

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Дубна

95-258

P6-95-258

Н.Г.Зайцева, В.И.Стегайлов, В.А.Халкин, Н.Г.Шакун, Е.Т.Шишлянников, К.Г.Буков*

ПОЛУЧЕНИЕ РУТЕНИЯ-97 В РЕАКЦИИ ⁹⁹Tc (р, 3n) ⁹⁷Ru НА ВНУТРЕННЕМ ПУЧКЕ ПРОТОНОВ ФАЗОТРОНА ОИЯИ

Направлено в журнал «Радиохимия»

*Институт физической химии РАН, Москва

1.Введение

Рутений-97 – нейтронодефицитный изотоп Ru, элемента легкой платиновой группы, – имеет относительно короткий период полураспада, $T_{1/2} = 2,9$ дня. Он распадается е⁻-захватом, в его гаммаспектре наблюдаются только две интенсивные линии, соответствующие гамма-квантам с энергией 216 кэВ (86%) и 324 кэВ (10,2%) [1].

Рутений имеет несколько степеней окисления, из которых наиболее устойчивы Ru(II), Ru(III), Ru(IV), Ru(VIII), и образует многочисленные простые и комплексные соединения [2-4]. Сочетания этих хороших, с то́чки зрения радиофармакологии, физических и химических свойств делает ⁹⁷Ru в перспективе полезным для ядерной медицины. Впервые такая оценка была сделана в 1970 году [5], и с тех пор непрерывно ведутся исследования в области радиофармацевтической химии соединений, меченных ⁹⁷Ru. Согласно литературным данным [6], можно получать многочисленные и разнообразные радиофармацевтические препараты (РФП) с ⁹⁷Ru, аналогичные по свойствам хорошо известным РФП с радионуклидами ⁶⁷Ga, ¹¹¹In, ^{99m}Tc, что способствует прогнозированию применения ⁹⁷Ru в ядерной медицине.

Исходя из химических свойств рутения и технеция очевидно, что многие Ru-содержащие препараты должны быть устойчивее ряда широко используемых препаратов с ^{99m}Tc, что позволяет говорить о вероятности получения тех соединений с ⁹⁷Ru, в которые нельзя было ввести ^{99m}Tc. Целый ряд экспериментов подтвердил перспективность применения ⁹⁷Ru при решении задач медицинской диагностики и терапии. Например, для радиоиммунотерапии получены стабильные соединения ⁹⁷Ru с моноклональными антителами [6,7]. Показано, что ⁹⁷RuDTPA, где DTPA - анион диэтилентриаминиентауксусной кислоты, в некоторых случаях дает лучшие результаты, чем ^{99m}TcDTPA или ¹¹¹InDTPA при обследовании каналов спиномозговой жидкости [8].

Комплекс ⁹⁷RuPIPIDA, где PIPIDA - анион N-α-р-изопропилацетанилид-иминоуксусной кислоты, можно успешно использовать вместо ^{99m}TcPIPIDA в тех случаях, когда требуются длительные обследования при заболеваниях печени и желчного пузыря. Диаг-

ностика этих заболеваний с использованием препаратов, меченных ^{99m} Tc, эффективна лишь в цвух случаях из пяти [9]. Положительные результаты при диагностике опухолевых заболеваний дал ⁹⁷Ru-блеомицин, который одновременно выполняет роль химикотералевтического агента [10]. Для этих же целей пригоден ⁹⁷Ruтрансферрин, накопление которого в опухолях в 3-5 раз выше, чем у ⁶⁷Ga-цитрата [11].

Исключительно хорошего качества сцинтиграммы печени девяти пациентов в возрасте от 6 недель до 84 лет были получены с новым соединением ⁹⁷Ru-DISIDA-производным иминодиуксусной кислоты как альтернативным соединению ¹³¹I-бенгальская роза [12].

Приведенные примеры не исчерпывают всех известных литературных данных, но позволяют сделать вывод, что если бы ⁹⁷Ru был широко доступен, т.е. относительно дешев, регулярно получался бы в больших количествах, то он нашел бы свое место в ряду радионуклидов, наиболее часто используемых в ядерной медицине. В настоящее же время он применяется лишь в отдельных исследованиях и отнесен к потенциально важным медицинским нуклидам.

Рутений-97 с высокой удельной активностью и в относительно больших количествах может быть получен в нескольких ядерных реакциях: ⁹⁶Ru(n, γ)⁹⁷Ru, Mo(⁴He,xn)⁹⁷Ru, Mo(³He,xn)⁹⁷Ru, Rh(p,X)⁹⁷Ru, Ag(p,X)⁹⁷Ru, ⁹⁹Tc(p,3n)⁹⁷Ru. В настоящее время реально его получают при облучении металлического родия протонами с энергией 70 МэВ, с выходом 1,4 мКи/мкА·ч [13], и в реакциях ядер гелия с энергией 30-35 МэВ с природным или обогащенным молибденом, с выходом около 100 мкКи/мкА·ч [14,15,16]. В первом случае производство радионуклида возможно только при наличии сильноточного ускорителя с соответствующей энергией протонов и мишеней из металлического родия – дорогого благородного металла. Во втором случае рассчитывать на высокую производительность можно только при токах α -частиц в несколько сот микроампер на специализированных циклотронах.

Решить задачу крупномасштабного производства ⁹⁷Ru (получать кюриевые количества на момент конца облучения) представляется возможным, по нашему мнению, в случае, если в качестве мишени для протонной бомбардировки использовать технеций-99 [17,18].

2

Функция возбуждения ядерной реакции и выход нуклида

Функция возбуждения реакции ⁹⁹Tc(p,3n)⁹⁷Ru впервые была измерена нами в интервале энергий протонов от 20 до 100 МэВ известным методом стопки фольг [19]. Облучение мишеней проводили на пучках протонов линейного ускорителя И-100 Института физики высоких энергий в Протвино (Россия) и изохронного циклотрона У-120М Института ядерных исследований Чешской академии наук (Ржеж) протонами с энергией 100 МэВ и 35 МэВ соответственно. Результаты экспериментов хорошо совпали друг с другом и показали, что максимальное сечение образования ⁹⁷Ru(440 мб±15%) достигается при $E_p=32$ МэВ. Выходы радионуклида из "толстой" мишени возрастают от 1 мКи/мкА·ч до 10,5 мКи/мкА·ч при увеличении энергии от 30 до 100 МэВ (рис.1).

Рис.1. Сечение образования и выход ⁹⁷Ru в реакции ⁹⁹Tc(p,3n)⁹⁷Ru

Во всем дианазоне энергий ⁹⁷Ru получается практически радиоизотопночистым, так как более легкие изотопы рутения имеют короткие периоды полураспада (<2 ч) [1] и сечения их образования меньше, чем у ⁹⁷Ru. Удельная активность, с учетом образования в ядерных реакциях стабильных изотопов ⁹⁶Ru, ⁹⁸Ru, ⁹⁹Ru, должна быть не ниже 5·10⁴ Ku/r.

Материал мишени

Металлический технеций - прекрасный материал для циклотронных мишеней, тепловыделение в которых может достигать 3 кВт/г и более. Это твердый, эластичный металл с удельным весом 11,5 г/см³, коррозионно-устойчивый до 300°С, обладающий высокой теплопроводностью и температурой плавления около 2500 К [20]. Использованию технеция в качестве материала мишени для производства ⁹⁷Ru в настоящее время, возможно, мешает отношение к технецию как к экзотическому и радиоактивному металлу. Применительно к мишеням, изготовленным из технеция для протонной бомбардировки, эти факторы вряд ли можно считать ограничительными и, кроме того, следует иметь в виду следующие обстоятельства.

Во-первых, содержание ⁹⁹Tc в отработанном топливе атомных электростанций достигает 1 кг на тонну урана. Его извлечение, восстановление до металла и изготовление мишеней, очевидно, можно сравнить по стоимости с получением обогащенных мишеней (например, ¹²⁴Xe и ²⁰³Tl для производства ¹²³I и ²⁰¹Tl) или с выделением ⁹⁹Mo для генераторов ^{99m}Tc.

Во-вторых, технеций отнесен к группе изотопов с низкой радиотоксичностью (группа В) [21], что позволяет работать в радиохимической лаборатории III класса с 5-6 граммами металла, а в лаборатории II класса – перерабатывать до 50 г технеция.

Изотоп ⁹⁹Tc($T_{1/2}=2,12\cdot10^5$ лет) - чистый β^- -излучатель с граничной энергией электронов 292 кэВ, что соответствует средней энергии электронов около 100 къВ; активность на поверхности металла 2,6·10⁶ β^- -частиц/см² с, удельная активность элемента 17 мКи/г. Низкая энергия β^- -излучения в сочетании с высокой прочностью и тугоплавкостью металла практически исключают его распыление за счет агрегатной отдачи. Это позволяет относиться к металлическому технецию как к закрытому источнику излучения (перчатки, пинцет и легкий экран – достаточные средства индивидуальной защиты при подготовке мишеней из технеция к облучению).

В настоящее время производство ⁹⁷Ru в количествах порядка десятков кюри в год с использованием металлического технеция в качестве материала мишени нельзя организовать в России из-за отсутствия специализированных сильноточных ускорителей протонов с энергией 30 МэВ и выше. Но для постановки поисковых медико-биологических и радиофармакологических экспериментов можно регулярно получать ⁹⁷Ru в количествах 100-200 мКи в неделю на ускорителях, не предназначенных для коммерческой наработки радионуклидов. К таким ускорителям относится фазотрон Объединенного института ядерных исследований в Дубне.

Облучение, мишенное устройство

Облучение мишеней протонным пучком с интенсивностью 6-8 мкА и энергией от 20 до 660 МэВ проводится внутри вакуумной камеры ускорителя. На заданную величину радиуса протонной орбиты (заданную энергию протонов) мишени устанавливаются с точностью до миллиметра пробником с дистанционным управлением. Зависимость энергии протонов от радиуса орбиты в интервале от 40 до 120 см показана на рис.2.

Шаг спиральной орбиты для протонов в вакуумной камере фазотрона имеет расстояние между витками порядка 250 мкм. Поэтому активность, наведенная на мишени высотой 15-20 мм и толщиной 4-5 г/см², быстро падает с увеличением расстояния от края мишени в направлении увеличения радиуса орбиты: свыше 90% продуктов

4

ядерных реакций сконцентрировано в первых трех миллиметрах (рис.3).

Из рисунка видно, что с уменьшением вертикальных размеров и толщины мишени спад активности в радиальном направлении происходит менее резко. Вертикальное распределение интенсивности внутреннего пучка при энергии протонов 60 МэВ, построенное по измерениям активации медной мишени толщиной 4 г/см², показано на рис.4.

Результаты экспериментов по изучению распределения внутреннего пучка протонов фазотрона на мишенях были использованы при разработке конструкции мишени из металлического технеция (рис.5).

Рис.5. Конструкция мишени для облучения металлического технеция внутренним пучком протонов фазотрона

Мишень состоит из трех пластинок толщиной 3 г/см² по пробегу протонов, запрессованных в медный блок, который крепится к водоохлаждаемой головке пробника. Масса Тс в мишени составляет около 1 г. Конструкция и расположение Тс-пластинок исключают их нагрев протонным пучком до температуры плавления и, следовательно, нет потерь Тс за счет испарения в вакууме. По нашим оценкам, при такой конструкции мишень "захватывает" не менее 80% пучка.

Радионуклидный состав облученной мишени

Как показали исследования [19], активность Тс-мишени после облучения протонами с энергией 100 МэВ обусловлена примерно в равной степени как изотопами рутения, так и изотопами технеция, получающимися в реакциях:⁹⁹Tc(p,xn)^{100-x}Ru и ⁹⁹Tc(p,pxn)^{99-x}Tc. Изотопы рутения с массой 96,98 и 99 - стабильные, с массой 92 - 95 имеют короткий период полураспада (≤1,65 ч), и только ⁹⁷Ru (T_{1/2}=2,9 дня) определяет активность рутения через 12 часов после конца облучения.

Что касается изотопов технеция, то вклад в их образование в мишени Тс определяется не только ядерными реакциями, но

и распадом изотопов Ru. Радионуклидный состав включает ^{95m}Tc(T_{1/2}=61 дн; ИП, К-захват, E_{γ} =204 кэВ, 80%; 582 кэВ, 44% и др.); ^{95g}Tc(T_{1/2}=20 ч; К-захват, E_{γ} =766 кэВ, 94%); ⁹⁶Tc(T_{1/2}=4,35 дн; К-захват, E_{γ} =778 кэВ, 100%; 813 кэВ, 82%; 850 кэВ, 99%); ^{99m}Tc(T_{1/2}=6,01 ч; ИП, E_{γ} =141 кэВ, 85%) и короткоживущие нуклиды с массой 92,93,94 ($T_{1/2} \le 4,9$ ч).

С уменьшением энергии налетающих протонов активность изотопов ⁹⁵ Tc и ⁹⁶ Tc в мишени резко падает. Так, выход ^{95m} Tc при $E_p=100$ MэB составляет около 300 мкКи/мкАч, а при энергии протонов вдвое меньшей - всего 5-7 мкКи/мкАч, и исчезающе малой по сравнению с ⁹⁷ Ru будет активность изотопов Tc при $E_p=30$ MэB [19]. Все это говорит о том, что при необходимости технеций-99 можно регенерировать из практически неактивных технологических отходов (не считая собственной активности ⁹⁹ Tc) уже через полгода после отделения рутения. Таким образом, то, что производственные отходы, в данном случае, не содержат долгоживущих радиотоксичных продуктов ядерных реакций, как это имеет место, например, при извлечении ⁹⁹ Mo из облученного тепловыми нейтронами ²³⁵U, весьма важный с экологической и экономической точек эрения фактор, поскольку не возникает необходимости в переработке и длительном хранении этих отходов.

Величина наработки ⁹⁷Ru

Представленная на рис.5 мишень предназначена для облучения протонами с начальной энергией 50 ± 1 МэВ. При этой оптимальной энергии, как показывают результаты [19], выход ⁹⁷Ru на конец облучения достигает 7 мКи/мкА ч при относительно небольшом вкладе в общую активность мишени других радионуклидов. Если поднять энергию протонов до 60 МэВ, то выход ⁹⁷Ru возрастает всего на 15%, при этом толщина мишени Tc увеличивается до 4,6 г/см², а общая активность мишени увеличивается на порядок [19]. Отсюда следует, что для получения ⁹⁷Ru в реакции ⁹⁹Tc(p,3n) целесообразнее использовать протоны с энергией не выше 50 МэВ.

Количество ⁹⁷Ru, которое реально получается за один час работы фазотрона ОИЯИ, определяли при экспозициях от 10 до 30 минут и максимальном токе протонов около 8 мкА. Активность ⁹⁷Ru(мKu/ч) в облученном металлическом технеции рассчитывали по результатам спектрометрических измерений интенсивности гамма-линий с энергией 216 кэВ и 324 кэВ по формуле

$$Y = \frac{S_i \mu_i}{3, 7 \cdot 10^7 t_b \delta_i \varepsilon_i t_m e^{-\lambda t_e}}$$

где S_i - число зарегистрированных γ_i - квантов,

 μ_i - коэффициент поглощения γ_i - квантов в металлическом Tc,

tь - время облучения, ч,

t_m - продолжительность измерения, с,

t_c - время после конца облучения до начала измерения, ч,

 λ - константа распада радионуклида,

 δ_i - эффективность регистрации γ_i -квантов детектором,

 ε_i - относительное количество γ_i -квантов на распад.

Измерения активности образцов проводили на сцинтилляционном гамма-спектрометре с кристалюм NaI(Tl) (63х63 мм, разрешение ~8%), созданном на базе ПЭВМ типа PC/AT 286, и в отдельных случаях на спектрометре с Ge(Li)-детектором и 4096канальным анализатором в стандарте КАМАК, соединенным для обработки результатов с ПЭВМ типа PC/AT 386.

Как и ожидалось, наработка ⁹⁷Ru в выбранных условиях $(E_p=50 \text{ МэB}, \text{ток} \sim 8 \text{ мкA})$ оказалась достаточно высокой – 40-50 мКи/ч на конец облучения. Следует заметить, что такие количества ⁹⁷Ru можно получить в реакциях ⁴He(35 MəB) с молибденом только при токах ускоренных ионов свыше 500 мкA.

Радиохимическое выделение ⁹⁷Ru из облученного металлического технеция

Задача радиохимической переработки мишени металлического технеция при общей ее активности 1-2 Ки с целью выделения радионуклидночистых и без добавок носителя препаратов ⁹⁷Ru была решена нами на основе известных химических свойств технеция и рутения [2-4,22-24].

Вначале предполагалось, что могут возникнуть трудности, связанные с процессом растворения металлического Тс и последующим влиянием технециевой кислоты при относительно высокой ее

концентрации на поведение ультрамалых количеств рутения в полученных растворах. Согласно литературным данным, металлический технеций растворяется в перекиси водорода (1) или азотной кислоте (2):

$$2\mathrm{Tc} + 7\mathrm{H}_2\mathrm{O}_2 \longrightarrow 2\mathrm{HTcO}_4 + 6\mathrm{H}_2\mathrm{O} , \qquad (1)$$

 $Tc + 7HNO_3 \longrightarrow HTcO_4 + 7NO_2 + 3H_2O$. (2)

По нашим наблюдениям, растворение компактного металла в перекиси водорода действительно происходит, но очень медленно: пластинка Тс массой 0,4 г с поверхностью 0,8 см² растворялась в 15 мл 30% H_2O_2 в течение трех дней. Нагревание и подкисление раствора на скорость растворения не влияли. В 13М HNO₃ при 100°C металлический Тс растворялся за 2-3 ч, и, как показали контрольные измерения, потерь рутения и технеция в процессе растворения не было. При массе облученного металла ~1 г и объеме азотной кислоты 10 мл концентрация HTcO₄ в полученном растворе составляла 1 моль/л. В таком растворе микроколичества рутения, очевидно, находятся в форме нитрозилрутенатов – чрезвычайно прочных соединений, которые разрушаются только при окислении элемента до восьмивалентного состояния.

Известно, что нитрозилрутенаты легко окисляются KIO₄ или $(NH_4)_2S_2O_8(Ag)$ до тетраоксида рутения, как в азотнокислых, так и в сернокислых растворах. Он отгоняется из этих растворов менее чем за 30 мин при температуре 70-90°С и барботировании воздуха через раствор со скоростью 100 мл/мин [25]. Дистилляция из водных растворов при температурах ниже 100°С – свойство весьма редкое для других элементов. Именно на этом свойстве была основана разработанная нами методика разделения граммовых количеств технеция и нанограммовых количеств рутения с высоким коэффициентом очистки в одностадийном процессе, схема которого (рис.6) и описание приводятся ниже.

Облученную мишень металлического Тс массой около 1 г растворяли в 10 мл конц. HNO₃ при нагревании на кипящей водяной бане с одновременным пропусканием тока воздуха над поверхностью раствора для удаления окислов азота. Газы и возможные радиоактивные примеси поглощали в ловушках с раствором NaOH. Полученный азотнокислый раствор, содержащий TcO_4^- и радиорутений, переводили в сернокислый, добавляя равный объем 11М H_2SO_4 и упаривая смесь до половины объема (до температуры кипения сернокислого раствора 160°С). Пары азотной кислоты удаляли с током воздуха, проходящим через ловушки так же, как и при растворении технеция.

Рис.6. Схема метода радиохимического выделения ⁹⁷Ru из металлического Tc, облученного протонами на внутреннем пучке фазотрона

Контрольные измерения активности поглощающих растворов в ловушках показали, что с парами азотной кислоты уносилось <<1% HTcO₄, а следов рутения, как и следовало ожидать [26,27], не было обнаружено. Полученный сернокислый раствор разбавляли водой до концентрации 5-6 моль/л и переносили его в прибор для дистилляции, в который было введено 1,0-1,5 г KIO₄. Раствор нагревали на водяной бане до ~90°C и в течение 20-30 минут отгоняли Ru^{*}O₄ в токе воздуха, барботирующем через раствор со скоростью 100-

10

200 мл/мин. Рутений поглощался в ловушке с раствором 5 мл 6М HCl или 5 мл 3M HCl - 15% H₂O₂, в котором Ru(VIII) восстанавливался до Ru(III). Этот солянокислый раствор при необходимости сокращения его объема можно упарить без потерь рутения.

Весь процесс от начала растворения технеция до получения солянокислого раствора рутения занимает 6-7 часов. Как показали результаты экспериментов, это время можно сократить минимум на два часа, если дистилляцию рутения проводить непосредственно из азотнокислого раствора сразу после растворения мишени и введения в него KIO₄. Рутений количественно выделяется из азотнокислого раствора, содержащего макроколичества технеция и KIO₄, причем поглощающий раствор после отгонки рутения не соцержит примесей технеция. Однако при этом не исключена вероятность образования нитрозо-трихлоро-рутениевой кислоты в результате реакции восстановления RuO₄ в солянокислой среде окисью азота [28], которая образуется в реакциях фото- и радиолитического разложения азотной кислоты и также поступает в ловушку с током воздуха. Поведение нитрозосоединений микроколичеств рутения при последующих синтерах меченых радиофармацевтических препаратов требует дополнительных исследований в радиофармхимии. Поэтому было решено ввести операцию перевода авотнокислого раствора в сернокислый. Это несколько удлиняет процесс, но дает возможность получать ⁹⁷Ru в виде хлоридов, которые обычно и служат исходными соединениями при приготовлении ⁹⁷Ru-РФП.

Химический выход ⁹⁷Ru в описанном методе равен 95-98%, причем потери рутения связаны в основном с сорбцией и восстановлением RuO_4 на стенках прибора, вследствие чего требуется предварительная обработка его внутренней поверхности окислителем [29]. С целью снижения адсорбционных потерь рутения в дистилляционном приборе были предусмотрены короткий путь газового потока между испарительной и поглотительной частями, а также относительно небольшая поверхность, которую омывает этот гавовый поток.

Гамма-спектрометрический анализ конечного солянокислого раствора ⁹⁷Ru показал отсутствие примесей технеция (не обнаружены изотопы ^{95m}Tc, ⁹⁶Tc) (рис.7), следовательно, возможный уностехнеция в потоке воздуха с каплями сернокислого раствора составлияет менее 10⁻²%, а коэффициент очистки более 10⁴.

Заключение

Полученные на фазотроне ОИЯИ экспериментальные данные по облучению ⁹⁹Тс и выделению ⁹⁷Ru позволяют прогнозировать количества его наработки. Так, проводя облучение мишеней металлического технеция протонным пучком с энергией 50 МэВ при токе 6-8 мкА в течение 8 часов, с учетом последующей радиохимической обработки, через 70 часов после конца облучения можно доставлять не менее 150 мКи ⁹⁷Ru в соответствующие радиофармацевтические и радиобиологические лаборатории и клиники.

Результаты проведенных раднохимических исследований показали, что разработанная дистилляционная методика количественного отделения ультрамикроколичеств рутения-97 от макроколичеств технеция-99 дает хорошо воспроизводимые результаты, не имеет сложных и трудоемких операций, относительно непродолжительна по времени (6-7 ч), не требует дорогих и редких реактивов и сложного оборудования, проста для выполнения за биологической защитой и имеет небольшой объем (<100 мл) радиоактивных отходов. Эта методика может быть положена в основу при создании

технологического процесса получения пренаратов ⁹⁷Ru с высокой удельной объемной активностью в форме, необходимой для последующего синтера меченых ⁹⁷Ru-радиофармпрепаратов.

В заключение авторы выражают благодарность персоналу фазотрона за проведение облучений, В.И.Соболеву за помощь в работе и Л.М.Онищенко за постоянный интерес к исследованиям.

Работа поддержана грантом 200/182 Института диагностических систем Всемирной лаборатории (Москва, Россия).

Литература 🚽

- 1. Reus U., Westmeier W. Gamma-Ray Catalog from Radioactive Decay. Atomic Data and Nucl. Data Tables, vol.29,N2, Part 1(1983).
- 2. Автократова Т.Д. Аналитическая химия рутения. АН СССР, М., 1962.
- 3. Звягинцев О.Е., Колбин Н.И., Рябов А.Н., Автократова Т.Д., Горюнов А.А. Химия рутения. Наука, М., 1965.
- Ливингстон С. Химия рутения, родия, палладия, осмия, иридия, платины. Мир, М., 1978, с.54.
- 5. Subramanian G., McAfee J.G., Poggenberg J.K. J.Nucl.Med. 1970, Vol.11, p.365.
- Srivastava S.C., Richards P., Meinken G.E. et al. Radiopharmaceuticals - Structure Activity Relationships, Ed.Spencer R.P., N.Y., L., et al., 1981, p.207.
- De Nardo S.J., Jungerman J.A., De Nardo G.L. et al. Proceed. Int. Symp. on the Developing Role of Short-lived Radionuclides in Nuclear Medicine Practice. Conf.-820523 (DE82008258),1985,p.401.
- Oster Z.H., Som P., Gil M.C. et al. J.Nucl.Med. 1981, Vol.22, p.269.
- 9. Schachner E.R., Gil M.C., Atkins H.L. et al. J.Nucl.Med. 1981,Vol.22,p.352.
- 10. Shao H.S., Meinken G.E., Srivastava S.C. et al., J.Nucl.Med. 1986, Vol.27, p.1044.
- 11. Som P., Oster Z.H., Matsui K. et al., Eur.J.Nucl.Med. 1983, Vol.8, p.491.

- Zanzi I., Srivastava S.C., Meinken G.E. et al., J.Nucl.Med. 1986, Vol.27, p.1072.
- Lagunas-Solar M.C., Avila M.J., Navarro N.J., Johnson P.C. Int.J.Appl.Radiat.Isot., 1983, Vol.34, p.915.
- 14. Comparetto G., Qaim S.M., Radiochim.Acta, 1980.Vol.27, p.177.
- 15. Silvester D.J., Helus F., Maier-Borst W., J.Labelled. Comp. Radiopharm., 1979, Vol.16, p. 226.
- Ramamoorthy N., Das M.K., Sarkar B.R., Mani R.S., Radiopharmaceuticals and Labelled Compounds. Proceed.Int. Conf.22-26 Oct., 1984, Tokyo.IAEA, Vienna, 1985, p. 107.
- 17. Lebowitz E., Kinsley M., Klotz P. et al. J.Nucl.Med., 1974, Vol.15, p.511.
- 18. Richards P., Lebowitz E., Stang L.G. Radiopharmaceuticals and Labelled Compounds. Proceed.Int.Symp., 1973, Copenhagen, IAEA, Vienna, 1973, Vol.1, p.325.
- 19. Zaitseva N.G., Rurarz E., Vobecky M. et al. Radiochim.Acta, 1992, Vol.56, p.59.
- 20. Спицин В.И., Кузина А.Ф., Технеций. Наука, М., 1981.
- 21. Нормы радиационной безопасности НРБ-76, Атомиздат, М., 1978. с.28
- 22. Гинъбург С.И., Езерская Н.А., Прокофьева И.В. и др. Аналитическая химия платиновых металлов. Наука, М., 1972.
- 23. Лаврухина А.К., Поздняков А.А. Аналитическая химия технеция, прометия, астатина и франция. Наука, М., 1966, с.7.
- 24. Schwochau K., Radiochim.Acta. 1983, Vol:32, p.139.
- 25. Горюнов А.А., Свешникова Л.Л., ЖНХ.1961, т.6, с.1543.
- 26. Cains P.W., Yewer K.C., Waring S., Radiochim.Acta.1992, Vol.56, p.99.
- 27. Sato T., J.Radioanal.Nucl.Chem. 1990, Vol.139, p.25.
- 28. Звягинцев О.Е., Курбанов А., ЖНХ, 1958, т.3, с.2424.
- 29. Krtil J., Mencl J., Bulovie V., Radiochem.Radioanal. Lett.1971,Vol.6,p.219.

Рукопись поступила в издательский отдел 15 июня 1995 года.