

ОБЪЕДИНЕННЫЙ ИНСТИТУТ Ядерных Исследований

Дубна

95-257

P6-95-257

Г.В.Веселов¹, К.Я.Громов, В.Г.Калинников, Н.Ю.Котовский, А.В.Потемпа², В.А.Сергиенко¹, В.И.Фоминых, М.Б.Юлдашев

ОПРЕДЕЛЕНИЕ ЭНЕРГИЙ БЕТА-РАСПАДА ИЗОТОПОВ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ В ДИАПАЗОНЕ МАСС *A* = 134 + 141

Направлено в журнал «Известия РАН, серия физическая»

¹НИИФ СПбГУ, Санкт-Петербург ²ИЯФ, Краков

В настоящей работе продолжены исследования [1] в^{*}-распада нейтронодефицитных изотопов редкоземельных элементов, удаленных от полосы в-стабильности. Приводятся результаты измерений граничной энергии позитронных спектров для изотопов с массовыми числами A=134÷141 и Z=59+63. Измеренные величины граничных энергий позитронных спектров и вычисленные значения полной энергии распада Q_{EC} представлены в таблице.

Методика эксперимента

Измерения выполнены на экспериментальном комплексе ЯСНАПП-2, работающем в линию с пучком протонов фазотрона ОИЯИ в Дубне [2]. Для получения нейтронодефицитных ядер исследуемых изотопов использовалась реакция глубокого расщепления при облучении вольфрамовой мишени протонами с энергией 660 МэВ. Ионы образовавшихся нуклидов А1-подложку, разделялись масс-сепаратором И высаживались на которая перемещалась с накопленной активностью к детекторам. Для регистрации позитронов использовался детектор ИЗ сверхчистого германия (диаметр 16 мм, толщина 9 мм, входное окно из титана 12 MT/CM²). Энергетическое разрешение детектора электронов для составило 15 кэВ. a потери BO входном окне и мертвом слое 14 кэВ. Для калибровки детектора по детектора энергии ²⁴Na и ⁶⁶Ga. ИСПОЛЬЗОВАЛИСЬ ИЗОТОПЫ Одновременно для контроля за содержанием нуклидов источнике помощью Ge(Li)-детектора В С измерялись у-спектры.

- **1**

В эксперименте использовалась споктрометрическая установка [3]. Применение в бета-канало режектора наложений позволило увеличипать загрузку до 5000 имп/с, боз 3aMothoro эффекта СЛУЧАЙНОГО СУММИРОВАНИЯ ИМПУЛЬСОВ. УПРАВЛЕНИЕ РЕЖИМОМ ПРОТОННЫХ, ионных пучков, устроиством транспортировки активности, накоплонием записью спектров обеспечивалось И персональным компьютером PC-386-AT.

Экспериментальные результаты

Граничная энергия спектров позитронов определялась методом Ферми-Кюри, Измеренный спектр исправлялся на функцию отклика детектора, учитывающую искажения, вносимые боковым и обратным рассеянием позитронов и рофектом суммирования в детекторе амплитул ИМПУЛЬСОВ ОТ ПОЗИТОСНОВ И ВИНИГИЛЯЦИОННОГО-ИЗЛУЧЕНИЯ. Описание этой методики опубликовано в работе [4]. По самой жесткой части позитронного спектра строился график Измеренного Кюри И граничная энергия. Энергетический интервал определялась ДЛЯ проведения прямой выбирался с учетом схемы распада исследуеного изотопа и условий лучшего фитирования. Измерсние и запись всех спектров проводились в нескольких временных интервалах, что позволяло оценивать период убывания активности. В этих экспериментах мы не ставили задачу точного определения периодов полураспада - проводилась только их оценка. В статье мы опираемся на значения Т, измеренные в более ранних работах. Эти значения и приводятся в таблице и на рисунках. Эначения, полученные в наших оценках, когда мы их приводии, отмечены знаком 🗳. Измерение у-спектров позволяло получить дополнительную информацию для интерпретации позитронных спектров.

На рисунках представлены графики Ферми-Кюри измеренных позитронных спектров и экспериментальные спектры у-лучей. В верхней части рисунков приводится легенда, фиксирующая условия. экспериментов, где Т_Р – время облучения протонами, Т₁ – время накопления активности, Т_В – время измерения спектров, Q – число источников. В необходимых случаях приводятся фрагменты схем распада изучаемых нуклидов.

значения Изморенные B настоящем исслодовании граничных эноргий жестких компонентов позитронных споктроп ER+ max И Q_{EC} соответствующие ИМ эноргии бета-распада (разности Macc изобаров) представлены в таблицо. В порвых трех колонках таблицы указаны А. Z. и Т, пуклида, к которому мы относим изморенные E_{B⁺max} и Q_{EC}.

Ниже мы приводим аргумонты, позволившие идентифицировать соответствующие E_{B^+max} с указанным нуклидом. Обсуждению результатов по каждому А предваряется известными данными о каждой цопочке распадов: $T_{1/2}$ изотопов (изомеров) и Q_{ec} . С погрешностью даются экспериментальные значения Q_{ec} ; без погрешности – значения Q_{ec} , заимствованные из таблицы ванстра и Ауди [14], о которых нет экспериментальных данных.

таблица

Граничныо эноргии позитронных спектров и энергии бета-распада для нуклидон Рт, Рг, Sm и Eu.

A		Z		T _{1/2}		E [*] _{β*max}		Q _{EC} *	Q _{EC} **			
	134	61	Рт	22.6	С	7360	(200)	9200	(200)	8880		[14]
	134	59	Pr	11	мин	4120	(90)	6200	(90)	6210		[14]
	135	61	Pm	49	С	4920	(150)	6050	(200)	6020		[14]
	137	62	Sm	45	С	4880	(70)	5900	(70)	6050		[14]
	137	61	Ρm	2,4	мин	4110	(60)	5640	(60)	5580		[14]
	138	61	Рm	10	C	6060	(60)	7080	(60)	7090	(100)	[15]
	139	63	Eu	17.9	C	4600	(50)	6080	(50)	6680		[14]
	139	61	Pm	4.2	мин	3450	(50)	4480	(50)	4540	(40)	[15]
	140	63	Eu	1.5	С	7450	(50)	8470	(50)	8400		[14]
	140	61	Ρm	9.2	С	5000	(30)	6020	(30)	6090	(40)	[15]
	141	63	Eu	40	C	4960	(40)	5980	(40)	5950	(40)	[15]

к) результаты настоящей работы.

**) литературные данные:

- (с погрешностью), экспериментальные данные более ранних измерений;

- (без погрешности), экспериментальная величина Q_{ес} определена впервые, сравнение проводится с систематикой Вапстра и Ауди [14].

Eu $\frac{0.5 \text{ c}}{12200}$ Sm $\frac{10 \text{ c}}{5420}$ Pm $\frac{22:5 \text{ c}}{8880}$ Nd $\frac{8.5 \text{ MMH}}{2770(150)}$ Pr $\frac{7:11 \text{ MMH}}{6210}$ \longrightarrow Ce $\frac{3.2 \text{ cyr}}{500(200)}$ La $\frac{6.5 \text{ MMH}}{3713(26)}$ Ba(cta6.)

Условия измерений: Время облучения и накопления активности - 30 с, время измерения 8×10 с, количество источников - 20.

¹³⁴ Pm₇₃ — $\stackrel{134}{_{60}}$ Nd₇₄. Существуют [5,6] два изомера ¹³⁴ Pm с периодами полураспада 22.6 с и около 5 с. Распад низкоспинового изомера 2⁺, 22.6 с, происходит на низколежащие 2⁺,3⁺ уровни ¹³⁴Nd. Бета-распад высокоспинового (5⁺) изомера идет, в основном, на уровни с энергией 789.3 кэв (28%) и 1313.7 кэв (15%).

В измеронном у-спектре наблюдаются интенсивные у-переходы, образующиеся при распаде ¹³⁴Рт (E=294.4 кэВ, 494.9 кэВ), ¹³⁴Nd и ¹³⁴Pr (рис.1а,б). В позитронном спектре чётко проявились два компонента. Интенсивность жесткого компонента в диапазоне энергии 4.5÷6.5 МэВ спалала С периодом полураспада около 23 с. Интенсивность позитронов на участке спектра 2.5+3.5 МЭВ убывала с периодом полураспада больше 1 мин. В результате обработки суммы первых двух временных зон и вычитания жёсткого компонента мы определили граничные энергии для каждого компонента Е_{я+тах}=7360(200) кэВ и 4160(100) кэВ (рис.2). Дополнительно была обработана восьмая временная зона, в которой основную часть составляют позитроны, образованные при распаде ¹³⁴Nd и ¹³⁴Pr. Значение полученной граничной энергии - 4070(120) кэВ. Принимая во внимание наблюдаемые нами периоды полураспала Т_{1/2}≅ 23 с для у-переходов 294 кэв и 495 кэв ¹³⁴Рт и Т_{1/2}≅23 с для жесткой части β⁺-спектра, считаем, что компонент с граничной энергией Е_{В+вах}=7360 кэв относится к распаду высокоспинового изомера ¹³⁴Рт. С учетом схемы распада этого изомера определяем Q_{гс}=7360+1022+ 789=9200(200) кэв.

^{1 34}₅₉ Pr₇₅ — ³⁴₅₈ Ce₇₆. Выбранный временной режим не позволял оценить период полураспада 7-излучения ¹³⁴ Pr. Отсутствие в спектре жестких 7-переходов, которыми сопровождается распад низкоспинового изомера J^π=2⁻, означает, что мы наблюдаем распад изомерного состояния

A - 134

J^π=5[−]. Поэтому, учитывая систематику Вапстра, приписываем второй компонент в позитронном спектре распаду этого изомера. Используя среднее взвешенное по двум измерениям значение энергии этого компонента и учитывая схему распада [7] ¹³⁴Рm, 5[−], определяем величину полной энергии бета-распада Q_{EC}=4120+1022+1048=6190(90) кэВ.

A - 135

Sm $\frac{10.3 \text{ c}}{7130}$ Pm $\frac{49;45 \text{ c}}{6020}$ Nd $\frac{5.5 \text{ c};12 \text{ мин}}{4730}$ Pr $\frac{25 \text{ мин}}{3720(150)}$ Ce $\frac{17.84; 20 \text{ c}}{2026(5)}$ La $\frac{19.44}{1200(10)}$ Ba(CTa6.)

<u>Условия измерений</u>: Время облучения и накопления активности -20 с, время измерения 4×5 с + 4×20 с. Количество источников - 10. ¹³⁵₆₁Pm₇₄ \longrightarrow ¹³⁵₆₀Nd₇₅. Распад ¹³⁵₆₁Pm₇₄ изучался в работах [6,8,9], из которых следует, что ¹³⁵Pm имеет два изомерных состояния со спинами J^π=11/2⁻(T_{1/2}=49 с) и J^π=5/2⁺(T_{1/2}=45 с). Из низкоспинового состояния ¹³⁵Pm распад в основном идет [6] на изомерный уровень 64.9 кэв (I_{β,Ec} =14%) и на уровни 193.7 кэв (I_{β,Ec} =14%) и 371.1 кэв (I_{β,Ec} = 23%) ¹³⁵Nd. В распаде высокоспинового изомера ¹³⁵Pm заселяется основное состояние ¹³⁵Nd (I_{β,Ec} = 12%) и уровни с энергией 198.8 кэв (I_{β,Ec} =14%) и 1176.7 кэв (I_{β,Ec} =41%).

В наших измерениях наблюдались γ -лучи распада ^{1.35} Pm , ^{1.35} Nd, ^{1.35} Pr и ^{1.35 m}Ce. В γ -спектре (рис.За,Зб) мы видим ряд переходов ^{1.35} Pm, относящихся к распаду высокоспинового состояния (эти переходы отмечены на рисунке знаком (•)). При обработке суммарного позитронного спектра по всем временным зонам мы получили для жёсткого компонента значение граничной энергии E_{β^*max} =4920(150) кэВ (рис.4). Интенсивность позитронов в диапазоне энергий 3.5÷5 МэВ спадала с $T_{1/2} \cong 43$ с. Мы не можем разделить β^* -составляющие, идущие на основное состояние и уровень 198 кэВ ^{1.35} Nd. Поэтому при определении полной энергии распада ^{1.35} Pm мы добавляем к E_{β^*max} величину 100(50) кэВ и получаем $Q_r = 4920+1022+100 = 6050(200)$ кэВ.

A - 137

Условия измерений:

 I эксперимент: время облучения и накопления активности - 30 с; время измерений 4×6 с+ 4×20 с, количество источников - 10.
II эксперимент: время облучения и накопления активности - 45 с; время измерения - 4×20 с + 4×60 с, количество источников - 5.
III эксперимент: время облучения и накопления активности - 45 с; время измерения - 4×20 с, количество источников - 5.

¹³⁷ Sm₇₅ $\xrightarrow{137}_{61}$ Pm₇₆. На рис. 5 представлены результаты обработки суммы спектров позитронов, измеренных в первом и третьем экспериментах. Скорость счета позитронов с энергией 3.9-4.6 МэВ убывала с T _______45 с. В измеренном γ -спектре (рис.6а,6б) наблюдаются γ -линии ^{13/2} Sm(T_{1/2}=45 с). ¹³⁷ Pm(T_{1/2}=2.4 мин) и ¹³⁷ Nd. Поэтому β^* -компонент с граничной энергией $E_{\beta^+_{max}} = 4878(70)$ кэВ мы относим к распаду ¹³⁷ Sm. В соответствии с данными работы [10] распад ¹³⁷ Sm (I[#]=9/2^{*}) происходит на основное (J[#]=11/2^{*}) состояние и возбужденный (J[#]=9/2^{*}) уровень, 380 кэв ¹³⁷ Pm. Исходя из этого, мы определили полную энергию распада ¹³⁷ Sm: Q_{x c}=4878+1022=5900(70) кэВ.

¹³⁷ Ра₇₆ — ¹³⁷ № ₆₀ № ₇₇. Во втором эксперименте нами были обработаны последние (4×60 с) временные зоны и получен суммарный спектр позитронов с граничной энергией $E_{\beta^+ max} = 4110(60)$ кэВ (рис.7). Интенсивность позитронов на участке тлектра 2.5÷4 МэВ убывала с $T_{1/2} \cong 2.3$ мин. При анализе 7-излучения мы наблюдали переходы, относящиеся только к распаду ¹³⁷ Рт и ¹³⁷ № (рис.8а,6). На основании этого мы приписываем компонент с $E_{\beta^+ max} = 4110(60)$ кэВ распаду ¹³⁷ Рт. Согласно [11] при распаде ¹³⁷ Рт происходит интенсивное заселение $J^{R} = 11/2^{-}$ уровня 519.6 кэВ, $J^{R} = 11/2^{-137}$ № .

<u>Условия измерений</u>: Время облучения и накопления активности – 10 с. время измерения 4×10 с, количество источников – 20.

¹³⁸ Pm₇₇ — ¹³⁸ Nd₇₈. Существуют два изомерных состояния ¹³⁸ Pm; низкоспиновое 1⁺, 10 с, и высокоспиновое 3⁺, 3.24 мин. Распад высокоспинового изомера происходит на возбужденные уровни ¹³⁸ Nd [12]. При распаде низкоспинового изомера в 100% случаев заселяется основное состояние ¹³⁸ Nd [13].

γ-лучей (рис.9) мы наблюдали 8 спектре у-переходы, возникающие при распаде ¹³⁸Eu, ¹³⁸Sm и ¹³⁸Pm. Позитронные спектры во всех временных зонах простирались до Е_{R+22}~6 МЭВ; позитронов с энергией больше 6 МэВ не наблюдалось. Счет на участке позитронного спектра от 4.5 до 5.5 МэВ уменьшился на ~ 20% во второй временной зоне и не изменялся от второй до четвертой зоны. Очевидно, в первой временной зоне заметен вклад в позитронный спектр позитронов от распада ¹³⁸Ец, 12.1 с , тогда как в последующих зонах этот вклад мал. Хотя по систематике Вапстра [14] энергия β-распада ¹³⁸Eu 9230(590) кэВ, отсутствие позитронов с энергией больше 6 МЭВ согласуется с имеющимися сведениями [5] о распаде ¹³⁸Еи: его высокоспиновое (7⁺), 12.1 с, состояние распадается на высоковозбужденные уровни ¹³⁸Sm.

Чтобы исключить вклад позитронов от ¹³⁸Eu(12.1 с), был обработан суммарный позитронный спектр третьей и четвертой временных зон (рис.10).Полученное значение $E_{\beta^* max}$ мы, как и авторы работы [15], относим к распаду ¹³⁸Pm(1⁺, 10 с), находящемуся в равновесии с ¹³⁸Sm(3.1 мин). Значение энергии бета-распада составило 7080(60) кэв. Это значение согласуется и со значением Q_{EC}, полученным в [12] в экспериментах по $\beta^* - \gamma$ -совпадениям.

Уверенно выделить компонент в^{*}-спектра, связанный с распадом ¹³⁸Eu, и определить энергию в^{*}-распада ¹³⁸Eu оказалось невозможным. A - 139

 $\begin{array}{c} \text{Gd} \begin{array}{c} \underline{4.9 \text{ c}} \\ 7700 \end{array} \xrightarrow{\text{Eu}} \begin{array}{c} \underline{17.9 \text{ c}} \\ 6680 \end{array} \xrightarrow{\text{Sm}} \begin{array}{c} \underline{10.7 \text{ c}; 2.6 \text{ мин}} \\ 5460(110) \end{array} \xrightarrow{\text{Pm}} \begin{array}{c} \underline{0.18 \text{ c}; 4.15 \text{ мин}} \\ 4520(40) \end{array} \xrightarrow{\text{Sm}} \begin{array}{c} \underline{17.9 \text{ c}} \\ 5460(110) \end{array} \xrightarrow{\text{Sm}} \begin{array}{c} \underline{17.9 \text{ c}} \\ 4520(40) \end{array} \xrightarrow{\text{Sm}} \begin{array}{c} \underline{10.7 \text{ c}; 2.6 \text{ мин}} \\ 5460(110) \end{array} \xrightarrow{\text{Pm}} \begin{array}{c} \underline{0.18 \text{ c}; 4.15 \text{ мин}} \\ 4520(40) \end{array} \xrightarrow{\text{Sm}} \begin{array}{c} \underline{10.7 \text{ c}; 2.6 \text{ мин}} \\ 4520(40) \end{array} \xrightarrow{\text{Sm}} \begin{array}{c} \underline{10.7 \text{ c}; 2.6 \text{ мин}} \\ 4520(40) \end{array} \xrightarrow{\text{Sm}} \begin{array}{c} \underline{10.7 \text{ c}; 2.6 \text{ мин}} \\ \underline{10.7 \text{ c}; 2.6 \text{ mu}} \\ \underline{10.7 \text{ mu}} \\ \underline{10.7 \text{ c}; 2.6 \text{ mu}} \\ \underline{10.7 \text{ mu}} \\ \underline{10$

Условия измерений:

I эксперимент: время облучения и накопления активности 15 с, время измерения - 4×10 с, количество источников - 20.

II эксперимент: время облучения и накопления активности 120 с, время измерения 1×60 с + 5×120 с; количество источников - 1.

^{1 39} $Eu_{76} \longrightarrow {}^{139}_{62}Sm_{77}$. При распаде ¹³⁹ Eu ($J^{\pi}=11/2^{-}$, $T_{1/2}=17.9$ с) интенсивно заселяются изомерное 11/2⁻, 457 кэВ состояние (10.7 с) и уровни 1158 кэВ и 1176 кэВ ¹³⁹Sm [16]. Изомерное 11/2⁻, 457 кэВ состояние ¹³⁹Sm распадается в основное 1/2⁺ состояние через каскады 7-переходов: 112, 155, 190 и 267 кэВ. Бета-распад из изомерного состояния не обнаружен.

В 7-спектре наблюдались 7-лучи от распада ¹³⁹Eu,^{139 в, 9}Sm и ¹³⁹Pm (рис.11). График Кюри суммарного (4×10 с) спектра позитронов представлен на рис.12. Хорошо виден компонент с энергией E_{β^+max} =4600(50) кэв. Спад интенсивности позитронов в области 3.5+4.5 Мэв происходил с периодом полураспада около 20 с. Интенсивность 7-переходов ^{139 в}Sm спадала с периодом полураспада 13-14 с. несколько большим 10.7 с. что объясняется накоплением ^{139 в}Sm из ^{139 в}Lu (17.9 с).

^{1 39} $Pm_{78} \longrightarrow {}^{1 39}_{60} Nd_{79}$. Анализ спада интенсивности позитронного спектра, измеренного во втором эксперименте, показывает, что в диапазоне энергии $E_{\beta^+}=2.5\div3.0$ МэВ распад происходит с периодом $T_{1/2}=2.7\div4.5$ мин. Это указывает на присутствие в спектре позитронов от распада ¹³⁹ Sm и ¹³⁹ Pm, что подтверждается наличием в

7-спектре переходов, возникающих при распаде этих изотопов. На рис.13 представлен т-спектр, измеренный в последной времонной зоне. При обработке в'-спектра, измеренного в этой временной зоно, где, как следует ожидать, позитронов от распада ¹³⁹Sm уже мало, мы получили значение граничной энергии для ¹³⁹Рт Е_{В+тах}=3450(50) кэв (рис.14) и определили полную энергию распада Pm Q_{rc}=4480(50) кэв. Заметим, что вычитание жёсткого компонента в позитронном спектре первого эксперимента (рис. 12) позволяет оценить ЦИН значение Е_{в* вах}=3480(80) ков, совпадающее второго компонента С определенным во втором эксперименте Е_{R* для} 139 Pm.

A ~ 140

Gd $\frac{15.8 \text{ c}}{4800}$ Eu $\frac{1.54 \text{ c}}{8400}$ Sm $^{1}\frac{4.8 \text{ MMH}}{3400}$ Pm $\frac{9.2 \text{ c}; 5.9 \text{ MMH}}{6090(40)}$ Nd $\frac{3.37 \text{ cyr}}{222(20)}$ \longrightarrow Pr $\frac{3.39 \text{ MMH}}{3388(6)}$ Ce(cTa6.)

Условия измерений:

I эксперимент: время облучения и накопления активности – 20 с, время измерения – 4×15 с, количество источников – 20.

II эксперимент: время облучения и накопления активности – 20 с,

время измерения - 3x5 с + 3x15 с, количество источников - 20. III эксперимент: время облучения и накопления активности - 3 с,

время измерения - 4x2 с, количество источников - 60.

¹⁴⁰ Eu₇₇ $\rightarrow {}^{140}_{62}$ Sm₇₈. Согласно [5,17] имеется два изомерных состояния: основное с $J^{\pi}=1^+$ и $T_{1/2}=1.54$ с и возбужденное с $J^{\pi}=5^$ и $T_{1/2}=0.125$ с с энергией возбуждения около 200 кэВ. Состояние с $T_{1/2}=0.125$ с в наших экспериментальных условиях не наблюдается. Бета-распад основного состояния ¹⁴⁰ Eu в 70% случаев происходит в основное состояние ¹⁴⁰Sm и в 20% случаев на уровень 530.9 кэВ, 2⁺. Анализ гамма-спектра, измеренного в третьем эксперименте (4×2 с), обнаруживает переходы, Возникающие при распаде ¹⁴⁰ Eu ($T_{1/2}=1.54$ с), ¹⁴⁰Sm и ^{140,140} Pm (рис.15). Результаты обработки спектра позитронов, измеренного в первой и второй временных зонах, приведены на рис.16. Спад активности в жесткой части бета-спектра характеризуется $T_{1/2}\approx1.4$ с. График Кюри построен в диапазоне

энергии 6.3+6.8 МэВ, где основной вклад составляют позитроны, возникающие при распаде в основное состояние ¹⁴⁰S_P. Полученное значение граничной энергии $E_{\beta^+} = 7450(50)$ кэВ и вычисленное значение $Q_{gc} = 7450+1022=8470(50)$ кэВ относим к распаду ¹⁴⁰Eu ($T_{1,c} = 1.54$ с).

¹⁴⁰ Pm₇₅ — ¹⁴⁰ Nd₈₀, Результаты анализа суммы позитронных спектров в первом и втором экспериментах (3×15 с) представлены на рис.17. Интенсивность позитронов с энергией 3.2+4.7 МэВ убывала с $T_{1/2}$ >7 мин. В 7-спектре наблюдались переходы, относящиеся только к распаду ¹⁴⁰ Sm и ¹⁴⁰ Pm (рис.18). Измеренное значение граничной энергии $E_{\beta_{max}}$ =5000(30) кэВ мы приписываем ¹⁴⁰ Pm($T_{1/2}$ =9.2 с), который образуется при распаде ¹⁴⁰ Sm($T_{1/2}$ = 14.8 мин). Полученное значение разности масс ¹⁴⁰ Pm($T_{1/2}$ =9.2 с) и ¹⁴⁰Nd составляет Q_{rc} =6020(30) кэВ.

A'- 141

 $\begin{array}{c} \text{Dy} \xrightarrow{0.9 \text{ c}} \text{Tb} \xrightarrow{3.5 \text{ c}} \text{Gd} \xrightarrow{14;24.5 \text{ c}} \text{Eu} \xrightarrow{2.7;40 \text{ c}} \text{Sm} \xrightarrow{10;22.6 \text{ мин}}, \\ 9340 & 8340 & 7250 & 5550(100) & 4543(23) \\ & \longrightarrow \text{Pm} \xrightarrow{20.9 \text{ мин}} \text{Nd} \xrightarrow{62 \text{ c};2.5 \text{ q}} \text{Pr(cTa6.)} \\ & & 3715(24) & 1822.9(2.8) \end{array}$

<u>Условия измерений</u>: время облучения и накопления активности -20 с, время измерения - 4×20 с, количество источников - 50.

¹⁴¹₆₃Eu₇₈ \longrightarrow ¹⁴¹Sm₇₉. В работе [18] исследовался распад изомерных состояний ¹⁴¹Eu: основного низкоспинового $J^{\pi}=5/2^{+}$ ($T_{1/2}=40$ с) и возбужденного высокоспинового $J^{\pi}=11/2^{-}$ ($T_{1/2}=2.7$ с) с энергией возбуждения 96.4 кэВ. При распаде основного состояния ¹⁴¹Eu идет интенсивное заселение уровня 158 кэВ ¹⁴¹Sm ($I_{\beta, E_{c}}=60X$). Распад изомера с $T_{1/2}=2.7$ с происходит на изомерный $J^{\pi}=11/2^{-}$ уровень 175.8 кэВ ¹⁴¹Sm ($I_{\beta, E_{c}}=65.3X$).

Результаты обработки позитронного спектра представлены на рис.19. Спад интенсивности в диапазоне 3.5÷5.0 МэВ происходит с $T_{1/2} \cong 40$ с. В 7-спектре (рис.20) присутствуют переходы, возникающие при распаде ¹⁴¹Еч ($T_{1/2} = 40$ с) и ¹⁴¹Sm ($T_{1/2} = 22.6$ мин и 10.2 мин).

Полученное значение Е_{β⁺мак}=4960(40) кэВ мы приписываем ¹⁴¹Eu (40 с) и определяем энергию распада для этого изотопа Q_{er}=4960+1022=5980(40) кэВ.

Заключение

в таблице полученные значения Q_{ес} сравниваются со значениями ЛУДИ [14] ИЛИ С БОЛОС систематики Вапстра К ранними КЗ экспериментальными измерениями, если они имеются. Для 7 нуклидов экспериментальные величины энергии бета-распада получены впервые. Отметим, что для шести ИЗ них изморенные Q_{FC} совпадают с экспериментальных предсказаниями [14] B пределах наших ¹³⁹Eu погрешностей. Только для наше значение меньше Q предсказываемого в [14] на 0.6 МЭВ, но и в этом случае разница не больше авторских погрешностей таблиц Q_{ec} [14] в этой области: 400÷700 кэВ.

В двух случаях (¹³⁴Pm и ¹³⁵Pm) погрешности измерений заметно превышают оценки возможных систематических погрешностей (~ 30 кэВ) применяемой методики [4], и если для ¹³⁴Pm увеличение статистики может уменьшить погрешность измерений до 40-50 кэВ, то в случае ¹³⁵Pm способ его распада не позволяет определить Q_{EC} в измерениях одиночных позитронных спектров с точностью лучшей ~100 кэВ.

Алхазов и др.[19], используя метод полного поглощения γ -лучей, получили Q_{ec} =5550(100) кэВ для ¹⁴¹Eu, заметно отличающееся от нашего значения 5980(40) кэВ. Граничная энергия позитронного спектра ¹⁴¹Eu измерялась в [15] – Q_{ec} =5950(40) кэВ. Авторы [18] изучали спектр позитронов ¹⁴¹Eu, совпадающих с γ -квантами 394.0 и 395.6 кэВ, и определили Q_{ec} для ¹⁴¹Eu – 6030(100) кэВ. Таким образом, для энергия бета - распада ¹⁴¹Eu, по-видимому, следует принять среднее взвещенное значение измерений одиночных спектров: нашего и [15,18], Q_{ec} =5965(30) кэВ.

Авторы Глубоко признательны Российскому фонду фундаментальных исследований за поддержку работы (код проекта 94–02–04828а)

Рис. 1а, б. Гамма-спектр изотопов цепочки А=134

Рис. 2. График Кюри ¹³⁴Pr (11 м) и ¹³⁴Pm (24 с)

Рис. За. Гамма-спектр изотопов цепочки A=135 в диапазоне 50+500 кэв

в диапазоне 50+600 кэв

Рис. 8а, б. Гамма-спектр изотопов цепочки А=137

Литература

1. А.В. Потемпа и др. Изв. РАН, сер. физ., 1994, т.58, N5, с.41, 2. V.G.Kalinnikov et al. NIM, 1992, B 70, p.62. 3. В.И. ФОМИНЫХ И ДР. ПРОПРИНТ ОИЯИ Р13-94-394, Дубна 1.994. 4. Г.В.Веселов и др. Изв.РАН, сер. физ., 1995, т. 9, N1,с.39. 5. B.D.Kern et al. Phys. Rev., C 36, 1987, p.1514, 6. K.S.Viernen et al. Nucl. Phys., A 499, 1989, p.1. Nucl.Data Sh., V 71, N 3, 1994, p.1, 7. J.K.Tuli et al. 8. G.D.Alkhazov et al. 32nd Ann. Conf. nuclear spectroscopy on structure of atomic nuclei, Kiev, 1982, p.78. 9. J.Gizon et al. Nucl. Phys., A 322, 1974, p.557. 10. N.Redon et al. Z.Phys., A 325, 1986, p.127. 11. G.P.Nowicki et al. Nucl. Phys., A 249, 1975, p.76. 12. J.Deslauriers et al. Z.Phys., A 303, 1981, p.151. 13. N.Ganbaator et al. 33nd Ann.Conf.nuclear spectroscopy on structure of atomic nuclei, Moskow, 1983, p.90. 14. G.Audi, A.H.Wapstra, Nucl. Phys., A 565, 1993, p.1. 15. G.D.Alkhazov et al. Z.Phys., A310, 1983, p.247. × . " J. Deslauriers et al. Z. Phys, A325, 1986, p.421. Phys. Rev., C 43, 1991, p.1066. 17. R.B.Firestone et al. 18. J.Deslauriers et al. Z.Phys., A283, 1977, p.33. 19. G.D.Alkhazov et al. Z.Phys., A344, 1993, p.425.

Рукопись поступила в издательский отдел 15 июня 1995 года.