K-603 1295/2-76

СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ

P6 - 9421

12/10-

Н.Н.Колесников, А.Г. Демин

периоды полураспада та и трансурановых элементов

P6 - 9421

Н.Н.Колесников, А.Г.Демин

периоды полураспада та и та изотопов трансурановых элементов

В настоящей работе предлагается систематика периодов X- и Э-распада^{X)}, которая используется для прогнозирования радиоактивных свойств изотопов тихелых элементов и составления таблиц периодов полураспада. Цель составления таблиц состоит в том, чтобы дать ориентацию экспериментаторам при исследовании новых изотопов и особенно при синтезировании новых элементов.

1

Строгий теоретический расчет подных периодов - и особенно В - распада сложен и ненадежен, так как требует сведений о многих деталях структуры ядра. Поэтому широко распространены эмпнрические методы. Они основываются на исследовании либо зависимости периодов «-и /3 - распада от Z и N, либо СВЯЗИ МЕЖЛУ периодами и энергиями распада/2-8/Последний способ лучше с точки зрения теории и в практическом отношения, однако требует знания точных значений энергии распада для прогнозирования периодов. Как было показано в /9/. описание энергий овязи с точностью, прибликающейся к ошибкам эксперимента, возможно при разбиении системы ядер на строго определенные области между магическими и (или) субматическими чиолами. Максимальная ошибка в энергиях 🗠 и 🕫 распада оказывается для рассматриваемой области ядер (Z > 82) меньше 0.15 МаВ. Параметры энертетической поверхности, а также таблицы энергий распада имертся в /10/. Эти данные были использованы для вычислений периодов С-и В - распада.

В случае 🗠 – распада расчет периодов полураспада T_« производился по формуле:

х) Точние: периодов полураспада относительно (- и /3 -распада. Такое упроцение будет применяться и далее.

$$lg T_{\alpha}^{\circ} = \frac{l_{1}630 \cdot (Z^{-2})}{\sqrt{Q_{\alpha}}} - \left\{ 55 + 0, 178 (Z^{-100}) \right\},$$
(1)

согласованной по методу наименьших квадратов для четно-четных ядер с $\mathbb{Z} \ge 90$. В формуле (I) энергии \ll – распада Q_{∞} выражаются в МэВ, а T_{∞}^{*} в сек. Хотя формула (I) дает меньшие расхождения, чем аналогичная формула работы /II/, максимальные отклонения достигают 3-х раз даже для четно-четных ядер, а для нечетных ядер доходят до 2,5 порядков. Однако обращает на себя внимание то, что эти раохождения (запреты) связаны с определенными областями ядер, которые, в свою очередь, коррелированы с субмагическими числами нейтронов N_m и протонов Ξ_m : $N_m = 132,136,140,144,152$ и $\Xi_m = 88,92,100$, проявляющимися в энергиях связи тяжелых ядер /8,9,12/

Если ввести аддитивную поправку × к $Q_{\pi} T_{\alpha}^{\circ}$ (вычисленному по формуле (1)) и принять для нее значения, приведенные в табл. I, то максимальное расхождение вычисленных значений с экспериментом снижается до 50% у четно-четных ядер и не превосходит 2-3 раз у ядер нечетных и 3-4 раз у нечетно-нечетных.

При проведении систематики полных периодов /3 – распада ядер с $Z \ge 82$ мы будем следовать работе /7/, где было показано, что существует простая связь между периодами 7, и энергиями (Q_{β} -) β - распада для ядер, не слишком близких к границе β^{-} – стабильности. Как и для α – распада, наиболее простая зависимость между 7, и Q_{β} . обнаруживается у четно-четных ядер, для которых точки на графике зависимости (g_{β} - от (g_{β} , достаточно хорошо ложатся на прямую линию, загибающуюся при Q_{ρ} - > 5 МаВ, причем наклон прямолинейной части этой кривой (кривая C, на рис. I) свидетельствует о разрешенном характере β – распада /7/. Это связано с тем, что четно-четные ядра, распадаясь, превращаются в нечетно-нечетные ядра, имеющие низколежащие уровни с большим разнообразием моментов, поэтому практически всегда найдется такой низколежащий (основной) уровень, на который /3 – распад окажется разрешенным.

Для ядер нечетного A большая часть точек попадает на кривую C_{\pm} рис. I, остальные=на $C_{,}$ или C_{3} . Аналогичная, хотя и более сложная картина наблюдается у нечетно-нечетных ядер, у которых большая часть точек попадает на кривую C_{3} . а остальные – на C_{\pm} (иногда на $C_{,}$) и на C_{4} .

На том же рис.І нанесены и точки, соответствующие $(\mathcal{E}C + \beta^+)$ – распаду, которые попадают на те же кривые, что и для β^- – распада. Поскольку для электронного захвата должна была бы наблюдаться отличная от $\beta^-(\beta^+)$ – распада энергетическая зависимость, факт совпадения графиков для $\beta^- - и$ $(\mathcal{E}C + \beta^+)$ – распада следует рассматривать как указание на доминирующую роль β^+ процесса по сравнению с электронным захватом для рассматриваемых ядер. Другой же экспериментальный факт практической ненаблюдаемости вылета позитронов при β – превращениях нейтронодефицитных ядер тяжелых элементов может быть связан с большой вероятностью аннигиляции позитронов (реальных или виртуальных) в плотном электронном облаке тяжелых атомов.

Условимся называть "нормальными" такие ρ^{-} и $(\xi C + \beta^{+})$ – распады, для которых зависимость T_{β} от Q_{β} передается кривой $C_{,}$ для четно-четных ядер, кривой C_{2} для ядер нечетного A и кривой C_{3} для нечетно-нечетных ядер. В случае нарумения этого правила точки попадают на верхною или же на нижные кривые о иным знамением индекса у кривой C_{y} . Оказывается,

что такого рода "аномалии" (АУ) связаны, как и в случае \ll распада, с определенными областями ядер, см. табл. 2. Принимая значения АУ, приведенные в табл. 2, удается оценить (с помощью кривых *C*, *C*₂, *C*₃, *C*₄ рис.I) периоды β^- -и (*EC*+ β^+) - распада с максимальной ошибкой I,5-2 раза у четно-четных ядер, до 2-3 раз у ядер нечетного A и до 4-5 раз у нечетно-нечетных ядер, причем ошибки резко снижаются по мере увеличения $Q_{\beta} \neq$.

Данные для проводившейся нами систематики периодов $\mathcal{A} = u \propto 2$ распада были взяты из обзоров /13/, а также из более поздних работ /14/.

Систематика была использована для прогнозирования периодов 🗠 и 🧷 -распада и для составления на ее основе таблиц периодов полураспада.В таблицах периодов «- и А- распада в первом столбие указывается массовое число изотопа. а во втором - число нейтронов, в третьем столбце приводятся значения периода полураспада 🏹 (парциальный период 🔍 - распада), в четвертом дается Т_а- (парциальный период р⁻ -распада), в пятом - Т_(ЕС+β+) (парциальный период EC+/s⁺ - распада), а в шестом - полный период 7 . учитывающий все возможные типы распада. Для полных периодов приводятся только экспериментальные значения и в тех лишь случаях, когда парциальные периоды не известны или одновременно существенны несколько типов распада. Экспериментальные данные даются с точностью до двух значащих цифр, в скобках после экспериментальных значений указаны ошибки в последней цифре. Скобки для ошибок оставлялись пустным в случаях, когда ошибки измерения неизвестны; точка после экспериментального значения означает. что ошибка меньше единицы в последней цифре. Все оцененные значения периодов заключены в скобки. Они приводятся главным образом там, где экспериментальные значения неизвестны. Однако в тех случаях, когда экспериментальные данные ненадежны или же имеются большие расхождения между вычисленными и экспериментальными значениями, оцененные значения периодов указывались наряду с экспериментальными (при этом результаты систематики помещались в скобках под экспериментальными данными).

Сопоставление нашей систематики с прогнозами Виолы и Сиборга /II/ показывает удовлетворительное согласие до Z~ IOO, после чего результаты работы /II/ дают сильно заниженные периоды и по сравнению с оценками данной работы и по сравнению с экспериментом /I3,I4/

Авторы глубоко благодарны Г.Н.Флерову за поддержку работы и Ю.Ц.Оганесяну за ее стимулирование, ценные советы и дискуссии.

Табл.І. Фактор запрета × для различных областей ядер

Табл. 2. Аномалия в р-и (ЕС+/+) - распадах для

чн; нч-и нн-ядер (2≥ 90, № 136)

Область

чч-ядра X/	×
- Область	-
150 ≤ N ≤ 152 (kpome Z <100, N< 152)	+ 0,2
N>152, Z>100	+ 0,I
[) Z≤ 94, N< I46; 2) Z< I00, N > I52	$_{u} = 0, I$
N = I46, Z < I00	- 0,3
з остальных областях	0
чн; нч-и ин-ядрахх/	
Область	
) $\mathbf{Z} = 97, N < 150; 2$ $N = 151, 95 < \mathbf{Z} < 100$	+ 2,6
) N = 150, 151 (kpome 96 < Z < 100), 153;	
) $N = 150, 151$ (kpome 96 $\leq 2 \leq 100$), 153;) $Z = 96, N < 150; 3$) $Z \leq 93, 142 \leq N < 152;$	+ I.5
) $N = 150, 151$ (kpome 96 $\leq 2 \leq 100$), 153;) $Z = 96, N < 150; 3$) $Z \leq 93, 142 \leq N < 152;$) $138 \leq N < 140, Z \leq 92; 5$) $Z = 90, 134 \leq N < 140, Z \leq 92; 5$	+ I,5 I40
) N = 150, 151 (kpome 96 ≤ ∠ ≤ 100), 153;) Z = 96, N < 150; 3) Z ≤ 93, 142 ≤ N < 152;) 138 ≤ N < 140, Z ≤ 92; 5) Z = 90, 134 ≤ N < Z = 100, N < 150	+ I,5 I40 + I,I
) N = 150, 151 (kpome 96 ≤ ∠ ≤ 100), 153;) Z = 96, N < 150; 3) Z ≤ 93, 142 ≤ N < 152;) 138 ≤ N < 140, Z ≤ 92; 5) Z = 90, 134 ≤ N < Z = 100, N < 150 Z≥ 100 (kpome Z = 101), N≥ 154 	+ I,5 I40 + I,I + 0,7
) N = 150, 151 (kpome 96 ≤ ∠ ≤ 100), 153;) Z = 96, N < 150; 3) Z ≤ 93, 142 ≤ N < 152;) 138 ≤ N < 140, Z ≤ 92; 5) Z = 90, 134 ≤ N < Z = 100, N < 150 Z≥ 100 (kpome Z = 101), N≥ 154) N = 152 (Z>90); 2) Z≥ 102, N < 152 	+ I,5 I40 + I,I + 0,7
) N = 150, 151 (кроме 96 ≤ ∠ ≤ 100), 153;) Z = 96, N < 150; 3) Z ≤ 93, 142 ≤ N < 152;) 138 ≤ N < 140, Z ≤ 92; 5) Z = 90, 134 ≤ N < Z = 100, N < 150 Z > 100 (кроме Z = 101), N ≥ 154) N = 152 (Z > 90); 2) Z ≥ 102, N < 152) Z = 94,95, N < 150 (кроме N = 141) 	+ I,5 I40 + I,I + 0,7 + 0,5
) N = 150, 151 (кроме 96 ≤ ∠≤ 100), 153;) Z = 96, N < 150; 3) Z ≤ 93, 142 ≤ N < 152;) 138 ≤ N < 140, Z ≤ 92; 5) Z = 90, 134 ≤ N < Z = 100, N < 150 Z > 100 (кроме Z = 101), N ≥ 154) N = 152 (Z > 90); 2) Z > 102, N < 152) Z = 94,95, N < 150 (кроме N = 141) Z = 98 (кроме N < 146) 99,100, N < 150 	+ I,5 I40 + I,I + 0,7 + 0,5 + 0,2
 N = 150, 151 (кроме 96 ≤ ∠≤ 100), 153; Z = 96, N < 150; 3) Z ≤ 93, 142 ≤ N < 152; 138 ≤ N < 140, Z ≤ 92; 5) Z = 90, 134 ≤ N < Z = 100, N < 150 Z > 100 (кроме Z = 101), N ≥ 154 N = 152 (Z > 90); 2) Z > 102, N < 152 Z = 94,95, N < 150 (кроме N = 141) Z = 98 (кроме N < 146) 99,100, N < 150 N = 141, Z < 96; 2) N < 137, Z = 92,93;3) 	+ I,5 I40 + I,I + 0,7 + 0,5 + 0,2
) N = 150, 151 (кроме 96 ≤ ∠≤ 100), 153;) Z = 96, N < 150; 3) Z ≤ 93, 142 ≤ N < 152;) 138 ≤ N < 140, Z ≤ 92; 5) Z = 90, 134 ≤ N < Z = 100, N < 150 Z≥ 100 (кроме Z = 101), N≥ 154) N = 152 (Z>90); 2) Z ≥ 102, N < 152) Z = 94,95, N < 150 (кроме N = 141) Z = 98 (кроме N < 146) 99,100, N < 150) N = 141, Z < 96; 2) N < 137, Z = 92,93;3) N≥ 154, Z < 100 	+ I,5 I40 + I,I + 0,7 + 0,5 + 0,2 0

х/здесь и далее: четно-четные ядра.

XX/Здесь и далее: четно-четные, нечетно-четные и нечетно-нечетные ядра.

	4¥	примечание
I) Z = 96 H 97, I42 < N < I49		_
2) Z = 99 , I52 < N < I56		-
3) Z = 93 , I36 ≤ N < I42 (кроме N = I38)	+I	-
4) $N = I4I$, $Z < 94$		(I)
5) N = I5I 92 < Z ≤ I00		(6)
I) E > 100		(3)
2) N> I48 (кроме N = I52), Z≤ 98		(4)
3) 90 ≤ Z < 96,	-I	(5)
4) Z = 90, <i>N≤</i> I48		-
5) Z = 92, N< I44		-
6) Z = 93,94, I40 € N < I44		(2)
7) Z = 93, N< I40, I44< N< I52		(I)
I) ₹> 100, N> 152		
2) N = I47, Z = 9I,95	-2	(I)
3) Z = 95, N = I4I		(-)
4) ∠Z = 93, N = I 43		

(I) - только для нн-ядер, (2) - кроме нн-ядер, (3) - кроме нн-ядер с N > 152, (4) - кроме нн-ядер с Z = 97, N < 152, (5) - кроме нн-ядер с N = 14I, (6) - только для чн-ядер.

. 9

Таблица З

Периоды «,-В--и (ЕС+В+) -распада

,

Z =	92
-----	----

A	N	Ta	Tp-	T(BC+A+)	<u>т</u>
222	I 30	(5.10 ⁻⁸ c)	-	(2 <u>M</u>)	
223	I3I	(8.I0 ⁻⁶ c)	-	(32 c)	
224	I32	(6.10 ⁻⁰ c)	-	(5 ⊾)	
22 5	I33	(4.10 ⁻² c)	-	(I м)	
226	I34	(2c)	-	(25 m)	
227	13 5	I,I(I)⊾	-	(3 , 5 ⊻)	
228	136	≪9,6 м (8,3 м)	-	>Зч (4д)	9,І(І)м
229	I37	4,8 u	-	I,2 ч	58(8) m
230	I38	21 д	-	-	
23I	139	210 л	-	4,3д	4,3()д
232	I40	72 r _	-	-	
233	I4I	I,6.10 ² л	-	-	
234	I42	2,5.100л	-	-	
235	I43	7,I.10 ⁸ л	-	-	
236	I44	2,4.IO' <u>,</u>	-	-	
237	I45	(2,5.1011л)	6,8д	-	
238	I46	4,5.10 ⁹ 1		-	
23 9	I47	(I,6.IO ¹³ л)	23 m	-	
240	I48	(5.10 ¹³ л)	I4 u	-	
24I	I49	(5,I0 ¹ ,д)	(6 m)	-	
242 	150	(2.IO ¹ ′π)	(28 m)	-	
		Z	= 93		
223	I30	(3.10 ⁻⁶ c)	-	(I2 c)	
224	I3I	(8.10 ⁻⁵ c)	-	(I c)	
22 5	I32	(8.10 ⁻⁴ c)	-	(23 c)	
226	I33	$(5,6.10^{-2}c)$	-	(5 c)	
227	I34	(2 c)		(50 c)	
228	135	(I3 c)	-	(40 c)	
229	I36	4,0(2) M	-	(2 ¥)	

Z = 93

وجريدي معتاهة بورد علت خام الألاجاة بالمحمد المر	وي والمنادق من عنت بعلونية علمي حدة ويترجلا عنه فلك الله			
230 137	4,6(3) м	_	(9 _M)	
23I I38	~84 ч	-	~ ,50 м	~ 50 m
232 I39		_	(25 м) Т5(Т)м	
23 3 I40	~ 3.4 r	-	≈ 35 M	
234 I4I	(IOл) >I2л (900л)	-	(ĬŎ́м́) 4,4(I)д	35()м 4,4(I)д
23 5 I42	8,2·10 ⁴ л	-	$400(10)\pi$	400(TO)π
236 I 43	(2,5·10 ⁵ л)	45 u	43 y	22(I)y
237 144	2,1, <u>1</u> 0 ⁶ л	-	-	
23 8 I45	(4·I0 ⁷ д)	2,І.д	(4 IO ³ π)	
239 I4 6	(4·10 ⁸ л)	2,3.д	_	
2 4 0 I47	(4·10 ⁹ л)	I,I(I)4	-	
24I I4 8	(6·I0 ¹¹ л)	I6(I)m	-	
242 149	$(I_{3} \cdot I0^{13} \pi)$	(І7 м)	-	
243 150	(I·I0 ¹⁵ л)	(4м)	-	
	Z =	94		
226 132	(4·10 ⁻³ c)	_	(Тм)	
227 133	(3,2 c)	-	(20 c)	
228 I34	(2,2 c)	-	(2м)	
2 29 I3 5	(І,7м)	-	(45 c)	
230 I36	(2м)	-	(I2 M)	
231 137	(І,8ч)	-	(6м)	
232 I38	, אַ 3 אַ		≤,37 m.	36(I) M
233 I39	(2,8ч) ІЗ л		(35м) 20м	$20(2)_{1}$
234 140	~ 6 I	-	20 m 96 m	Q ()(5)-
235 I4I	(5 д) Эбо д	-	24 м	24()
236 142	2.9 л	-	~~ m	~
237 143	3,8·10 ³ л	-	5T m	Λ 6 π
238 144	(80л)	-	(Žīš_jī;)	чровд
239 I45	$2.4 \cdot 10^{4} \pi$	-	-	
240 146	$6.6.10^{3}\pi$	_	-	
241 147	6,3·10 ⁵ л	~ I5 л -300 л)	-	I5(I)л
242 I48	3.9·10 ⁵ л ``	-	_	
243 149	(I.2·10 ⁸ л)	5.0 u	-	
244 150	8,3·10 ⁷ л	-	-	
	•			

10

H

245	I5I	$(1,3.10^{11}n)$	II.4	_	
246	152	(I,2. <u>IO^{IЗ}л</u>)	(3,5д)	-	
247	153	(2.10 ^{IЗ} д)	(I3 M)	-	
			2=95		·····
200		(0.00.0)			
440 200	100		-	(0, 8, 0)	
222	104	_(3 C)		(130)	
20U	130		-	(1,5 0)	
231	136	(-6 M)	-	(50 c)	
232	137	(10 M)	-	(12 c)	
233	138	(8प)	-	(2 M)	
234	139	(I3 ч)		(2 M)	
235	I40	(I6 д)	-	(9m)	
236	I4I	(32д)	-	(25 м)	
237	142	Зт (I,6 г)	-	І,ЗЧ (І,6Ч)	І,ЗЧ
238	143	72 ж (IЗ л)	-	I , 9 ч	I ,9 (I) ч
239	I44	27 _ x	-	I2 प	I2(I) ч
240	I45	З.10 ³ д	-	2,Ід	5Іч
24I	146	4,3.10 ² π	-	-	
242	I47	(I,6.10 ^З л)	I 9 प	4.I m	I 6 प
243	I4 8	7,4.10 ³ π	-	-	
244	14 9	(2,5.10 ⁵ л)	I0.4	(10 ⁸ л)	
245	15 0	(2.10 ⁶ л)	2.0.4	-	
246	151	(4.10 ⁷ л)	39(3) Ma		
247	152	(I.6.10 ⁸ л)	24(3) M	-	
248	153	(2.5.10 ⁹ л)	(25 м)	-	
249	154	(3,2.10 ⁷ л)	(6мс)	_	
			Z= 96		
230	134	$(2,8,10^{-2}c)$		(25 c)	
2 3 I	135	(7 c)		(9 c)	
232	136	(3,2 c)	· _	(IM)	
233	I3 7	(<u>6</u> M)	-	(280)	
234	138	(3,3 м)		(2,3 m)	

Z = 94

.

			Z = 96		
235	I39	(.4 y)	-	(I,2 M)	
236	I40	(3,2 y)	-	(I7 m)	
237	I4I	(ІО ч)	-	(4 ¥)	
238	I42	≤ 26 ч (І,9 д)	-	>2,5 ч (3 ч)	2,5 ч
239	I43	> 120 д (120 д)	-	2,9 4	2,9ч
240	I44	27 д	-	> 1,5 r (1.2 r)	27 д
24I	I45	7,2 r	-	35 д (ІО д)	35(2)д
242	I46	I60 д	-	-	
243	I47	29, д	-	9,1.10 ³ л	29(I)л
244	I48	I8 . д	-	-	
245	I49	8 ,5. 10 ³ л	-	ier.	
246	150	4,8.10 ³ л	-	-	
247	1 5 1	I,6.I0 ⁷ π	(>10 л)	-	
248	I52	З,6.10 ⁵ л	-	—	
249	I 5 3	(I,2.I0 ⁷ л)	64 (3)m	-	
250	I 5 4	(2,5. <u>1</u> 0 ³ л)	(ІОд)	-	
25I	155	(5.10 ⁵ д)	(IОм)	-	
252	156	(I,6.10 ⁶ л)	<2д (40м)	-	<2д
			Z = 97		
23I	I34	(0,4 c)		(0,7 c)	······································
232	I3 5	(6c)	-	(2.10 ⁻² c)	•
233	I36	(50 c)	-	(4 c)	
234	I37	(3w)	-	(0,2 c)	
235	I38	(30 m)	-	(I0 c)	
236	I39	₹3,I ч)	-	(2 c)	1
237	I40	(I4 y)	-	(25 c)	
238	I4I	(IY)		(20 c)	
239	I42	(40д)	-	(4м)	
240	I43	(40д)	+	(4 M)	
24I	I44	(25 д)	-	(I3m)	
242	I45	(210д)	-	(27 ⊾)	

12

Z = 97

		-	0/		
243	I46	I30 д		4,5 u	4,5(I)u
244	I47	8,4 r (2,1 r)	-	4 ₉ 4 y	4,4 y
245	I48	ІЗ л	-	5,0 д	5.0.д
246	I49	(5 00_n)_	-	I,8 д	
247	I5 0	I,4.I0 ^З л	-	-	
248	151	(2,8.I0 ⁵ π)	23 ч (2д)	53 ч	I6(3) ¥
249	152	5,9. <u>1</u> 0 ⁴ л	310 д	-	3I0 д
250	I 5 3	(I.10 ⁵ л)	∼3,2 ч (2 ч)	-	З,2 ч
25I	I54	(I,I0 ³ л)	57(2) M	-	
252	155	(6.10 ³ л)	(20 m)	-	
253	156	(6.10 ³ л)	(5 , 5 m)	-	
			Z = 98		<u></u>
234	I36	(I.10 ⁻² c)	-	(9 c)	
235	I37	$(1,4.10^{-2}c)$	-	(2 c)	
236	I38	(0,3 c)	-	(20 c)	
237	I39	(0 , 3 c)	-	(7 c)	
238	I40	(2,2 c)	-	(50 c)	
239	I4I	(32 c)	-	(30 c)	
240	I42	I,I.M	-	(4,5 m)	
24I	I43	≥ 3,8 m (4,2 m)	-	≫ 3.8 m (2,5 m)	3,8 🖬
242	I44	3,4(2) ⊾	-	(I4 m)	
243	I45	IIO M	-	~II м (I5 м)	IO.M
244	I46	I9.m	-	(I2 y)	
245	I47	2 , 3 ч	•	62 M	45 . m
246	I48	I,5 д	-	(> 10 ³ л)	
247	I49	(I50д)	-	2,5(2)4	
248	I 5 0	2,5(2).10 ² д	-	-	
249	151	3,5(I).10 ² л	-	-	
250	152	I5.я	-	-	
201	103	9,0(5).10-д	-	-	
202	104	2,7 r	-	-	2,6.r

	Z = 98						
253	I 5 5	I6 л	I8 д	·····	Ι8.π		
254	156	53 <u>r</u>	-	-	60(2) x		
255	157	(I.10 ³ л)	(I,5 y)	-	- \-/H		
256	1 58	(I.I0 ⁴ ^H)	(І,Зд)	-	< 5 y		
	-	Z	= 99				
236	I37	(7,10 ⁻³ c)		(~I.10 ⁻³ c)			
237	I38	(5.10 ⁻² c)	-	(0,4 c)			
238	I39	(0,I5 c)	-	(I.10 ⁻² c)			
239	I40	(0,8 c)	-	(3c)			
240	I4I	(8 c)	-	(0,7 c)			
24I	I42	(I2 c)	-	(23 c)			
242	I43	(I5 c)	-	(5 c) '			
243	I44		-	>30 c (I,3 m)	2I(2) c		
244	I45	~ 15 m (5,0 m)	-	39(5) c	37(4)c		
245	I46	3,3(I2)m	-	2,2(6) w	I,3(2)m		
246	I47	I,3(3) ч	•	8,3(6) m	7,5(5) M		
24 7	I48	67 m	-	5,0 m	4,7(3) ¥		
248	I49	З,4 д	-	28(5) M	28(5) M		
249	150	> I0 д (91 д)	-	I,7(I) 4	I,7(I) u		
250	151	(20 д)	-	8 ,3(2) u			
25I	I52	170 д	-	I,4 д	33(I) y		
252	153	~ 140 д (1,1 г)	> 19 ₄ л (10 ⁴ л)	(250д)	~ 140 д		
253	I54	20.д	-	-			
254	155	250 д	(230д)	(IO ⁴ л)	250 g		
255	I5 6	480 д	43 д	-	40(I)д		
256	I 57	(3 71)	22 m	-			
257	15 8	(1,4.10 ⁸ I)	(I,5 y)	-			
		Z =	I00				
239	I39	(8.10 ⁻³ c)	-	(0,3 c)			
240	I40	(I.IO ⁻² c)	-	(II c)			

Z = I00

1

24I	I4I	(0,4 c)	-	4 c		110
242	I42	(0,I5 c)	-	(22 c)8	8(2) IO ⁻⁴ c	/15/
243	I43	(0,4 c)	-	(6c)		D
244	I44	(0,25 c)	-	(IM)	3,3(5)I	0 ⁻³ 0
245	I45	42(I3)c		(40 c)		
246	I46	I,6 c	-	(2,3м)		
247	I47	35(4) c	-	(3,5 м)		
248	I48	~⁄ > 34 c (30 c)	-	(I7 ⊻)	34(4) c	
249	I49	~ 6,5 m (21 m)	-	~4,3 m (10 m)	2,6(7)m	
250	150	(27 m)	-	≥ 34 м (Зч)	30(3) M	
251	15I	29 д	-	7,0ч	7,0(7) ч	
252	I52	23 u	-	-	23(I) ч	
253	I53	28 д	-	З,4 д	3,0(2)д	
254	I54	З,2ч	-	-	З,2. ч	
255	155	≫ 20 ч (І,Зд)	-	· •	20 u	
256	156	I,5 д	-	-	2,6 u	
257	I57	80(5) д		· –	80(5)д	
25 8	158	54(5)д (6л)	-	-		
259	159	(5I r)	(4 , 5 ч)	-		
		Z	= I0I			
24I	I40	(8.10 ⁻² c)	-	(0,2 c)		
242	I4I	(0,4 c)	· –	(2.10 ⁻² 0	;)	
243	I42	(0,4 c)	-	(I,5 c)		
244	I43	(0,7 c)	-	(I c)		
245	I4 4	(I,8 c)	· –	(5 c)		
246	I45	(I4 c)	· -	(3 c)		
247	I48	(9 c)	-	(I2 c)		
248	I47	35 c	-	9 c	7(3) c	
249	I48	(4 , 2 ⊻)	· · · · ·	>⇒ 24 c (I,5 ⊻)	24(4) c	
250	I49	(27 m)	-	59 c	56(6) c	÷

Z = IOI

			-		
25I	150	(8 , 9 ч)		(2 <u>u</u>)	4,0(5) M
25 2	151	(І,5д)	-	(5 ⊾)	2,3(8) 🖬
253	152	(I4 y)	-	(20 ⊾)	
254	1 5 3	(2,9д)	-	IO(3) 🖬	
255	154	(IY)		(8ч)	.27(2) 🖬
256	155	~ <u>3</u> 2 ч (6 ,5 ч)	-	~8,5ч (І,5ч)	З,І(2) ч
257	156	2,Ід	+	5,5 ч	5,0(3)ч
25 8	I57	54(5)д	-	(150 д)	
259	I 5 8	(6,4 r)	-	-	
260	159	(5I r)	(2 r)		
			Z = 1	102	
243	I4I	(2,2.10 ⁻⁴ c)		(I.10 ⁻² c)
244	I42	(7,9.10 ⁻⁵ c)	-	(Ic)	
245	I43	(2,8.10 ⁻⁴ c)	-	(0,9 c)	
246	I44	(2,8.10 ⁻⁴ c)	¥	(7 c)	
247	I45	(6.10 ⁻³ c)	-	(Ic)	
248	I46	(3,2.10 ⁻³ c)	-	(I5 c)	
249	I47	(3.IO ⁻² c)	-	(I2 c)	1. ITC /
250	I48	(0,25 c)		(45 c)	2,5(5)I0 ⁻⁴ c ^{/15/}
25I	I49	0,8(3) c	-	(2 ¥)	
252	150	~ 3,4 c (2,5 c)	-	(2 M)	2,4(2)c
253	151	95(IO) c	-	(6 m)	
254	152	55(5) c	-	(I5 ⊻)	
255	I 5 3	3,3(2) м		(25 ⊾)	
256	154	3,2(2) c	-	(I.5 y)	
257	155	26(2) c	-	(5 y)	
258	156	(50 c)	-	(І,2 г)	I.2.10 ⁻³ c
259	157	58(5) M	-	(4д)	58(5) M
260	I 5 8	(47 m)	-	-	· / -
26T	I59	(I.9 д)	-	$(>10^3)$	³ <i>n</i>)

- 16

Z = I04

Z = I03

245	I42	(7.10 ⁻⁵ c)		(0,I c)	
246	I 43	$(1.10^{-4}c)$	-	(3.I0 ⁻² c)	
247	I44	(2.I0 ⁻⁴ c)	-	(0,3 c)	
248	I45	(7,9.10 ⁻⁴ c)	-	(9,I0 ⁻² c)
249	I46	(3,6.10 ⁻³ c)	-	(2 , 5 c)	
250	I47	(2,5.10 ⁻² c)	-	(0 ,5 c)	
251	I48	(0,15 c)	-	(7c)	
252	I49	(0,6 c)	-	(4c)	
253	I50	(20 c)	-	(23 c)	
254	15I	(80 c)	-	(40 c)	
255	152	≫ 22 c (36 c)	-	> 73 с (2 м)	22(5) c
256	153	~3I c (40 c)	-	>2,6 м (Зм)	3I(3) c
257	154	$\widetilde{(1,8,c)}^{0,6,c}$	+	>4 c (4,5 ₪)	0,6(I)c
258	155	~4,2 c (4,5 c)	-	> 84 с (I2 м)	4,2(6)c
259	156	5,4(8)c	-	(25 ⊾)	
260	157	З,0(5)ы	-	(2ч)	
26I	I58	(I,44)	-	(I4 u)	
262	I59	(I4 y)	-	(3,5д)	
263	I60	(28 ч)	-	-	<u>. </u>
		Z =	I04		
248	I44	(2,2.10 ⁻⁵ c)	-	(0,I c)	
249	I45	$(3,2.10^{-4}c)$	-	(0,I c)	
250	I46	$(2.10^{-4}c)$		(I C)	
251	I47	(3,2.10 ⁻³ c)	-	(0 ,2 c)	
252	I48	(46,3.10 ⁻³ c)	-	(IO c)	
253	I49	$(8.10^{-2}c)$	-	(I,2 c)	
254	150	(6.IO ⁻² c)	-	(30 c)	5(2)I0 ⁻⁴ c ^{/15/}
255	151	(2,5 c)	-	(Цc)	4c ^{/16} /
256	152	(0,6 c)	-	(4 ⊾)	5•10 ⁻³ c/16/
257	I53	4,5(IO)c	-	(IM)	

		(0. T.)			T. T.(0) TO=2
258	154	(0,1 c)	-	(4 ¥)	1,1(2).10 -c
259	155	4,5(15) c	-	(3M)	0 T
260	156	(2,8 c)		(15 M)	0,1 C
26I	157	65(10) c	-	(15 M)	
262	158	(2,7 M)	-	(4 y)	
263	159	(30 M)	-	(I Y)	
264	160	(33 M)	-		
		Z	= 105		
251	I46	$(6.10^{-4}c)$	-	(9.10 ⁻² c))
252	I47	(2,5.I0 ⁻³ c)	÷	(2.10 ⁻² c))
253	I48	(8.10 ⁻³ c)	-	(0,9 c)	
254	I49	(2.10 ⁻² c)	-	(0,I5 c)	
255	150	(0 ,3 c)	-	(Зс)	
256	I5I	(0,7 c)	- ·	(Ic)	
257	152	(0,I5 c)	-	(I5 c)	
258	I53	(I C)	-	(I6 c)	
259	I54	(8.I0 ⁻² c)	-	(40 c)	
260	155	~ I,6 c (0,9 c)	-	(I,9 c)	I,6(3) c
26I	156	I,8(6)c	-	(І,9 м)	
262	1 57	40(IO) c	+	(30 ⊻)	
263	I58	(50 c)	-	(7м)	
264	159	(6 , 7 м)	-	(23 m)	
265	160	(42 ⊾)	-	(35 m)	
		Z	= 106		
 254	I48	(4.I0 ⁻⁴ c)		(0,5 c)	
255	I49	(I.8.I0 ⁻³ c)	-	(6.10 ⁻²	c)
256	I50	(I.6.IO ⁻³ c)	-	(2 c)	
257	15I	(0,I c)	-	(0,7 c)	
258	152	(7.10 ⁻³ c)	-	(I2 c)	o /=-/
259	153	(0,2 c)	-	(5 c)	$7(3)10^{-3}c^{/16/}$
	-				

. 18

Z = I06

260	154	(3.10 ⁻³ c)	-	(20c)	
26I	155	(8.I0 ⁻² c)	-	(II c)	
262	I 5 6	(8.I0 ⁻² c)	-	(2 M)	
263	I57	0,9 c	-	(30 c)	
264	I 5 8	(I,2 c)	-	(4 m)	
265	15 9	(20 c)	-	(I M)	
266	160	_(32 c)	-		
			Z = I07		
255	I48	(2,5.10 ⁻⁴ c)	-	$(2.10^{-2}c)$	
256	I49	(3,2.I0 ⁻⁴ c)	-	(2.10 ⁻³ c)	
257	150	(8.10 ⁻³ c)	-	(0,3 c)	
258	1 5 I	(I,3.I0 ⁻² c)	-	$(2.10^{-2}c)$	
259	152	(3.I0 ⁻³ c)	-	(I,5 c)	
260	I 5 3	(2.10 ⁻² c)	-	(0, 4 c)	
26I	154	(3.10 ⁻³ c)	-	(9c)	
262	I55	(I,8.10 ⁻² c)	-	(4 c)	
263	I 5 6	(5.I0 ⁻² c)	-	(I8 c)	
264	I 5 7	(0,I4 c)	-	(I3 c)	
265	I 5 8	(0,9 c)	-	(40 c)	
266	I 5 9	(5c)	-	(2 M)	
267	160	(20 c)	-	(Зм)	
			Z = I08		
258	150	(5.10 ⁻⁵ c)	-	$(7.10^{-2}c)$	
259	151	(2,2.I0 ⁻³ c)	-	(3.10 ⁻³ c)	
260	1 52	(6.10 ⁻⁴ c)	-	(Ic)	
26I	I 5 3	(8.I0 ⁻³ c)	-	(0,3 c)	
26 2	154	$(1,5.10^{-4}c)$	-	(5 c)	
263	15 5	(3.10 ⁻³ c)	-	(I c)	
264	156	(2,5.10 ⁻⁸ c)	-	(I2 c)	
265	I57	(3,6.10 ⁻² c)	-	(6 c)	
266	158	(5.I0 ⁻² c)	· –	(30 c)	

			Z = 108	
267	15 9	(I,3 c)	-	(15 c)
268	160	(0,9 c)	-	(Ім)
			Z = I09	
260	151	(2.10 ⁻³ c)	=	(5.10 ⁻⁴ c)
26I	152	(2,5.10 ⁻⁴ c)	-	$(8.10^{-2}c)$
262	I53	(I,4.I0 ⁻³ c)	-	(3.IO ⁻³ c)
263	154	(2.10 ⁻⁴ c)	-	(0 , 5 c)
264	I 55	(I.IO ⁻³ c)	-	(0,I c)
265	156	(2,5.I0 ⁻³ c)	-	(3 c)
266	157	(8.10 ⁻³ c)	-	(0,6 c)
267	I 5 8	(6.I0 ⁻² c)	-	(8c)
268	159	(0,2 c)	-	(4c)
26 9	I60	(0,6 c)	-	(25 c)
			Z = 110	
26I	151	(7.10 ⁻⁴ c)	-	(I.10 ⁻⁴ c)
262	I52	(8.10 ⁻⁵ c)	~	(3.10 ⁻² c)
263	I53	(I.IO ⁻³ c)		(1.10 ⁻³ c)
264	I54	(I,5.I0 ⁻⁵ c)	-	(0,2 c)
265	155	(3.I0 ⁻⁴ c)	-	(9.IO ⁻² c)
266	156	(2.10 ⁻⁴ c)	-	(I,5 c)
267	157	(2,5.I0 ⁻³ c)	-	(0,3 c)
268	158	(4.I0 ⁻⁴ c)	-	(7c)
269	15 9	(4,5.10 ⁻² c)	-	(2 c)

Литература

1. К.Takahashi, M.Yamada, T.Kondoh.ADHDT, 12, 101, 1973. 2. И.Перлыан, Дж. Расмуссен ."Альфа-радиактивность", ИИЛ, 1958.

- 3. C.I. Dake et al. Baol. Phys. A 151, 609, 1970.
- 4. P.G.Hausen et al. Mucl. Phys. A 160, 445, 1971.
- 5. P.Hernshoj et al. Hucl. Phys., <u>A 163</u>, 277, 1971.
- 6. G.Andersson. Rucl. Phys., 24, 666, 1961.
- 7. Н.Н.Колеоников, А.П.Крылова, В.К.Канднбаров. Изв.АН СССР, <u>27</u>, 132, 1963.
- 8. Н.-Н.-Колесников, М.М.-Колесникова. Изв.НУЗов, физика, № 2, 48, 1960.
- 9. Н.Н.Колесников. Вестник МГУ № 6, 76, 1966; ХЭТФ. 30, 889, 1956.
- IO. Н.Н.Колесников, А.Г.Демин. Сообщ. ОИЛИ Р6-9420, Дубна, 1976.
- 11. V.E.Viola, G.T.Seaborg.J.Inorg.Chem. 28, 741, 1966.
- 12. Н.Н.Колеоников, А.П.Крилова. ЖЭТФ, <u>33</u>, 274, 1957;<u>37</u>,550,1959; Н.Н.Колеоников, С.И.Ларин. ЖЭТФ, <u>28</u>,243,1955;

A.Ghiorso, S.G.Seaborg, S.G.Thompson.Phys.Rev.,<u>95</u>,243,1954. H.H.Koлechmkob, И.П.Селинов. Изв.АН СССР,<u>37</u>, IIO2, I973.

13. Ю.С.Замятин. Ядерные константы. Вып.14., Атомиздат. М., 1974; H.Gauvin et al. КРКО ВС-05, Institut de Physique Mucleairi; J.C.Post Actinides Reviews Elsevier Publ. Сопрану. Альterdam, 1974; В.М.Горбачев, Ю.С.Замятин, А.А.Доов. Эсновные характеристики изотопов тяхелых элементов, Атомиздат, М., 1970; Б.С.Джеленов, Л.К.Пекер, В.Р.Сертеев. Схемы распада радижктивных ядер, Изв.АН СССР, М.-Л., 1963.

- 14.P.Escola, Phys.Rev. C), 280, 1973; A.Ghiorso et al.Phys.Rev. Lett., 33, 1940, 1974; C.E.Benis et al. Phys.Rev.Lett., 31, 647, 1973; R.J.Silva et al. Nucl.Phys., <u>A 216</u>, 97, 1973; P.Escola et al. Physica Fennica, <u>8</u>, 357, 1973.
- 15. V.I.Chepigin et al. JINE Preprint E15-9064, Dubna, 1975
- 16. D.Ц. Оганесян и др. Письма в ЖЭТФ, <u>20</u>, 580, 1974. Yu.Ts.Oganessian et al. Nucl. Phys. <u>A239</u>, 157, 1975.

Рукопись поступила в издательский отдел 29 декабря 1975 года.