

ОБЪЕДИНЕННЫЙ ИНСТИТУТ Ядерных Исследований

Дубна

P6-99-17

К.Я.Громов, Д.К.Джаббер, Ш.Р.Маликов, В.И.Фоминых, Ю.В.Хольнов, В.В.Цупко-Ситников, В.Г.Чумин

СХЕМА УРОВНЕЙ ЯДРА ²¹⁷ At ПРИ α-РАСПАДЕ ²²¹ Fr

Направлено в журнал «Известия РАН: серия физическая»

Громов К.Я. и др. Схема уровней ядра 217 At при α -распаде 221 Fr

Гамма-спектр и спектры ($\alpha - \gamma$)-совпадений исследованы с использованием источников, содержавших равновесную цепочку распадов ядра ²²⁵ Ac, выделенного из ²²⁹ Th ($T_{1/2} = 7,3 \cdot 10^3$ лет). При количественном анализе ($\alpha - \gamma$)-совпадений определены заселенности уровней ²¹⁷ At, полные интенсивности и мультипольности ряда γ -переходов. Свойства уровней ²¹⁷ At в предлагаемой схеме распада ²²¹ Fr согласуются с интерпретацией их как возбуждений, связанных с состояниями оболочечной модели $p(h_{9/2})^3$ и $p(h_{9/2})^2 f_{7/2}$. Не получено доказательств существования уровня 310 кэВ, $J^{\pi} = 13 / 2^+$ ядра ²¹⁷ At. Предполагается, что отнесенная к распаду на этот уровень линия $E_{\alpha} = 6037$ кэВ с интенсивностью 0,003 % может возникать при распаде дочернего ²¹⁷ At на уровень 1050 кэВ ²¹³ Bi.

Работа выполнена в Лаборатории ядерных проблем ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна, 1999

Перевод авторов

P6-99-17

P6-99-17

Gromov K.Ya. et al. Level Scheme of ²¹⁷At in the ²²¹Fr Decay

Gamma-spectrum and spectra of alpha-gamma-coincidence were studied using sources containing radioactive decay chain of ²²⁵ Ac in equilibrium, the mother nucleus separated from ²²⁹ Th (7.3 · 10³ y.). ²¹⁷ At levels populations and full intensities and multipolarities of a number of gamma-transitions were determined from a quantitative analysis of alpha-gamma-coincidence spectra. Characteristics of the ²¹⁷ At levels in the proposed ²²¹ Fr decay scheme are in accord with their interpretation as of excitations connected with states of the shell model $p(h_{9/2})^3$ and $p(h_{9/2})^2 f_{7/2}$. No evidence is obtained of the existence of the 310 keV, $J^{\pi} = 13 / 2^+$ level in ²¹⁷ At. A hypothesis is put forward that the alpha line $E_{\alpha} = 6037$ keV with 0,003 % intensity, previously ascribed to the decay to this level, may in fact stem from the daughter ²¹⁷ At decay to the 1050 keV level of ²¹³Bi.

The investigation has been performed at the Laboratory of Nuclear Problems, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna, 1999

1. Введение

Ядро ²¹⁷At имеет 3 лишних протона и 6 нейтронов по сравнению с дважды магическим ядром ²⁰⁸Pb. Ожидается, что ²¹⁷At находится на границе между ядрами, структура которых хорошо описывается оболочечной моделью и моделью ядер с квадрупольной и октупольной деформацией. Исследование структуры возбужденных состояний ²¹⁷At представляет в связи с этим значительный интерес.

Практически единственная возможность получения экспериментальной информации о структуре уровней ²¹⁷At – исследование α -распада ²²¹Fr (T_{1/2} = 4.8 мин) в цепочке распадов ²²⁵Ac (T_{1/2} = 10 сут). ²²⁵Ac при этом выделяют из препарата долгоживущего изотопа ²²⁹Th (T_{1/2}= = 7340 лет). Сложные спектры α -, β - и γ - излучений при распаде ядер в цепочке ²²⁵Ac и относительно малые их периоды полураспада затрудняют исследование слабых компонентов излучения ²²¹Fr. По этой причине экспериментальные сведения о распаде ядра ²²¹Fr ограничены и иногда противоречивы.

Тонкая структура α -распада ²²¹ Fr изучалась Джелеповым и др. [1], а также Лиангом и Бастин-Скофье [2] на магнитных α - спектрографах. Лучшие результаты получены Лиангом в исследованиях α -спектра ядер отдачи от распада ²²⁵ Ac. Эти данные о значениях энергий и интенсивности компонентов α -спектра представлены на приводимой ниже схеме распада ²²¹ Fr. Мы используем их в нашем анализе.

Последние данные о γ -спектре ²²¹Fr, опубликованные в работах [3– 5], представлены в табл. 1. Спектр электронов внутренней конверсии при распаде ²²¹Fr изучался в [5, 6]. Установлено [6], что γ -переход 218 кэВ имеет Е2-мультипольность (М1 < 1%), а переходы 99.5, 118.2 и 150 кэВ – типа М1. Шилайн и др. [5] дополнительно предлагают М1 – мультипольность для переходов 53.8, 96.3, 324.0, 359.0 и 382.1 кэВ и Е2 – мультипольность для переходов 171.6 и 410.4 кэВ.

В работах [4,5] на основе данных об α -распаде [1,2] и экспериментов по $(\alpha - \gamma)$ -совпадениям предлагается схема уровней ²¹⁷At. Чумин и др. [1,2] измерили интенсивность слабой ветви β^- -распада ²²¹Fr - (4.8±1.5)×10⁻⁵ распадов.

Цель настоящей работы состояла в получении более точных экспериментальных данных о распаде ²²¹Fr на основе использования ²²⁵Ac большей активности, чем в указанных работах и количественного анализа результатов экспериментов по $(\alpha - \gamma)$ -совпадениям.

Таблица 1. Гамма-лучи при распаде ядер ²²¹Fr

1	Ардиссон и др. [3]		Бутабаев и др. [4]		Шилайн и др. [5]		Настоящая работа		Размещение	
	E.	a(*)	E,	$a_{\gamma}^{(\bullet)}$	Eγ	$a_{\gamma}^{(*)}$	E,	a(*)	в схеме	
	кэВ		кэВ		кэВ		кэВ		$E_{\text{Hay}} \rightarrow E_{\text{rob}}$	
	-		53.54(18)	0.45(5)	53.8(1)	1.7(5)	53.81(3))	1.3(3))	$272.0 \rightarrow 218.1$	
	-	-	68.11(15)	0.5(2)	-	-	-	-	-	
	-	-	96.12(18)	1.4(4)	96.3(3)	< 1	96. 3(3)	0.7(3)	$368.3 \rightarrow 272.0$	
	100.63(2)	17(1)	99.52(6)	11.2(5)	100.2(1)	15(2)	100.25(2)	10(3)	$100.25 \rightarrow 0$	
	117.67(5)	3.8(2)	118.18(9)	2.4(3)	117.8(2)	0.5(2)	117.82(3)	2.2(13)	$218.1 \rightarrow 100.25$	
	150.43(5)	4.2(2)	150.04(4)	5.9(10)	150.0(1)	6.0(10)	150.21(3)	4.7(2)	$368.3 \rightarrow 218.1$	
	172.05(5)	6.0(2)	171.68(4)	7.9(3)	171.6(1)	6.6(12)	171.83(3)	7.6(2))	$272.0 \rightarrow 100.25$	
	-	-	201.44(50)	0.06(3)	-	-	201.4(6)	0.11(1)		
	-	-	208.3(5)	0.45(8)	-	-	208.3(6)	0.5(1)	$577.5 \rightarrow 368.3$	
	218.30(2)	1160(40)	218.14(3)	1110(30)	218.0(1)	1130(10)	218.12(2)	1118(15)	$218.1 \rightarrow 0$	
	250.7(2)	0.35(8)	-	-	-	· -	-	< 0.1	· -	
	253.15(15)	0.69(9)	-	-	-	-	-	< 0.1	· · ·	
	-	-	263.39(14)	0.21(6)	-		-	< 0.1	-	
	271.91(5)	0.36(10)	-	-	-	-	-	< 0.1		
	282.25(5)	0.65(10)	282.36(15)	0.12(4)	281.9(3)	0.8(3)	282.12(9)	0.7(1)	$382.3 \rightarrow 100.25$	
	-	-	297.11(40)	0.85(8)	-	-		< 0.1	· -	
	-	-	299.59(14)	1.4(7)	-	-	-	< 0.1	-	
	310.20(5)	0.67(9)	310.14(16)	0.45(8)	-	-	-	< 0.1	· · · ·	
	• -	-	314.11(17)	0.24(6)		-	-	< 0.1	101.0.100.05	
	323.99	1.6(1)	323.99(6)	1.9(8)	324.0(2)	1.2(3)	324.10(6)	1.9(1)	$424.3 \rightarrow 100.25$	
	359.90(2)	3.7(2)	359.92(6)	3.9(12)	359.0(2)	3.6(10)	359.86(4)	4.0(2)	$577.5 \rightarrow 218.1$	
	368.17(2)	8.5(1)	368.18(10)	0.53(6)	-	-		< 0.1		
	382.36(2)	3.5(2)	381.81(4)	3.3(2)	381.1(2)	3.1(10)	382.34(4)	3.3(2)	$382.3 \rightarrow 0$	
	410.73(2)	12(1)	409.93(7)	12.4(2)	410.4(2)	11(2)	410.64(5)	11.8(2)	$410.0 \rightarrow 0$	
	435.68(10)	0.40(7)	-	0.00(4)	437.8(5)	~0.1	437.00(5)	0.093(11)	$537.0 \rightarrow 100.25$	
	-	-	445.07(20)	0.09(4)	446.3(8)	~0.1	440.30(8)	0.17(4)1)	$5000 \rightarrow 100.2$	
	-	-	469.6(2)	0.29(4)	469.0(5)	0.2(1)	408.3(1)	0.14(3)	$508.3 \rightarrow 100.2$	
	-	-	-	-	496.2(10)	~0.1	E 27 0(0)	< 0.05	E27.0 0	
	538.02(10)	0.40(12)	537.0(2)	0.30(4)	563 2(10)	0.2(1)	031.0(0)	0.30(3)	537.0 → 0	
		-	-	0.15(4)	562.3(12)	~0.03	568 5(2)	< 0.03	569.2 0	
	577 76(6)	-	576 0(4)	0.15(4)	577 0(9)	~ 0.1	576 0(4)	0.12(4)	$500.3 \rightarrow 0$	
	311.10(6)	0.47(7)	570.9(4)	0.37(0)	311.0(8)	0.4(1)	652(2)	0.29(4)	652 · · · 0	
	-	-	· · · *	-			658(2)	~0.04	$0.02 \rightarrow 0$	
	-	-	-	-		-	665(2)	~0.07	665 - 0	
	· -	-	-	-	-	-	000(2)	~0.09	000 - 0	

(*) a_{γ} -интенсивности γ -лучей на 10000 распадов ²²¹Fr (в сотых процента на распад)

2. Методика экспериментов

Основное внимание в нашем исследовании α -распада ²²¹Fr было уделено изучению (α - γ)-совпадений с использованием метода количественного анализа результатов экспериментов по совпадениям ядерных излучений, предложенного в [9].

2.1. Приготовление источников

²²⁵Ас выделяли из ²²⁹Th по методике "Изотопный генератор ²²⁵Ас" [10], разработанной с участием одного из авторов (В.В. Цупко - Ситников). ²²⁹Th был выделен из ²³³U и очищен от примесей более пяти лет тому назад. ²²⁵Ас (20 мкКи) наносили на танталовую фольгу и затем испаряли в вакууме на алюминиевую фольгу. ²²¹Fr и другие дочерние нуклиды накапливались в приготовленном источнике. Посторонние примеси в источниках на основе ²²⁵Ас не наблюдались. Малая толщина получаемых при вакуумном испарении источников обеспечивала значительный выход ядер отдачи при α -распаде. Это обстоятельство было использовано для получения источников, содержащих ²²¹Fr и другие дочерние нуклиды, свободные от ²²⁵Ac.

2.2. Постановка экспериментов

Проводилось два вида экспериментов с использованием ²²⁵Ac. В первом ²²⁵Ac помещался в вакуумную камеру напротив α -детектора. Во втором – ядра отдачи распада ²²⁵Ac собирались на Al-подложку ("монету") транспортного устройства типа монетный автомат [11]. "Монеты" каждые пятнадцать минут транспортировались к α -детектору. Таким образом получали спектры, полностью свободные от излучения ²²⁵ Ac. В измерениях использовался Si(Au) α -детектор площадью 100 мм² с разрешением 20-25 кэВ. НрGе γ -детектор (объем 84 см³, разрешение 1.0 кэВ при энергии 150 кэВ) располагался вне вакуумной камеры на расстоянии 4 мм от источника. Одновременно с одиночными α - и γ -спектрами изучались спектры (α - γ)-совпадений. ($E_{\alpha}, E_{\gamma}, T$) события совпадений – (4096 х 4096 х 4096 каналов) записывались в режиме "все на все" (in list mode). После вычета случайных событий анализировались спектры совпадений в окнах, установленных на спектре α -частиц (E_{α_i}), на спектре γ -лучей (E_{γ_i}) и на спектре сумм

4

 $(Q_{\alpha_k} = Q_{\alpha_i} + E_{\gamma_{ik}})$. В связи с тем, что энергетическое разрешение в γ -спектрах значительно лучше, чем в α - спектрах, большая часть информации получена при последних двух сортировках (окна в спектрах γ -лучей и спектрах сумм Q_{α_k}).

2.3. Методы анализа результатов измерений

Для получения сведений о заселенности уровней и полных интенсивностях γ -переходов проводился количественный анализ результатов исследования (α - γ)-совпадений с использованием процедуры, предложенной в [9]. Так, в случае прямых совпадений, когда γ -переход γ_{ik} идет с уровня, на который происходит α -распад, α_i из отношения плошадей

$$\frac{S_{\alpha_i} \cdot S_{\gamma_{ik}}}{S_{\alpha_i}^{\gamma_{ik}}} = N \cdot a_i \qquad (1)$$

определялась заселенность a_i уровня і.

При этом

 $S_{\gamma_{lpha_i}}$ и $S_{\gamma_{ik}}$ – площади пиков в одиночных lpha- и γ -спектрах.

 $S_{\alpha_i}^{\gamma_{ik}}$ – площадь пика в спектре совпадений γ_{ik} с α_i .

N – число распадов ²²¹Fr за время эксперимента.

 a_i – заселенность уровня i, т.е. суммарная интенсивность (в %) переходов с уровня i.

i,k... – нумерация уровней.

Число распадов ²²¹Fr (N) не определялось, для нормировки использовалось значение заселенности уровня 218.1 кэВ – α_{218} , равное интенсивности α -распада на этот уровень, определенной в [2].

В случае наблюдения непрямых $(\alpha - \gamma)$ -совпадений, когда α -распад идет на более высокий уровень h, чем уровень, с которого происходит γ переход γ_{ik} , определялась полная интенсивность перехода (переходов) между уровнями h и i из отношения

$$\frac{S_{\alpha_h}^{\gamma_{ik}}}{S_{\alpha_i}^{\gamma_{ik}}} = \frac{a_{\alpha_h}}{a_{\alpha_i} \cdot a_h} \cdot a_{\Pi(h \to i)}, \qquad (2)$$

где $a_{\Pi(h \to i)}$ – полная интенсивность перехода (переходов) между уровнями h и i.

Такой анализ результатов экспериментов по совпадениям не использует значения эффективности детекторов, т.е. погрешности их определения не входят в погрешность получаемого значения. Кроме того, исключается влияние на результат анализа искажений спектров, связанных с суммированием импульсов при измерениях в близкой геометрии.

3. Экспериментальные результаты

Полученные нами сведения об энергии и интенсивности у-лучей при распаде ²²¹Fr в табл. 1 сравниваются с результатами последних работ [3,4,5], посвященных изучению распада этого ядра. Отметим, что в [3,4] ү-пики 250, 253, 263, 297, 299, 310 и 314 кэВ были ошибочно идентифицированы как ү-лучи. На самом деле эти пики в спектре ²²¹Fr возникают главным образом, как результат сумм импульсов от *γ*-лучей 171 и 218 кэВ с импульсами от КХ-лучей после внутренней конверсии у-переходов 100 и 150 кэВ. Наблюдение у-пиков 272 кэВ [3] и 368 кэВ [3,4] связано в основном с суммированием импульсов от γ -лучей (100+172) и (218+150) кэВ соответственно. Мы даем оценку верхних пределов интенсивности этих γ-лучей. Для получения наших данных, представленных в седьмой и восьмой колонках табл. 1, использованы результаты анализа одиночного *γ*-спектра от источника с ²²⁵Ас (рис. 1а), одиночного γ -спектра от ядер отдачи от источника с $^{225}{
m Ac}$ (рис. 16) и спектра γ -лучей, совпадающих с α -частицами распада ²²¹Fr (интервал $E_{\alpha} = 5.6-6.4 \text{ M} \Rightarrow B$). Сложность γ -спектров в области относительно слабых у-пиков 117.8 кэВ (быстрое нарастание счета в области ~ 120 къВ в распределении обратно рассеянных комптоновских квантов от интенсивных у-лучей 218.1 кэВ), 96.1 кэВ (близость по энергии к более интенсивному в одиночных спектрах пику К_в, Х-лучей) и 53.8 кэВ (высокий фон в области ү-лучей малой энергии) затрудняла точное определение их интенсивности. Интенсивности этих у-лучей уточнены с использованием отношений площадей пиков в спектрах совпадений γ -лучей с α -частицами в окнах: $E_{\alpha_{218}} = 6126$ кэB, $E_{\alpha_{272}} = 6076$ кэВ и $E_{\alpha_{368}} = 5980$ кэВ.

Анализ спектра α -частиц, совпадающих с γ -лучами 218.1 кэВ, показал, что заселение уровня 218.1 кэВ ²¹⁷Аt с более высоких уровней составляет менее 2% его полной заселенности. С этой точностью полная интенсивность γ -перехода 218.1 кэВ равна интенсивности линии тонкой структуры α -спектра $E_{\alpha_{218}} = 6126$ кэВ: $a_{\alpha_{218}} = 15.1(2)$ % распадов

б) Гамма-спектр ядер отдачи при α - распаде ²²⁵Ac. Цифры над γ-линиями – значения энергии γ-лучей при распаде ²²¹Fr; в скобках – значения энергии сложных γ-линий, часть интенсивности которых относим к распаду ²²¹Fr

6

Энергия уровня	Заселенность	Интенс. α-распада
E_i , кэВ	уровня а _і %	на уровень $a_{\alpha_i}\%$
100.2	1.81(25)	1.34(10)
218.1	$\equiv 15.1(5)$	15.1(3)
272.0	0.39(5)	0.15(3)
368.3	0.55(3)	0.49(3)
383.2	0.08(1)	0.08(1)
410.6	0.16(3)	0.17(3)
424.3	0.038(13)	0.038(13)
537.0	~ 0.005	0.004(2)
568.5	~ 0.005	0.005(2)

даолица 2. Заселенности уровней (Е.) ядра ""Аt при распад	le 🎫 r
--	--------

Габлица З.	Полные интенсивности некоторых γ -переходов при распаде ²	²¹ Fr и
	определение их мультипольности	

0.063(10)

577.5

0.06(1)

E voB	06.22	117.9	150.2	171.9
Δ _γ ,κ3D	90.32	117.0	130.2	171.0
(+)				
$a_{\Pi_{ik}}^{(1)}, \%$	0.18(7)	0.32(2)	0.21(4)	0.14(2)
а _{уік} , % (Из табл. 1)	0.007(3)	0.022(13)	0.047(2)	0.076(2)
$\alpha_{\Pi}^{(**)}$	25(15)	13,5(86)	3.5(9)	0.84(2)
11ik	-()			
Расчетные оп.				
El	0.51	0.31	0.17	0.12
MI	127	7.6	2.0	0.12
101 1	19.1	7.0	. 3.0	2.0
E2	9.2	3.9	1.45	0.87
M2	113	53.2	22.0	13.6
		-		

(*) $a_{\Pi ik} = a_{\gamma ik} + a_{K_{ik}} + a_{L_{ik}} + \dots$ – полная интенсивность γ -перехода

 $^{(**)}\alpha_{\Pi_{ik}}=\frac{a_{\Upsilon_{ik}}}{a_{\Pi_{ik}}}-1$ – полный коэффициент конверсии

²¹⁷ At [2]. Мультипольность перехода 218.1 кэВ определена [6] как E2 (M1 < 1%). Используя расчетное [12] значение для полного коэффициента внутренней конверсии, равное 0.368, получаем интенсивность γ -лучей 218.1 кэВ, равную 11.2% распадов ²²¹ Fr. Интенсивности (в % распадов) γ -лучей других переходов вычислены относительно этого значения. Интенсивности γ -лучей отнесены к 10000 распадов ²²¹ Fr, т.е. даются в сотых долях процента распадов ²²¹ Fr.

На рис. 2 представлен пример спектров ($\alpha + \gamma$)-совпадений в окнах по суммам $Q_{\alpha_k} = Q_{\alpha_i} + E_{\gamma_{ik}}$, соответствующим α -распаду в основное состояние, на уровень 100.2 кэВ и на уровень 218.1 кэВ. Отчетливо выделяются γ -лучи распада на эти уровни.

Сопоставление данных о γ -спектре ²²¹Fr с результатами исследований тонкой структуры α -спектра ²²¹Fr [1,2] и качественный анализ результатов исследований ($\alpha + \gamma$)-совпадений позволяют с уверенностью утверждать, что при распаде ²²¹Fr возбуждаются уровни ²¹⁷At, предложенные ранее в [4,5], с энергиями 100.2, 218.1, 271.6, 368.3, 324.3, 382.3, 410.6, 424.3, 537.0, 568.5 и 578.0. Наблюдены совпадения γ -лучей 652(2) кэВ с α -частицами ~ 5690 кэВ, подтверждающие [5] возбуждение уровня с энергией 652(2) кэВ.

В табл. 2 полученные из анализа прямых $(\alpha - \gamma)$ -совпадений по формуле (1) значения заселенности уровней ²¹⁷At сравниваются с интенсивностями α -распада ²²¹Fr на них. Для уровней 100.2 и 272.0 кэВ значения заселенности заметно больше интенсивности α -распада на них. Это свидетельствует о том, что эти уровни заселяются не только α распадом, но и γ -переходами с вышележащих уровней. Значения заселенности уровней использованы для анализа баланса интенсивностей α - и γ -переходов при распаде ядра ²²¹Fr.

В табл. 3 представлены сведения о полных интенсивностях γ - переходов, полученные при анализе ($\alpha - \gamma$) - совпадений через каскады с этими γ -переходами (формула 2). На основе этих данных и интенсивностей соответствующих γ -лучей определены полные коэффиценты конверсии α_{Π} , которые сравниваются с расчетными [12] значениями для разных мультипольностей. Подтверждаются мультипольности γ переходов 96.3 кэВ (M1+E2), 117.8 кэВ (M1(+E2)), 150.2 кэВ (M1), 171.8 кэВ (E2), определенные ранее [6,5] по значениям $\alpha_K(\alpha_L)$. Полученные значения полных интенсивностей γ -переходов также использованы при анализе баланса интенсивностей при распаде ²²¹Fr.

Из отношения интенсивностей совпадений α-частиц, заселяющих уровни 218 и 100 кэВ, с КХ-лучами (рис. 3) получено значение коэффи-

Рис. 2. Спектры γ -лучей в окнах по суммам $Q_{\alpha_k} = Q_{\alpha_i} + E_{\gamma_{ik}}$.

а) окно Q_{α0} – выделяющее γ-лучи, идущие в основное состояние;

б) окно $Q_{\alpha 100} - \alpha + \gamma$ -каскадный распад на уровень 100 кэВ;

в) окно $Q_{\alpha 218} - \alpha + \gamma$ -каскадный распад на уровень 218 кэВ;

Значения энергии γ -лучей даны у пиков γ -лучей, идущих на соответствующий уровень

Рис. 3. Спектр α -частиц от ядер отдачи источника с ²²⁵Ac, совпадающих с КХ-лучами ²¹⁷At

цента внутренней конверсии на К-оболочке γ -перехода 100 кэВ. $\alpha_{K100} = 9(3)$, в пределах погрешности совпадающее с α_{K} для М1-перехода.

4. Схема распада ²²¹Fr

Предлагаемая нами схема распада ²²¹Fr (рис. 4) в отношении размещения между уровнями ²¹⁷At сравнительно интенсивных γ -переходов повторяет опубликованную в работе [5]. Изменения касаются только весьма слабых переходов. Так, мы не обнаружили γ -переход с уровня 664 \rightarrow 271.8 кэВ ($E_{\gamma} = 392$ кэВ). Мы не наблюдали совпадений α -частиц с $E_{\alpha 664} = 5688$ кэВ с γ -лучами 281 кэВ и поэтому не имеем оснований для двойного размещения этого γ -перехода [5]. В одиночном γ -спектре и в спектре совпадений со всеми α -частицами ²²¹Fr мы наблюдаем слабые γ -лучи с энергией около 209 кэВ. Возможно, этот γ переход может быть размещен между уровнями 577 и 368 кэВ. Уровень с энергией 652 кэВ, вводившийся ранее предположительно на основе наблюдения в α -спектре [2] слабой линии $E_{\gamma} = 5697$ кэВ ($\sim 0,001\%$), подтверждается наблюдением совпадений с линией $E_{\gamma 652}$.

Баланс интенсивностей α - и γ -переходов в пределах погрешностей выполняется на всех уровнях ²¹⁷At за исключением уровня 410.6 кэВ (см.ниже). Спины и четности уровней ²¹⁷At предложены в [5] с учетом определенных в [5,6] мультипольностей γ -переходов и систематики сведений о соседних ядрах. Определенные мультипольности переходов согласуются с предложенными в [5] характеристиками уровней.

Лианг и Бастин-Скофье [2] при исследовании α -спектра ²²¹ Fr наблюдали очень слабую линию $E_{\alpha} = 6036(5)$ кэВ с интенсивностью 0.003% распадов и ввели уровень ²¹⁷ At с энергией и возможными $J^{\pi} = (13/2^+)$. Других подтверждений существования этого уровня нет. В нашей работе [4] сообщалось о наблюдении в спектре γ -лучей ²²¹ Fr с энергией 310 и 314 кэВ, один из этих переходов мог быть связан с разрядкой указанного уровня. Однако более тщательный анализ показал, что эти пики в γ -спектре есть суммы импульсов от γ -лучей 218 кэВ и К_β-Х-лучей. В табл. 1 даны верхние пределы интенсивности γ -лучей с такой энергией. Если уровень ~ 310 кэВ имеет $I^{\pi} = 13/2^+$, то γ -переходы с него на более низкие уровни (типа ЕЗ) сильно конвертированы и γ -лучи имеют малую (<<0.003%) интенсивность. Время жизни этого уровня, вероятно, больше разрешающей способности использованной схемы совпадений (~ 50 нс). Эти обстоятельства могут быть причиной ненаблюдения разрядки уровня ~ 310 кэВ в наших экспериментах. Можно было ожидать, что в экспериментах по (α - γ)-совпадениям проявятся γ -переходы, заселяющие уровень ~310 кэВ (13/2⁺) с более высоких уровней. Хорошим кандидатом для этого мог быть γ -переход типа E1 с уровня 410.6 кэВ с энергией (100±5) кэВ. Как замечено выше, для уровня 410.6 кэВ не выполняется баланс интенсивностей: заселение α частицами 0.17(3)%, разрядка γ -переходом 410.6 кэВ – 0.12(1)%. При поисках совпадений γ -лучей с энергией (100±5) кэВ с α -частицами $E_{\alpha 410} = 5939$ кэВ установлен верхний предел их – 0.0002%. Таким образом, нам не удалось получить дополнительную информацию об уровне ~310 кэВ и единственным аргументом в пользу его существования остается наблюдение в [2] слабой линии тонкой структуры. Заметим при этом, что линия $E_{\alpha} = 6037$ кэВ, обнаруженная в экспериментах [2], может быть, в принципе, отнесена не к распаду ²²¹Fr, а к распаду дочернего ядра ²¹⁷At ($T_{1/2} = 32$ мс) на уровень ~ 1050 кэВ ²¹³Bi.

Имеющиеся экспериментальные результаты о свойствах уровней ²¹⁷At, возбуждаемых при α -распаде ²²¹Fr, не противоречат интерпретации уровней: 0 кэВ, 9/2⁻; 218.1 кэВ, 5/2⁻; 368.3 кэВ, 3/2⁻; 410.6 кэВ, 13/2⁻ и 577.5 кэВ, 7/2⁻ – как уровней, связанных с возбуждением состояния $p(h_{9/2})^3$ оболочечной модели. Уровни 100.2 кэВ, 7/2⁻; 272.0 кэВ,3/2⁻; 382.3 кэВ, (7/2⁻), 424.2 кэВ (5/2⁻ 9/2⁻) могут быть связаны с возбуждением состояния $p(h_{9/2})^2$ f_{7/2}.

5. Заключение

Исследованы (α - γ)- совпадения при распаде ²²¹Fr \rightarrow ²¹⁷At. Все уровни ²¹⁷At, изображенные на рис. 4, подтверждаются (α - γ) - совпадениями. Среди них ряд уровней, заселяемых α -распадом с интенсивностью от нескольких сотых до тысячной доли процента распадов.

Количественный анализ результатов исследований (α - γ) - совпадений позволил подтвердить мультипольности γ -переходов: 96.3 кэВ (M1+E2), 100.2 кэВ (M1), 117 кэВ (M1(+E2)), 150.2 кэВ (M1) и 171.8 кэВ (E2). Баланс интенсивностей α - и γ -переходов для всех уровней ²¹⁷Аt выполняется, кроме 410.6 кэВ.

Не удалось получить дополнительных аргументов в пользу существования уровня 310 кэВ, $13/2^+$ в ²¹⁷At. Возможно, что отнесенная [2] к распаду на этот уровень линия $E_{\alpha} = 6037$ кэВ, $a_{\alpha} = 0.003\%$ на самом деле возникает при распаде дочернего ²¹⁷At на уровень 1050 кэВ ²¹³Bi.

Свойства уровней ²¹⁷At (рис. 4) согласуются с интерпретацией их,

как возбуждений, связанных с состояниями оболочечной модели $p(h_{9/2})^3$ и $p(h_{9/2})^2 f_{7/2}$.

Авторы признательны В.Б.Бруданину, В.Г.Калинникову и В.М.Горожанкину за поддержку работы и полезные обсуждения. Работа выполнена при финансовой поддержке РФФИ(коды проектов 94-02-04828a и 98-02-16451).

Литература

- 1. Б.С.Джелепов, Р.Б.Иванов, М.А.Михайлова и др. Изв. АНСССР, Сер.физ. 1967. Т.31. С.568.
- C.F.Leang, G.Bastin-Scoffier Compt.Rend. 266B, (1968), p.629. C.F.Leang. Thesis, University Paris (1969).
- 3. G.Ardisson, V.Barci, O.Ee Samad. NIM A339, (1994), p.168.
- 4. Ю.С.Бутабаев, И.Адам, К.Я.Громов и др. Изв. РАН, сер.физ.,59, 1 (1995), с.35.

5. R.K.Sheline, C.F.Liang, P.Paris Phys.Rev. C 51, (1995), p.1192.

- 6. Б.С.Джелепов, А.В.Золотавин, Р.Б.Иванов и др. Изв.АН СССР, сер.физ.. 33, (1969), с.1607.
- 7. В.Г.Чумин, С.С.Елисеев, К.Я.Громов и др. Изв. РАН сер.физ. 59, N⁰11, (1995),
 с. 58.
- 8. В.Г.Чумин, В.И.Фоминых, Т.А.Фуряев и др. Изв. РАН сер.физ. **61**, N⁰11, (1997), с. 2062.
- 9. К.Я.Громов, В.И.Фоминых. Изв. РАН сер.физ. 61, Nº11,(1997), с. 2051.
- V.V.Tsupko-Sitnikov, Yu.V.Norseev, V.A.Khalkin. Journal of Radioanalitical Nucl. Chem. 202, (1996), p. 75.
- 11. В.И.Фоминых, Я.Ваврыщук, Г.В.Веселов и др. ПТЭ 5 (1995) с.19.
- 12. И.М.Банд, М.Б.Тржаковская. Таблицы КВК ү-лучей на К-, L-; М-оболочках. Ленинград, 1978.