилов. ЖЭТФ, <u>38</u>, 82 (1960).
- 9. T. Sikkeland, S.G. Thompson, A. Ghiorso. Phys. Rev., 112, 543 (1958).

.

- . 10. Е.Д. Донец, В.А. Шеголев, В.А. Ермаков. Ядерная физика, <u>2</u>, в. 6, 1015. (1965).
 - 11. B.R. Mottelson, S.G. Nilsson. Kgl. Danske Vidensk. Selsk. Mat.-fys. Skr., 1, N8 (1959).

Рукопись поступила в издательский отдел 14 ноября 1966 г.

Рис. 3. Функции возбуждения реакций P_u^{239} (C¹², 4n) Fm^{247,247m} ($E_{\alpha} = 7,87$ Мэв; 7,93 Мэв; 8,18 Мэв) и P_u^{239} (C¹², 5n), Fm²⁴⁶ ($E_{\alpha} = 8,25$ Мэв).