2790/2-79

Объединенный институт ядерных исследований дубна

5-894

P7 - 12280

Х.Брухертзайфер, Б.Л.Жуйков, Т.Реетц, И.И.Звара

ВЫДЕЛЕНИЕ ЭЛЕМЕНТОВ ПРОДУКТОВ ЯДЕРНЫХ РЕАКЦИЙ ИЗ АЛЮМИНИЕВОГО СБОРНИКА С ИСПОЛЬЗОВАНИЕМ ИХ ЛЕТУЧЕСТИ

P7 - 12280

Х.Брухертзайфер, Б.Л.Жуйков, Т.Реетц, И.И.Звара

ВЫДЕЛЕНИЕ ЭЛЕМЕНТОВ -ПРОДУКТОВ ЯДЕРНЫХ РЕАКЦИЙ ИЗ АЛЮМИНИЕВОГО СБОРНИКА С ИСПОЛЬЗОВАНИЕМ ИХ ЛЕТУЧЕСТИ

Направлено в "Radiochimica Acta"

Control antimized and an anti-

Брухертзайфер Х. и др.

P7 - 12280

Выделение элементов - продуктов ядерных реакций из алюминиевого сборника с использованием их летучести

Алюминиевая фольга - сборник атомов отдачи нз ядерных реакций под действием тяжелых ионов, помещенная на порошок графита, нагревалась в кварцевой аппаратуре в гоке гелия при различных температурах, вплоть до 1170°С. При этом достигалось практически полное (>80%) выделение летучих элементов (Hg , T1 , Pb , Bi , Po и др.) на холодном танталовом сборнике. В алюминии остаются платиновые, лантанидные и другие нелетучие элементы.

Работа выполнена в Лаборатории ядерных реакций ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1979

Bruchertseifer H. et al.

P7 - 12280

Separation of Elements Produced in Nuclear Reactions from an Aluminium Catcher Foil by Volatilization

An aluminium foil serving as a catcher for recoil atoms from nuclear reactions induced by heavy ions was placed on graphite powder and heated in a quartz equipment in helium stream at different temperatures up to 1170° C. As a result, almost quantitative (> 80%) separation of volatile elements (Hg, T1, Pb, Bi Po and others) has been achieved on a cold tantalum collector foil, Platinum, lanthanides and other non-volatile elements are retained in aluminium.

The investigation has been performed at the Laboratory of Nuclear Reactions, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1979

ВВЕДЕНИЕ

При исследовании продуктов ядерных реакций, вызываемых тяжелыми ионами, в качестве сборников атомов отдачи /сборником может служить и подложка мишени/ часто применяются алюминиевые фольги, имеющие ряд преимуществ с точки зрения физического эксперимента. Однако при радиохимическом анализе таких сборников методами химии растворов с целью выделения образовавшихся в ядерных реакциях многих тяжелых элементов, а также возможных сверхтяжелых элементов встречаются трудности, связанные с присутствием значительных количеств алюминия в растворах /приходится использовать фольги довольно большой толщины, чтобы обеспечить полное поглощение продуктов ядерных реакций/.

В настоящей работе предлагается метод быстрого выделения ряда летучих элементов продуктов реакций из алюминиевых сборников испарением, подобный методу извлечения этих элементов из Cu , Ni , Au и графита^{/1/}. При этом дальнейшую обработку сборника с целью выделения малолетучих элементов удобно производить по методикам разделения в водных растворах.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Опыты проводились с алюминиевой фольгой/толщина-10-15 мкм, размер-10x25 мм²/, которая служила сборником при облучениях золотой /6 мкм/ и гадолиниевой /1 мкм/ мишеней ионами ¹²С с энергией 110 МэВ на циклотроне У-300

Лаборатории ядерных реакций ОИЯИ. Аппаратура для выделения летучих элементов из Al /puc. I/ состояла из кварцевой трубки внутренним диаметром 5 мм и двух печей сопротивления с Pt--Pt(Rh) -термопарами. Через трубку со скоростью 20 мл/мии пропускался гелий, который предварительно очищался над нагретой до 800°С циркониевой стружкой, завернутой в танталовую фольгу. Свернутая алюминиевая фольга помещалась во вторую печь в различных опытах либо непосредственно на кварцевое стекло, либо на слой порошка из чистого реакторного графита. Летучие продукты осаждались на танталовой фольге в холодной части трубки. Нагревание производилось несколько раз по 15 минут, при этом температура каждый раз повышалась приблизительно на 100°, вплоть до 1170°С, причем танталовая фольга каждый раз сменялась.

Рис. 1. Установка для выделения летучих элементов из алюминия: 1 - печи сопротивления; 2 - Pt(Rh)-Pt термопары; 3 - геттер-циркониевая стружка, завернутая в танталовую фольгу; 4 - порошок графита; 5 - алюминиевая фольга-сборник; 6 тампон из кварцевой ваты; 7 - танталовая фольга-сборник летучих элементов.

После окончания опыта с помощью спектрометра γ -излучения измерялось распределение элементов между поверхностью кварца, графита, алюминия и танталового сборника. Использовался Ge(Li) - детектор объемом 35 см³ с разрешением 2,5 кэВ для энергии 661 кэВ.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

В первых опытах по выделению летучих элементов из алюминиевых сборников, проведенных без использования графитового порошка, алюминиевая фольга расплавлялась, растекаясь по кварцевому стеклу, при этом происходило частичное спекание алюминия с кварцем. Выделение даже наиболее летучих элементов - Hg , Ро и Tl - при температуре $\approx 1200^{\circ}$ C за 15 минут в этом случае не превышало 30%. Видимо, слой окиси или силиката Al, в котором диффузия затруднена, препятствует выходу летучих элементов на поверхность $\frac{727}{2}$.

В том случае, когда фольга помещалась на графитовый порошок, расплавленный Al образовывал шарик, не смачивая графит. Поэтому не происходило, по-видимому, существенного образования карбида Al, хотя оно термодинамически возможно ^{/3,4/}.

При расплавлении фольги примесные атомы распределяются в объеме капли алюминия в среднем на значительно большем от поверхности расстоянии, чем в твердых металлических сборниках-фольгах, что, однако, по оценкам ^{'5}/ компенсируется большей скоростью диффузии в жидком металле ^{/6-8/}.

Из рис. 2 видно, что Hg , Tl , Po выделяются значительно быстрее, чем Pb и Bi. Температуры для 50%-ного улетучивания этих элементов приведены в табл. 1. Их сравнение с аналогичными данными по выделению из графита $^{/1/}$ показывает, что температуры улетучивания из Al существенно выше, и поэтому адсорбции на графитовом порошке не должно быть.

Характер зависимости суммарного выделения F от температуры / puc. 2/ показывает, что в случае Hg, Po, Tl, скоро-

Таблица 1

Температуры для достижения 50%-ного улетучивания Hg, Tl, Pb, Bi, Ро из алюминия и графита

Элемент	Температура для достижения улетучивания в [°] С	50%-ного Из графита	
	Из алюминия на графите		
Hg	780		
Tl	780	580	
Po	770	450	
Рb	960	680	
Bi	1030	730	

4

Рис. 2. Зависимость суммарного выделения Hg, Tl, Pb, Bi, Po от температуры.

сти выделения которых из жидкого Al практически одинаковы и слабо зависят от температуры, процесс выделения, видимо, лимитируется диффузией в алюминии, в то время как на скорость выделения Pb и Bi, которые значительно менее летучи, большое влияние оказывает также десорбция с поверхности Al. Таким образом, по интегральной зависимости выделения F от температуры можно качественно оценить летучесть выделяемых элементов. Это представляет большой интерес в связи с работами по поиску и синтезу сверхтяжелых элементов /СТЭ/.

Табл. 2 показывает распределение некоторых элементов после окончания опыта. Нелетучие элементы Sc., Zr., Tb., Er., Tm., Pt., Au., а также, очевидно, легкие актиниды остаются после нагревания в алюминии. На графитовом порошке обнаружена незначительная часть многих элементов, что может быть связано с присутствием мелких капель алюминия или следов карбида алюминия. И только марганец, имеющий относительно высокую летучесть и в то же время большую склонность к образованию карбидов, остается на графите в значительном количестве /около 30%/.

Непосредственно на кварцевой поверхности осаждаются в этих условиях элементы, имеющие одновременно высокую летучесть и склонность к образованию нелетучих окислов или силикатов. Это прежде всего Na, который адсорбировался на кварце в количестве более 90%, таким же образом могут вести себя другие щелочные, тяжелые щелочно-земельные и, возможно, легколетучие лантаноидные (Yb,Eu) и актиноидные (Cf-Md) элементы в том случае, если они не будут адсорбироваться уже на графите.

Для у -спектрометрических измерений существенно, что в алюминии и на танталовой фольге оказывается лишь незначительная доля ²⁴Na, активность которого обычно велика.

Летучие элементы, не образующие устойчивых нелетучих окислов, силикатов и карбидов, осаждаются на танталовой фольге в холодной части трубки. Это прежде всего элементы Hg, T1, Pb, Bi, Po. Здесь, по-видимому, можно осадить Zn, Cd, галогены, а также гипотетические элементы 112-118, т.к. экстраполяции и расчеты указывают, что эти СТЭ должны обладать высокой летучестью ^{/9,10/}.

Следует отметить, что последняя фракция имеет очень высокую степень очистки от актиноидов /по оценкам >10⁹ /1//,

Таблица 2

Распределение элементов в установке после нагревания

до 1170°С в %

Элемент	Алюминий	Графит	Кварц	Тантал
Na		1,8	92,9	5,3
Sc	92,4	7,6	-	-
Mn	67,3	32,7	-	-
Zr	91,2	8,8	-	
Tb	90,5	9,5	-	-
Er	91,9	8,1	-	-
Tm	95,2	4,8	-	-
Au	98,5	1,5	-	-
Pt	95,1	4,9	-	-
Hg	4,2	6,4	-	89,4
TI	3,7	2,8	3,1	90,4
Ph	9,8	4,2	0,8	85,2
Bi	5,8	10,5	1,7	82,0
Po	-	-	-	100,0

6

Опыты показали, что после термической обработки шарик алюминия легко растворяется без остатка уже в разбавленных растворах галогеноводородных кислот. Разделение платиновых элементов и актиноидов и отделение их от Al можно успешно провести с применением экстракционной хроматографии с трибутилфосфатом и соосаждением с La(OH)₃. Соответственно дальнейшую очистку, если это потребуется, можно выполнить по стандартным аналитическим методикам.

Удаление радиоэлементов с графита производится с трудом; даже горячая "царская водка" растворяет их лишь незначительно. Однако это не столь существенно, т.к. на графитовом порошке адсорбируется небольшое количество элементов.

Таким образом, данная методика является универсальной для быстрого и почти полного выделения большинства элементов из алюминиевого сборника.

Авторы выражают благодарность академику Г.Н.Флерову и проф. Ю.Ц.Оганесяну за интерес к работе.

ЛИТЕРАТУРА

- 1. Реетц Т. и др. ОИЯИ, Р12-10881, Дубна, 1977.
- 2. Peterson N.L., Rothmann S.J. Phys. Rev., 1970, B1, p.3264.
- 3. Ancey-Moret M.Fr. Memoires Scientifiques Rev. Metallurg, 1973, 70, p.429.
- 4. Ondracek G., Wedemeyer H. Sprechsaal, 1975, 108, p.55.
- 5. Reetz T. Dissertation B. Technische Universität Dresden, 1977.
- 6. Gerlach J. et al. Metall, 1966, 20, p.1272.
- 7. Кононенко В.И., Яценко С.П. АН СССР, Уральск. научн. центр. Труды инст. хим., 1971, 23, с.62.
- 8. Харьков Е.И., Якушевский С.Ю. Укр. физ. журн., 1975, 20, c.551.
- 9. Айхлер Б. ОИЯИ, Р12-7767, Дубна, 1974.
- 10. Herrmann G. MTP Internat. Rev. Sci. Ser. 2, Radiochemistry, London, 1975.

Рукопись поступила в издательский отдел 2 марта 1979 года.