ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

> 19/11-76 P6 - 9711

K-806 2751/2-76

Т.Крецу, В.В.Кузнецов, Г.И.Лизурей, Г.Макарие, М.Фингер

ИССЛЕДОВАНИЕ СПЛОШНЫХ БЕТА-СПЕКТРОВ ПО ПРОГРАММЕ ЯСНАПП

P6 - 9711

Т.Крецу, В.В.Кузнецов, Г.И.Лизурей, Г.Макарие, М.Фингер

ИССЛЕДОВАНИЕ СПЛОШНЫХ БЕТА-СПЕКТРОВ ПО ПРОГРАММЕ ЯСНАПП

Направлено в "Чехословацкий физический журнал"

Крепу Т., Кузнецов В.В., Лизурей Г.И., Макарие Г., Р6 - 9711 Фингер М.

Исследование сплошных бета-спектров по программе ЯСНАПП

В работе рассматриваются основные физические вопросы, связанные с бета-распадом ядер. Приведены экспериментальные результаты, полученные при исследовании позитронных спектров следующих нейтронопефицитных изотопов: ¹²⁶ Cs , ¹²⁸ Cs , ¹⁴⁸ Tb , ¹⁵⁰ Tb , ¹⁵² Tb , ¹⁵³ Tb , ¹⁵³ Dy , ¹⁶⁷ Yb , ¹⁶⁹ Lu , ¹⁷⁰ Lu , ¹⁷¹ Lu. Измерения проводились с масссепарированными источниками на тороидальном безжелезном спектрометре типа ^{*}Апельсин^{*} и магнитном бета-спектрометре с двукратной двойной фокусировкой на угол $\pi\sqrt{2}$.

Работа выполнена в Лаборатории ядерных проблем ОИЯИ.

Препринт Объединенного института ядерных исследований

Дубна 1976

Cretu T., Kuznetsov V.V., Luzurej G., P6 - 9711 Macarie G., Finger M.

> Beta-Spectra Investigation by the YSNAPP Programme

The main physical problems of nuclear beta-decay are considered in this paper. The experimental results are presented of positron-spectra investigations for neutrondeficient isotopes ¹²⁶Cs, ¹²⁸Cs, ¹⁴⁸Tb, ¹⁵⁰Tb, ¹⁵²Tb, ¹⁵³Tb, ¹⁵³Dy, ¹⁶⁷Yb, ¹⁶⁹Lu, ¹⁷⁰Lu, ¹⁷¹Lu. The measurements have been performed by the ion-free beta-spectrometer with toroidal magnetic field and by the beta-spectrometer with the double-focusing magnetic field at $\pi\sqrt{2}$ angle.

The investigation has been performed at the Laboratory of Nuclear Problems, JINR.

Preprint of the Joint Institute for Nuclear Research

Dubna 1976

ПОСТАНОВКА ЗАДАЧИ

Исследование бета-распада ядер интересно с точки зрения нашего понимания слабых взаимодействий. Ряд экспериментальных исследований, связанных с бетараспадом нейтрона /1/ и с исследованием угловых корреляций направлений электрон - нейтрино /2/ подтверждают теоретическое представление V-A взаимодействия при бета-распаде. В действительности, анализ существующих экспериментальных данных (3) показывает, что с большой степенью достоверности эти данные согласуются с V-А вариантом теории. Однако пока трудно утверждать об отсутствии вклада других видов взаимодействий при бета-распаде 4 Это связано с тем, что в ряде случаев трудно достигнуть необходимой точности эксперимента. В настоящее время принято считать взаимодействие Ферми чисто векторным, а взаимодействие Гамова-Теллера - чисто аксиально-векторным взаимодействием. На основе V-А варианта взаимодействия было развито теоретическое представление /5,6/ расчета переходов, наблюдаемых при бета-распаде ядер.

Формализм расчета бета-переходов, основанный на одночастичной модели ядра, был применен для расчета бета-переходов в ядрах деформированной области ^{7,8}. Обычно при таких расчетах вводятся поправки для учета влияния парных корреляций сверхпроводящего типа на вероятности бета-переходов ⁹⁻¹¹. Естественно, сравнение экспериментальных данных с проведенными расчетами весьма ценно. Сравнение рассчитанных матричных элементов с феноменологическими /полученными из эксперимента/ матричными элементами может дать ответ на вопросы, связанные с теорией бета-распада и правильностью выбора ядерных состояний, между которыми имеет место бета-переход. В работе $^{/12/}$ наиболее полно разработана техника извлечения численного значения матричных элементов из анализа экспериментальных данных по бета-распаду. Из экспериментальных данных по величине ft, по форме бета-спектра, по коэффициентам β - γ -корреляций направлений, по наблюдению поляризационных эффектов можно определить ядерные матричные элементы конкретных бета-переходов. Определение интенсивности /в процентах на распад/ и граничной энергии сплошного бета-спектра позволяет определить значение log ft для данного бета-перехода $^{/13/}$.

По величине значения log ft можно сказать о степени запрета бета-перехода и сделать иногда заключение о ядерных характеристиках начального и конечного состояний ядер.

Отклонение полученного спектра от статистического распределения получается обычно из экспериментального фактора формы /14/

$$C_{3KC\Pi}$$
 (E) = $\frac{N(E)}{E_{p}F(E,Z)(E_{0}-E)^{2}}$. /1/

Принято считать, что матричный элемент для бета-перехода не зависит от энергии в том случае, если функция

 $f(E) = (\frac{N(E)}{Ep F(E, Z)})^{\frac{1}{2}}$ является прямой, пересекающей ось

энергии в точке $E = E_0$. Существует ряд работ по определению фактора формы $C_{\Im KC\Pi}$ (E), в которых проводятся оценки возможного отклонения формы спектра от статистического распределения. Это отклонение принято характеризовать так называемым фактором Фирца, и обычно выражают в виде b/E, где

$$b = (G_{S}G_{V} + G_{S}G_{V}) |M_{F}|^{2} + (G_{T}G_{A} + G_{T}G_{A}) |M_{GT}|^{2} / 2/$$

Результаты работы ^{/15/} дают значения $G_S/G_V = /-0,001 \pm \pm 0,006/$ и $G_T/G_A = /-0,0004 \pm 0,0003/$, которые позволяют сделать заключение об отсутствии этого отклонения и, соответственно, о нулевом значении фактора Фирца. Нулевое значение этого фактора, однако, не исключает возможный вклад S-T взаимодействия при бета-распаде. При равенстве $G'_S = -G_S$ и $G'_T = -G_T$ в уравнении /2/ значение b=0. В этом случае о вкладе G_S и G_T нельзя судить по виду экспериментального фактора формы $C_{\Im KC\Pi}$ (E). Следует обратить внимание на то, что в ряде случаев при исследовании бета-распада ядер наблюдаются большие разногласия в определении фактора формы $C_{\Im KC\Pi}$ (E) /16-19/ Эти разногласия можно, повидимому, устранить путем совершенствования экспериментальной методики и повышения точности эксперимента.

С другой стороны, представляется интересным исследовать фактор формы С $_{3\rm KCH}$ (Е) для β^+ распада. В последнем случае, как правило, вероятность β^+ -перехода мала по сравнению с электронным захватом. При исследовании интенсивности спектров позитронов и конверсионных электронов в аналогичных условиях можно определить значение величины ϵ/β^+ с хорошей точностью. Например, для бета-распада 22 Na 20 и 58 Co 21 величина ϵ/β^+ определена с точностью около 0,7%.

Наблюдение отклонения $\epsilon'\beta_{\rm 3KCH}^+$ от $\epsilon'\beta_{\rm TCOD}^{+22-21}$ в последнее время предъявляет повышенные требования к точности эксперимента. В работе ²⁵ для объяснения наблюдаемых отклонений $\epsilon'\beta_{\rm 5KCH}^+$ от $\epsilon'\beta_{\rm TCOD}^+$ рассматривается возможное влияние тензорных токов при бетараспаде. В одной из работ ²⁶ для объяснения отклонений теоретических и экспериментальных отношений К/ β^+ вводится так называемый фактор Фирца. С другой стороны, авторы работы ²⁷ доказывают, что из полученных соотношений К/ $\beta_{\rm 5KCH}^+$ или $\epsilon'\beta_{\rm 5KCH}^+$ нельзя получить сведения о тензорном характере взаимодействия при бетараспаде.

На основании вышеизложенного перед нами стояли задачи исследования ряда проблем, связанных с β -распадом конкретных ядер. Измерение граничной энергии и интенсивности β -переходов позволяет нам судить о природе уровней, между которыми имеют место β -переходы. Экспериментальное определение разности масс Q_{β} ядер с хорошей точностью позволит проверить правильность теоретических расчетов разности масс $^{/28-33/}$. Как показано в работе К.Я.Громова и др. $^{/34/}$, рас-

Как показано в работе К.Я.Громова и др.⁷³⁴, расхождения экспериментальных и рассчитанных значений разностей масс особенно велики для ядер, удаленных от полосы β -стабильности. Следовательно, получение информации о массах этих ядер очень важно. Получение граничной энергии с хорошей точностью при измерении β -спектров позволяет, кроме определения разности масс, провести сравнение теоретических и экспериментальных значений ϵ/β^+ , которые, как известно, сильно зависят от энергии перехода.

Ниже приведены экспериментальные данные по исследованию сплошных спектров позитронов ряда ядер.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

• В отделе ядерной спектроскопни и радиохимии Лаборатории ядерных проблем Объединенного института ядерных исследований /ЛЯП ОИЯИ/ имеются магнитные бета-спектрометры: бета-спектрометр с двойной двух-кратной фокусировкой пучка электронов на угол $\pi \sqrt{2}^{/35/}$ /R \leq 0,2%, T \cong 0,2%/ и светосильный безжелезный бета-спектрометр с тороидальным магнитным полем $^{/36/}$ /при T \cong 20% обеспечивается R = 1,2%/.

С помощью этих бета - спектрометров можно исследовать позитронный распад радиоактивных ядер с хорошей надежностью и достоверностью при наличии радиоактивных препаратов с достаточно высокой удельной активностью. Радиоактивные изотопы получались в реакциях глубокого расщепления лантана и тантала протонами с $E_p = 660 \ MэB$. Получение тонких источников осуществлялось с помощью химических методов и разделением на масс-сепараторах ЛЯП ОИЯИ. Использование этих магнитных приборов для исследования сплошных спектров позитронов весьма полезно в сочетании. Бетаспектрометр с тороидальным магнитным полем (β I) позволяет на данном этапе проводить исследования спектров позитронов в области энергий меньше 1000 кэВ и с хорошей эффективностью регистрации электронов /позитронов/ с E_{β} >100 кэВ. Бета-спектрометр с двойной двухкратной фокусировкой пучка электронов /позитронов/ на угол $\pi\sqrt{2}$ (β II) позволяет проводить исследование позитронов в области энергий больше 1000 кэВ с потерей эффективности регистрации электронов /позитронов/ с $E_{\beta} < 1000$ кэВ.

¹²⁶ 128 /37/ Распад Сs и Сs. Исследовались позитроны, сопровождающие распад ¹²⁶ Сs¹,6 <u>мин</u>¹²⁶ Хеи¹²⁸ Сs³,7 <u>ми</u>н ¹²⁸ Хе. Радиоактивные изотопы ¹²⁶ Сs и ¹²⁸ Сs находились в равновесии с материнскими изотопами ¹²⁶ Ва / Т_{1/2} = = 97 мин/ и ¹²⁸ Ва / Т_{1/2} = 2,4 дня/. Измерение спектров позитронов проводилось с помощью бета-спектрометра β II. Полученные значения граничных энергий позитронов при распаде ¹²⁸ Сs в основное и первое возбужденное состояния ¹²⁸ Хе соответственно равны /2906±6/ и /2470±40/ кэВ с соотношением интенсивностей компонентов позитронов

$$J_{\beta^{+}2906} / J_{\beta^{+}2470} \approx 3.2 \quad \mu \quad J_{K \, 442,8} / J_{\beta^{+}_{110,111}} = (4,0\pm0,3) \cdot 10^{-3}.$$

Разность масс атомов 128 Cs – 128 Xc равна $Q_{\beta} = /3928\pm6/\kappa_{3}B$. Определено значение граничной энергии позитронов, сопровождающих распад 126 Cs. Значение $E_{\Gamma p \beta} + = /38O8\pm14O/\kappa_{3}B$.

Распад ¹⁴⁸ Tb^{/38/} С помощью бета-спектрометра β II исследовался спектр позитронов при распаде ¹⁴⁸ Tb / T^{1/2} = 66 мин/. Получены трн компонента позитронов с граничными энергиями /4610±80/, /3840±150/ и /2730±300/ кэВ с соотношением интенсивностей J β^+ 3840[/] J β^+ 4610^{=0,47}, J β^+ 2730 / J β^+ 4610 = 0,75 и J $\kappa_{783,4}$ / J β^+ 4610⁼ 0,1.Разность масс Q β атомов ¹⁴⁹Tb¹⁴⁸ Gd равна /5630+80/ кэВ. Распад ¹⁵⁰ Тb^{,39}. Изучались позитроны, возникающие при распаде ¹⁵⁰ Tb / T $\frac{1}{12}$ = 3,48 ч/ с помощью бета-спектрометра β II. Анализ спектра позитронов позволил определить шесть компонентов с Е $_{1^{\text{Тр}}\beta^{\pm}}$, равными /3650±15/, /3000±100/, /2380±100/, /1720±100/, /1200±100/ и /990±100/ кэВ с соотношением интенсивностей 1:0,33:0,22:0,19:0,16:0,10, соответственно. Отношение интенсивностей конверсионных электронов К638,2 кэВ к интенсивности компонента позитронов, заселяющих основное состояние ¹⁵⁰ Gd, определено равным 1,85.10⁻¹. Полученные данные позволили определить разность масс атомов ¹⁵⁰ Tb – ¹⁵⁰ Gd Q_β =/4670±15/ кэВ.

Распад¹⁵² Ть ^{/40/} С помощью бета-спектрометра β II исследовались позитроны при распаде ¹⁵² Ть / Т ¹/₂ = 17,5 ч/. Определено пять компонентов позитронов, идущих на основное и возбужденные состояния ¹⁵² Gd с $E_{1^{\text{Гр}}\beta^{+}}$ /2830±15/, /1910±40/, /1500±40/, /1200±150/ и /890±150/ кэВ с соотношением интенсивностей 1:0,41 :0,18:0,09:0,09 соответственно. Отношение интенсивности конверсионных электронов К1047,9 кэВ к интенсивности компонента, идущего в основное состояние ¹⁵² Gd, определено равным 2,1.10⁻² Разность масс ¹⁵² Tb- $-^{152}$ Gd составляет $Q_{\beta} = /3850\pm15/$ кэВ.

Распад ¹⁵³ Tb. ^{741/} С помощью бета-спектрометра β I исследован спектр позитронов, сопровождающих распад ¹⁵³ Tb. Интенсивность позитронов составляет /0,040+ \pm 0,015/% на распад ¹⁵³ Tb. Наблюдено два компонента с $E_{\Gamma \rho \beta}$ = /580 \pm 20/ и /350 \pm 40/ кэВ с соотношением интенсивностей 1:3,8 соответственно. Утверждается, что позитронный распад идет в основное и возбужденное состояния - О кэВ /3/2⁻/ и 212,04 кэВ /3/2⁺/. Определенное значение K/ β^+ = 1270 $_{-480}^{+1440}$ для уровня 212,04 кэВ согласуется с теоретическим значением K/ β^+ = 1200^{-14/}. Из значения K/ β^+ = 150^{-14/} для перехода в основное состояния ϵ -захватом /2,0 \pm 0,8/% и значение log ft = = /8,20 \pm 0,15/. Разность масс ¹⁵³ Tb.¹⁵³ Gd составляет /1600+20/ кэВ.

Распад ¹⁵³ Dy ^{/42/} При распаде ¹⁵³ Dy измерен спектр позитронов с помощью бета-спектрометра β I. Наблюдено три компонента с $E_{\Gamma p} \beta^+ = /1064\pm17/$, /887±3/ и /471±35/ кэВ. При условии, что позитроны с $E_{\Gamma p} = /887\pm3/$ кэВ заселяют уровень 262,8 кэВ, определена разность масс ¹⁵³ Dy – ¹⁵³ Tb, равная $Q_{\beta} = /2172\pm3/$ кэВ. Из соотношения $J_{\beta^+887}/J_{K254,2} = /0,58\pm0,06/,$ $J_{\beta^+1064}/J_{K254,2} = /0,22\pm0,06/$ и $J_{\beta^+471}/J_{K254,2} = /0,07\pm0,05/$ рассчитана интенсивность позитронов в процентах на распад ¹⁵³ Dy : $J_{\beta^+\Pi O H} = /1,24\pm0,27/\%$, $J_{\beta^+471} = /0,19\pm0,07/\%$. При этом из работы /43/принималось, что J K 254,2 составляет /1,42\pm0,14/\% на распад ¹⁵³ Dy.

Распад ¹⁶⁷ Yb. ^{/44/} Позитроны при распаде ¹⁶⁷ Yb были обнаружены в работе ^{/45/} в 1964 году. Была определена их граничная энергия /650+30/ кэВ и интенсивность О,4% на распад ¹⁶⁷ уb. В нашем случае использовался препарат лютеция, химически выделенный из танталовой мишени, облученной протонами с Е = 660 МэВ. В измеренном с помощью бета-спектрометра ВІ позитронном спектре преобладали позитроны 167 Yb, вклад позитронов ¹⁶⁷Lu / Т¹/₂ = 55 мин/, находящегося в равновесии с ¹⁶⁷ Уb и позитронов долгоживущих изотопов лютеция с А = 169, 170 и 171 учитывался. Полученный спектр позитронов ¹⁶⁷ Уb очень хорошо описывается графиком Ферми-Кюри в области энергий позитронов > 100 кэВ. Определена граничная энергия позитронов 167 Yb-E = $= /639 \pm 4 / \kappa_3 B$ и отношение интенсивностей J_{β^+639} / $J_{K116,6}$ = 0,36±0,04. Используя результаты исследования схемы распада Yb/46/мы нашли интенсивность позитронов $J_{\beta^+639} = /0,49\pm0,12/\%$ на распад ¹⁶⁷ Yb. Из работы ^{/46/} следует, что позитронный распад происходит на уровень 292,8 кэ B^{167} Тm и что разность масс¹⁶⁷ Yb-¹⁶⁷ Tm тогда равна Q_{β} =/1954±4/кэB. Экспериментальное значение log ft для au – β -перехода $n 5/2^{-}/523/ \rightarrow p 7/2^{-}/523/$ при распаде ¹⁶⁷ Yb на уровень 292,8 кэ B^{167} Tm оказывается равным log ft = = 4,45+0,10.

Распад ¹⁶⁹ Lu u^{170} Lu^{47/}. С помощью бета-спектрометра *β* II исследовались спектры позитронов, возникающих при распаде 169 Lu / $T_{1/2}^{1/2}$ = 36 ч/ н 170 Lu / $T_{1/2}^{1/2}$ = 48 ч/. В случае 169 Lu граничные энергии полученных компонентов спектра равны /1270+10/ /760<u>+</u>90/ *кэВ*. Их относительные интенсивности J_{β^+1270} / J_{β^+760} = 4:1. Интенсивность конверсионных электронов К 960,2 кэВ по отношению к полной интенсивности позитронов равна /3,2±0,3/.10-2. Граничная энергия жесткого компонента позитронов ¹⁷⁰ Lu получена равной /2380±60/ кэВ. Отношение интенсивности конверсионных электронов К1450,1 кэВ к интенсивности позитронов 170 Lu равно /2,0+0,2/.10⁻¹ На основе данных работ /48,49/ определены интенсивности позитронов в процентах на распад: ¹⁶⁹ Lu-/1,1±O,3/%, 170 Lu -/0,2+0,1/%

Распад 171 Lu $^{/50,51/}$. Среди разрешенных бета-переходов существует группа интересных случаев, для которых очень велико значение log ft. Среднее эначение величины log ft для разрешенных переходов равно 3,5÷5,5. Однако в ряде случаев для сильно заторможенных разрешенных переходов log ft лежит в пределах от 6,0 до 10,8.

Увеличение log ft, по-видимому, связано с влиянием структурных эффектов ядерных уровней. Наряду с уменьшением величины ядерных матричных элементов для разрешенных переходов в таких случаях могут оказываться также возможные примеси ядерных матричных элементов бета-переходов второго порядка запрещения.

С помощыю бета-спектрометра (β I) проводились ис-следования спектра позитронов 171 Lu. Для определения доли позитронов на распад ' ⁷¹ Lu измерялись К-конверсионные электроны с энергией 739,62 и 667,35 кэВ. Кроме этого, прослеживался спад интенсивности позитронов во времени в течение 10 дней / $T_{\frac{1}{2}} \approx 8 \partial H$.

Определена $E_{\Gamma p} \beta^+$ равной /362±3/ кэВ. При условии, что позитроны заселяют состояние ¹⁷¹ Yb с энергией 95,255 кэВ 7/2⁺/633/, разность масс ¹⁷¹ Lu – ¹⁷¹ Yb составляет $Q_B = /1479 \pm 3/ \kappa 3B$.

Из наблюденного соотношения Ј_В+: Ј К 739 = 0,074+0,06 рассчитана интенсивность позитронов на распад: ¹⁷¹ Lu : $J_{\beta}^{+} = /8, O_{\pm}^{-1}, 1/.10^{-5}$. При этом из данных работы ^{/52/} принималось, что интенсивность Данных расоты принималось, не пленед 171 Lu. J K739 составляет /0,10±0,01/% на распад 171 Lu. Из теоретического значения $\epsilon/\beta^+ = 2370\pm70^{/14}$ для бета-перехода на возбужденное состояние 171 Yb с энергией 95,255 кэВ получена величина заселения этого уров- $\log ft =$ ня є - захватом /19,0+2,1/% и значение = 8,1+0,1. Это значение хорошо согласуется с данными работы /53/.

Расчеты матричных элементов с применением волно-вых функций Соловьева, Гареева ^{/54/} с использованием потенциалов Вудса-Саксона для бета-перехода 7/2⁺/4O4/ → 7/2⁺/633/ дали величину log ft = 7,99 при β_2 = 0,26 **H** β_{4} = -0,02.

ЛИТЕРАТУРА

- 1. Б.Г.Ерозолимский. УФН, т. 16, вып. 1, 145 /1975/.
- 2. J.Allen. Rev. Mod. Phys., 31, 795 /1959/.
- 3. А. Кгорf, H. Paul. Z. Phys., 269, 129 /1974/. 4. С.Де Бенедетти, в кн. "Ядерные взаимодействия", гл. 8, Атомиздат, Москва, 1968.
- 5. H.Behrens, J.Jänecke. Landolt-Börstein, New Series, v. 1/4 (Springer Verlag, Berlin), New York, Heidelberg), 1969.
- 6. H.Behrens, W.Bühring. Nucl. Phys., A162, 111 /1971/.
- 7. D.Bogdan, Tr. Cretu, G. Macarie. Z. Phys., 263 121 /1973/.
- 8. D. Bogdan, Tr. Cretu. G. Macarie. Z. Phys., 265, 385 /1973/.
- 9. В.Г.Соловьев, в кн. "Влияние парных корреляций сверхпроводящего типа на свойства атомных ядер", Атомиздат, 1963.
- 10. В.Г.Соловьев, в кн. "Теория сложных ядер", Изд. "Наука", М., 1971.
- 11. V.G.Soloviev. Mat. Fys. Medd. Dan. Vid. Selsk., 1. No. 11 /1961/.
- 12. J.C.Manthuruthil, C.P.Poirier. Nucl. Phys., A118, *657 /1968/*.
- 13. D.Strominger, J.N.Hollander, G.T.Seaborg. Rev. Mod. Phys., v. 30, No. 2, part 2, 589 /1958/.

- 14. Б.С.Джелепов, Л.Н.Зырянова, Ю.П.Суслов, в кн. "Бета-процессы", Наука, Ленинград, 1972.
- 15. H. Paul. Nucl. Phys., A154, 154 /1970/.
- 16. E.H.Spejewski. Nucl. Phys., 82, 481 /1966/.
- 17. S. André, P. Depommier, P. Liaud, J.C. Millies-Lacroi. Compt. Rend., 264, 819 /1967/.
- 18. F. Greverie, G. Ambrosino. Compt. Rend., 264, 651 / 1967/.
- 19. S.Y. Van der Werf, H. de Waard, H. Beckhuis. Nucl. Phys., A134, 215 /1969/.
- 20. E. Vatai, D. Vorga, J. Uchrin. Nucl. Phys., A116, 637 / 1968/.
- 21. A. Williams, Nucl. Phys., A153, 665 /1970/.
- 22. M.L. Fitzpatrick, K. W.D.Ledingham, J.Y.Synch, J.Y.Gourlay. J.Phys., 6, 713 /1973/.
- 23.K.W.D.Ledingham, J.Y.Gourlay, M.Cambell, M.L.Fitzpatrick, A.D.Boillie. Phys.Lett., 80B, 2, 247 /1974/.
- 24. R.B.Firestone, R.A.Warner, W.C.McHarris, W.H.Kelley, Phys.Rev.Lett., 35, 713 /1975/.
- 25. D.H. Willkinson. Phys. Lett., 31B, 447 /1970/.
- 26. Ю.П.Суслов. Изв. АН СССР, сер. физ., 37, 77/1973/.
- 27. H.Behrens, W.Bühring. Nucl. Phys., A232, 230 /1974/.
- 28. M. Hillman. BNL-846 (T-33), 1964.
- 29. A.C.W. Cameron. CRP-690, Chalk River /1957/.
- 30. J. Wing, J.D. Veoley. ANL-6886 /1964/.
- 31. W.D. Myers, W.J. Swiatecki. UCRL-11980, 1965.
- 32. P.A.Seeger. Int. Conf. on the Properties of Nuclei Far from the Region of Beta-Stability, CERN 70-30, 1, Geneva, 1970, p. 271.
- 33. G. T. Garvey, W.F. Gerace, R.L. Jaffe, J. Halmi, T.Kelson. Rev. Mod. Phys., 41, 4 /1969/.
- 34. К.Я.Громов, Х.-У.Зиберт, В.Г.Калинников, Г.Музиоль, Х.Штрусный. ЭЧАЯ, вып. 4, 971 /1975/.
- 35. J.Adam et al. JINR, E-2494, Dubna, 1965.
- 36. М.Гасиор, К.Я.Громов и др. ОИЯИ, Д6-7094, 167, Дубна, 1973.
- 37. М.Гонусек, П.М.Гопыч, А.Караходжаев, А.Ф.Новгородов, М.Фингер, А.Ясински, М.Яхим. ОИЯИ, Д6-7094, стр. 100, Дубна, 1973.
- 38. Л.Пюшек, М.Фингер, А.Ф.Щусь. Программа и тезисы докладов XXУ совещания по ядерной спектроскопии и структуре атомного ядра, "Наука", Л., 107, 1975.
- 39. Я.Коничек, Л.Пюшек, М.Фингер, А.Ф.Щусь. Там же, стр. 109.
- 40. М.Гонусек, И.И.Громова, М.Фингер, А.Ф.Щусь. Там же, стр. 110.
- 41. Ц.Вылов, К.Я.Громов, В.В.Кузнецов, В.С_Александров, А.Ш.Хамидов. Там же, стр. 113.

- 42. М.Гасиор, И.И.Громова, Т.Крецу, В.В.Кузнецов, Н.А.Лебедев, Г.И.Лизурей, Г.Макарие, Д.Мончка. Тезисы докладов XXVI совещания по ядерной спектроскопии и структуре атомного ядра. "Наука", 110, Баку, 1976.
- 43. К.Зубер, Ц.Вылов, И.И.Громова, Я.Зубер, X.-Г.Ортлепп, Н.А.Лебедев, ОИЯИ, Р6-8669, Дубна, 1975.
- 44. М.Гасиор, К.Громов, Т.Крецу, В.Кузнецов, Г.Лизурей, Н. Лебедев, Г.Макарие. Тезисы докладов XXVI совещания по ядерной спектроскопии и структуре атомного ядра. "Наука", 117, Баку, 1976.
- 45. Ван Чуань Пэн и др. Изв. АН СССР, сер. физ., 28, 252 /1964/.
- 46. А.А.Абдуразаков и др. ОИЯИ, Еб-4782, Дубна, 1969.
- 47. Н.А.Бонч-Осмоловская, Я.Коничек, М.Фингер, Й.Ференцек, А.Ф.Щусь. ОИЯИ, Д6-8846, стр. 134, Дубна, 1975.
- 48. Н.А.Бонч-Осмоловская и др. ОИЯИ, Р6-6649, Дубна, 1972.
- 49. Н.А.Бонч-Осмоловская и др. ОИЯИ, Р6-4773, Дубна, 1969.
- 50. М.Гасиор, В.В.Кузнецов, Г.И.Лизурей, Г.Макарие, В.М.Горожанкин, А.Ш.Хамидов. ОИЯИ, Д6-8846, 136, Дубна, 1975.
- 51. Д.Богдан, М.Гасиор, Т.Крецу, В.В.Кузнецов, Н.А.Лебедев, Г.И.Лизурей, Г.Макарие, Д.Г.Попеску. Тезисы докладов XXVI совещания по ядерной спектроскопии и структуре атомного ядра, "Наука", стр. 122, Баку, 1976.
- 52. Н.А.Бонч-Осмоловская и др. Изв. АН СССР, сер. физ., 38, 2516, 1974.
- 53. К.П.Артамонова, Е.П.Григорьев, А.В.Золотавин, В.О.Сергеев. Изв. АН СССР, сер. физ., 39, 523 /1975/.
- 54. Ф.А.Гареев, В.Г.Соловьев и др. ЭЧАЯ, 4, вып. 2, 357, 1973.

Рукопись поступила в издательский отдел 13 апреля 1976 года.