
93-289

объединенный институт ядерных исследований дубна

P6-93-289

Ю.Т. Чубурков, Нам Хо Себ, Л.К. Альперт, И. Звара

ЭНТРОПИЯ И ЭНТАЛЬПИЯ АДСОРБЦИИ ГАЗООБРАЗНЫХ ХЛОРИДОВ МЕТАЛЛОВ НА КВАРЦЕВОМ СТЕКЛЕ, КАК ФУНКЦИИ СОСТАВА МОЛЕКУЛ

Направлено в журнал «Радиохимия»

Введение

в целях экспрессного радиохимического разделения и идентификации продуктов ядерных реакций все шире используется газоалсорбционная термохроматография (ТХ). Селективность метода, в основном, определяется различием в значениях энтальпии адсорбции ΔH_a^o компонентов смеси (1-8).

В свою очередь, ТХ также используют для определения термодинамических параметров адсорбции элементов и соединений. Однако полученные разными авторами из газохроматографических и ТХ данных значения ΔH_a° не всегда согласуются между собой [9-15]. Причина, возможно, в том, что при оценке ΔH_a° атомов или молекул на основании одних температур их адсорбции T_a в ТХ колонке или времен удерживания t_{ϵ} в изотермической колонке многие авторы как бы использовали 3-ий закон термодинамики [16]: брали разные априорные значения периода колебаний сорбированных частиц по нормали к поверхности τ_o и по формулам статистической термодинамики или на основании молекулярно-кинетических представлений сначала фактически оценивали энтропию адсорбции ΔS_a° [10, 13].

Все же в некоторых работах для интересующих нас атомов и галогенидов определяли ΔH_a^o и ΔS_a^o , используя 2-ой закон термодинамики, т.е. из температурной зависимости константы равновесия адсорбции K_a^o , подразумевая справедливость закона Генри; см., например, [14,15]. В настоящей работе предпринята попыткы прознализировать способы оценки ΔH_a^o и их значения по результатам разных работ. С этой целью нами были также получены новые данные в ТХ опытах с хлоридами Сs, Au, Tb, Tm, Pb, Zr, Hf, Sb, B1, и Nb на капиллярной колонке из кварцевого стекла с использованием паров $SOCl_2$ в качестве хлорирующего агента в потоке не с разной степенью очистки газа и поверхности капилляра от следов O_2 и H_2O , а также в потоке воздуха.

основные положения

коэффициент адсорбционного равновесия размерностью в единицу длины можно записать в виде

$$k_{a} = C_{ad}/C_{g}, \tag{1}$$

где $C_{\rm ad}$ и $C_{\rm g}$ - поверхностная и объемная концентрации сорбата или давления двух- и трехмерного газов. Хроматографические опыты дают значения $t_{\rm g}$ и времени удерживания газа-носителя $t_{\rm g}$. Из этих данных можно найти $k_{\rm h}$ по формуле

$$k_{a} = [(t_{e}/t_{g})-1]d/4,$$
 (2)

где d - диаметр колонки.

в работах [3-5,14,15] использована возможность определения $k_{\rm a}$ при разных температурах не только по данным изотермических опытов, но и по распределению сорбата вдоль ТХ колонки. С этой целью в качестве меры $C_{\rm ad}$ при средней $T_{\rm ad}$ на некотором участке ТХ колонки длиной 1 принимали долю площади ТХ пика $S_{\rm ad}$ на этом отрезке, деленную на площадь внутренней геометрической поверхности этого участка $1S_{\rm 1}$, где $S_{\rm 1}$ поверхность участка единичной длины:

$$C \underset{\text{ad}}{\sim} S / 1 S_{\perp}. \tag{3}$$

В качестве мери $C_{\rm g}$ принимали всю долю площади пика $S_{\rm g}$, находящуюся при $T < T_{\rm ad}$, деленную на истинный объем газа-носителя при $T_{\rm ad}$, прошедшего через колонку за приведенное время опыта $t_{\rm g} = t_{\rm t} - t_{\rm g}$, где теперь $t_{\rm t} = t_{\rm t} - t_{\rm g}$, где теперь $t_{\rm t} = t_{\rm t} - t_{\rm g}$, прохождения газа носителя до точки с температурой $T_{\rm ad}$. Таким образом,

$$C \stackrel{\sim}{\underset{g}} T / \overline{V} T t, \qquad (4)$$

где $\overline{V}_{_0}$ — объемный расход газа-носителя при произвольной стандартной температуре $T_{_0}$. Отсюда

$$k = S \tilde{V} T t / S S T 1.$$
 (5)

Если постулировать справедливость закона Генри во всем конкретном диапазоне температур $T_{\rm ad}$ и принять определенное стандартное состояние, в качестве которого мы взяли отношение мольных объема и площади,

 $V_{\substack{M \\ \text{m}}}/A$ =1 см, то для безразмерной константы адсорбции имеем:

$$K_a^o = k_A M / V_m$$

Определяя по экспериментальным дапным с помощью (2) или (5) $K_{\mathbf{a}}$ при разних температурах и используя уравнение:

$$\ln K^{o} = \Delta S^{o}/R - \Delta H^{o}/RT, \qquad (6)$$

значения ΔH_a^o и ΔS_a^o (которые считаются не зависящими от температуры) можно найти как параметры линейной регрессии.

С другой стороны, из уравнений молекулярной кинетики и статистической термодинамики адсорбата в состоянии идеального двумерного газа следует [16-18]

$$K_{a}^{o} = A_{m}^{I} V_{m} (RT/2\pi M)^{1/2} \tau_{e} e^{-\Delta H_{a}^{o}/RT}$$
 (7)

По уравнению (7), задаваясь τ_o , можно оценить ΔH_a^o ; см., например.[3-5,].

Сравнивая уравнения (6) и (7), получаем

$$\ln \tau = \Delta S_{a}^{0} / R - \ln[(RT/2\pi M)^{1/2} A_{m} / V_{m}]. \tag{8}$$

Отметим, что для двухмерного газа, не обладающего "сверхподвижностью", должно иметь место [16]:

$$\tau_{o} = h/kT. \tag{9}$$

В работах [17,18], исходя из динамического уравнения идеальной линейной (проявительной) газовой хроматографии, было выведено соотношение, связывающее ΔH_{a}^{o} и ΔS_{a}^{o} с T_{a} для ТХ колонки с постоянным отрищательным градиентом температуры. После несущественных упрощений для t_{a} получено выражение

$$t_{R} = -(S_{1}^{T}/a\overline{V})\exp(\Delta S^{0}/R). [Ei^{0}(-\Delta H^{0}/RT)-Ei^{0}(-\Delta H^{0}/RT)].$$
 (10)

Здесь а — температурный градиент (a<0) в уравнении $T=T_x+aZ$; T_x температура стартового участка; $Ei^*(x)$ — интегральная показательная функция. Для x>>1, как известно, $Ei^*(x)=(1+1!/x+2!/x^2+\dots)e^x/x$.

Молекулярно-кинетические представления приводят [17] к

$$t_{R} = -(S_{1}^{T} / a \bar{V}_{o}) \tau_{o} (RT/2\pi M)^{1/2} \left[Ei^{*} (-\Delta H_{a}^{o}/RT_{s}) - Ei^{*} (-\Delta H_{a}^{o}/RT_{a}) \right].$$
(11)

численные решения основного уравнения термохроматографии (10) весьма точно аппроксимируются [19,20] формулой

$$-\Delta H_a^0/RT = 2,296 + 2,393 \log Y,$$
 (12),
где $Y = -at_R^{\overline{V}} \sqrt{s_1} T_a \exp(\Delta S_a^0/R).$

Приближенные формы уравнений (10) и (11), которые улобно написать как

$$-at \sum_{R} \bar{V}_{0} (T_{0} S_{T_{0}})^{-1} (2\pi M/RT_{a})^{1/2} \approx \exp(-\Delta H_{a}^{0}/RT_{a})/(-\Delta H_{a}^{0}/RT_{a})$$
 (13)

И

$$-a t_R \vec{V}_o (T_o S_1)^{-1} \exp(\Delta S_a^o/R) \approx \exp(-\Delta H_a^o/RT_a)/(-\Delta H_a^o/RT_a),$$
 проанализированы в работе [20].

Если зависимость T=T(Z) не является линейной, то, как показано в $\{20\}$, вместо a в уравнения $\{10\}-\{14\}$ можно подставить наклон касательной в точке T. Отклонения от "точного" решения задачи незначительны и для практических целей не существенны.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Схема термохроматографической установки представлена на рис. 2. В наших экспериментах, в отличие от других работ [10,13], в линию очистки газа (Не) от O_2 и H_2O дополнительно была поставлена восстановленная гранулированная медь при 250° С, а кроме $Mg(ClO_4)_2$ использовали для предварительной осушки MgO и для более глубокой осушки силикагель и цеолит при 250К. Колонка перед опытом выдерживалась в рабочем режиме от 0,2 до 3 часов с целью десорбции H_2O с поверхности кварца [21] глубоко осущенным газом. В качестве хлорирующего агента использовали пары $SOCl_2$ (100 мм рт.ст.). Колонка имела S_1 =0,57 или 0,94 см².см¹, расход \overline{V}_0 был равен 30 или 20 мл мин¹, время t_1 =10, 20 или 40 мин, и температурный градиент -a=(0,8÷12) К см¹ (см.рис.3).

Эксперименты проводили с радиоактивными пуклидами: 137 Cs, 195 Au, 160 Tb, 170 Tm, 212 Pb, 95 Zr, 172 Hf, 125 Sb, 207 B1 и 95 Nb. После окончания

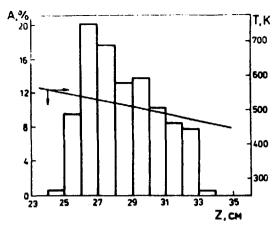


Рис. 1. Термохроматограмма $PbC1_2$; $t_1 = 30$ мин, $\vec{V}_0 = 65 \cdot \text{см}^3 \cdot \text{мин}^{-1}$ $S_1 = 0.567 \text{ cm}^2 \cdot \text{cm}^{-1}$, $T_1 = 536\text{K}$

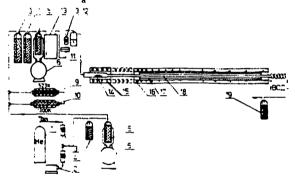
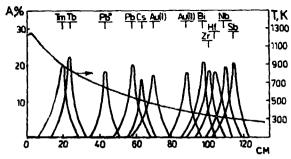


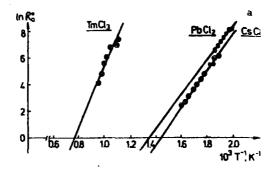
Рис. 2. Схема установки для изучения термохроматографического поведения хлоридов.

1 — баллон с Не; 2 — насос; 3 — расходомер; 4 — MgO; 5 — цеолит; 6 — сосуд Льюара для жидкого авота; 7 — силикагель; 8 — ${\rm Mg(ClO_4)_2};$ 9 — Си-геттер; 10 — T1-геттер; 11 — волокнистий фильтр; 12 — барботер с ${\rm SOCl}_2;$ 13 — буферная емкость;

14 - образец; 15 - нечь хлорирования; 16 - термоградиентная печь;

17 - толстостенная медная трубка; 18 - ТХ колонка; 19 - ловушка с активированным углем.




Рис. 3. Термохроматограммы хлоридов некоторых элементов и атомов свинца (Pb^{O}) . А - процент активности на 1,0 см длины колонки.

опыта ТХ колонку сканировали с помощью спектрометра у~излучения (Ge/Li) и получали гистограммы распределения радиоактивных нуклидов; см. рис. 1. Затем, пользуясь (3), (4) и (5) определяли к при разных Т.

РЕЗУЛЬТАТЫ И ОБСУЖЛЕНИЕ

Очевидно, что поверхность колонки должна модифицироваться молекулами парообразных веществ, присутствующими в газе-носителе. В частности, при 400К и при давлении паров SOC1₂, равном 80 мм рт.ст., на каждый см² рабочей поверхности стеклянной колонки приходится ~10¹⁵ молекул SOC1₂ [5]. Пары Н₂О, если они содержатся в газе, не могут быть в этом смысле исключением, так как поверхность S1O₂ гидроксилизуется [21]. Поэтому необходима глубокая осушка газа [22] и дегидроксилизация — модификация поверхности колонки хлоридами [23], чтобы избежать возможности усложнения химического состояния микроэлементов из-за присутствия Н₂О в системе.

На рис. 4a, б изображены зависимости $1nK_a^0$ от обратной температуры для клоридов Cs, Tm, Pb, Zr и Nb. Значения K_a^0 получены по данным опытов с глубокой осушкой ТX системы. На рис. 46 отложены также два значения $1nK_a^0$, полученные при более высоких температурах для Zr и Nb в работах [3,5]. Там они были найдены посредством измерения t, при

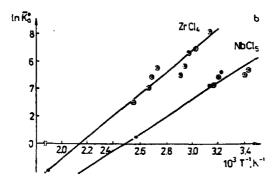


Рис. 4. Зависимости 1 км от обратной температуры

$$-\bar{V}_{0} = 30 \text{ cm}^{3}.\text{ MUH}^{-1}; \ t_{t} = 10 \text{ MUH}$$

$$\Theta - \bar{V}_{o} = 20 \text{ cm}^{3}.\text{ MuH}^{-1}; \ t_{t} = 10 \text{ MuH}$$

•
$$-\overline{v}_0 = 65 \text{ cm}^3 \cdot \text{мин}^{-1}; \ t_t = 30 \text{ мин}$$

• по данным работ [5,7].

изотермической хроматографии. От ввидно, что расширение температурного диапазона при измерени K_a^o увеличивает точность определения ΔH_a^o и ΔS_a^o . Значения этих характеристик представлены в табл. 1.

Таблица 1.
Термодинамические параметры адсорбции Рь и клоридов Сs, Рь, Тm, Zr и
Nb: ΔH^0 /кДж•моль $^{-1}$, ΔS^0 /Дж•моль $^{-1}$ К $^{-1}$ и τ /с.
Погрешность не превышает 5%.

Сорбат		_2-му за	кону	τ _ο x 10 ¹³ no yp. (8)	по ур.	. по ур.	
1	2	3	4	5	6	7	
Pb	903-661	168 ^[14]	176 [14]	0,8-1,0	167	165	
CsCl	694-536	116	167	2,8-3,1	116	116	
PbC1 _z	544~497	112	158	3,0-3,4	112	112	
TmCl ₃	1282-903	195	152	18,6-22	193	184	
ZrCl ₄	550-335	66	142	69-88	66	64	
NbCl ₅	400-292	53	133	256-300	53	47	

[•] при Т_{взятых} из табл.2, ч. I

I. Энтропия адсорбции

Из данных табл. 1 видно, что найденные нами значения ΔS_{a}^{o} лежат в довольно узком диапазоне -(130÷170) Дж•моль 1 •К $^{-1}$. Этот факт напоминает правило Трутона для энтронии испарения ΔS_{vap} . Эти значения не коррелируют с молекулярной массой сорбатов или с энтальнией адсорбции, но наблюдается корреляция с числом атомов в сорбате m. Значения ΔS_{a}^{o}

свободных атомов Рь [14] и хлоридов Сs, Tm, Pb, Zr и Nb на рис.5 аппроксимируются (методом наименьших квадратов) к прямой [22]:

$$\Delta S_{A}^{0} = -184 + 8,5m. \tag{15}$$

Сопоставляя (15) и (8), имеем

 $\ln \tau_o = -22,13 + 1,02m - \ln[(RT/2\pi H)^{1/2}A_m/V_m].$ (16) Видно, что в случае двумерного газа на поверхности сорбента ΔS_o^o и τ_o возрастают с ростом m.

Значения au_o , оцененные по уравнению (8), а то же самое дает и (16), приведены в табл. 1. Можно видеть, что стехнометрия сорбата влияет на значение au_o намного сильнее, чем температура. Как отмечалось выше, в принятой модели минимально возможное au_o равно h/kT. С этим значением согласуется au_o для свободных атомов РБ (m=1), вычисленное по уравнениям (8) или (16).

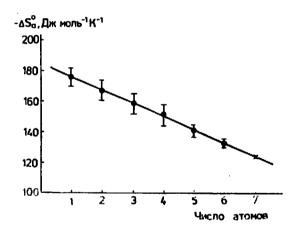


Рис. 5. Корреляция ΔS_{a}^{o} с числом атомов в сорбате.

11. Энтальния адсорбции

Сравнивая ΔH_a^0 в табл.2, ч.1, 11 , 111 со значениями ΔH_a^0 вычислениями по 2-му закону, из табл.1 находим, что согласне имеется для ТХ систем с глубокой очисткой газа и колонки (табл.2, ч.1). Таким

Таблица 2. Значение T_a/K , ΔH_{vap}^o , ΔH_{vap} , /к Δx •моль $^{-1}$ и W/% для некоторых элементов в хлоридных системах с разной глубиной очистки.

Группа	Сорбат (возможны състав)	$T_{f a}(\hat{T}_{f a})^{f a}$ ій	$-\Delta H_{a}^{o}(-\Delta \hat{H}_{a}^{o})^{\dagger}$ no yp. (18		W. 100 I.
	1	2	3	4	5
	емя предвар S ₁ = 0,567 (осушки систем	ы около 3-х часов	, t _t ≃10
I	CsC1	515 535	111	115	4
I	AuCl ₃ 380		73, 9	>(63) ^{**}	(Mano)
	Au(OH)Cl	485	90, 1	неизвестна	_
III	тьсіз	880 901	180	181	0,5
III	TmCl3	900 943	188	191,3	2
IV	PbC1 ₂	536	112	116 [31]	3
VI	ZrCl ₄	335**	63,4	65, 3	3
	•	363			3
IA	HfCl ₄	333 353	60,3	60,3 ^[30]	2 -2
V	SbC1 ₃	292 292	51,1	54,5(45,5)**	6(-6)
	SbC1 ₅	292 292	46,2	48,4(42)**	4(-10)
V	BiC1 ₃	337 349	62,7	73,8(64)**	15(2)
V	NbC1 ₅	292	46,5	49,4[33]	6(0)
S ₁ =0, 56	II. Время 7 см ² /см	295 предварит	ельной осушки п	(46,8) ^{**} не более 1 часа, <i>t</i>	t ⁼²⁰ мнн.,
I	AuCl ₃ (4	401)***	(76,5) >(6	(мал	n)*
1	Au (OH)Cl ₂			еизвестна -	. ,

таблица 2 (продолжение)

	1	2	3	4	5
 [V	ZrCl ₄	(371)**	(67,3)	65,3 ^[31]	-3
,	SbCl3	(313)	(56,5)	54,5(45,5)**	-4(-24)**
v	-		(71, 4)	73,8(64)**	3(-12)**
,	SbC1 ₅	(313)	(51,2)	48,4±11(42)**	-6(-22)**
,	NbC1 ₅	(330)	(61,5)	49,4[33]	-24
III.				$S_1 \approx 0.567 \text{ cm}^2/\text{c}$	· M
а) вр	емя осушк	и около	з-х часов,		
v	BiCl ₃	362	67,0	73,8(64)**	9(-4)**
	3	350			
v	B10C13	362	70, 2	неизвестна	-
	3				
	3	350			
v	SbC1 ₃		51,1	54,5(45,5)**	6(-12)**
v	Ů		51,1	54,5(45,5)**	6(-12)**
	Ů	295	51, 1 53, 7	54, 5(45, 5)** ~250 ⁺⁺⁺	6(-12)** ~80
	SbC1 ₃	295 296			
v ν δ) Β <u>Γ</u>	SbC1 ₃	295 296 295 296	53, 7		
v	SbCl ₃	295 296 295 296	53,7 2-х часов		
д) в t	SbCl ₃ SbOCl ремя осушки	295 296 295 296 не более	53,7 2-х часов	~250 ⁺⁺⁺ .5,3 65,3	~80 -8
д) в t	SbCl ₃ SbOCl DEMЯ ОСУШКИ ZrCl ₄	295 296 295 296 не более (429)	53,7 2-х часов 70,5±0,1	~250 ⁺⁺⁺	~80 -8

^{• —} Значения $T_{\bf a}$ ($\hat{T}_{\bf a}$), приведенные в первой и второй строках, получены при $\overline{V}_{\bf o}$ равных 30 и 20 (см 3 /мин), соответственно; значения $\Delta H_{\mathbf{a}}^{\mathsf{o}}$ представляют среднее из двух определений, ($\Delta \hat{H}_{\mathbf{a}}$) - из одного или двух определений.

^{**} В скобках даны ΔH в соответствии с правилом Трутона-Хильдебранда: $\Delta H_{\text{vap}} / RT_{\text{b}} = 4,573 + 1nT_{\text{b}}$.

*** - t_{ϵ} для ZrCl $_{4}$ равно 40мин, для AuCl $_{3}$ и Au(OH)Cl $_{2}$ равно 10кин.

^{+ -} если в насыщенных парах присутствует Au₂Cl₆.

 $^{++ -} S_1 = 0.942 \text{cm}^2 \text{cm}^{-1}$.

 $^{^{+++}}$ – $^{\Delta H}_{vap}$, оценена из разницы энтальпий образования твердого и газообразного веществ и приближенного значения энтальпии плавления.

образов создается впечатление, что лишь при значительной длительности продужем колонки глубоко осущенным газом-носителем, содержащим $SOC1_2$, поверхность SIO_2 приближается к стандартному модифицированному состоянию. Ниже для энтальний адсорбции, вычисленных любым путем по данным, полученным в несовершенных условиях, будем применять обозначения $\Delta\hat{H}^0$ и \hat{T}_2 .

Уравнения (6) и (15) дают

$$\Delta H_{a}^{0} = (8, 5m - 184 - RInK_{a}^{0}) T_{a}.$$
 (17)

Если же воспользоваться приближением (12) [20] для решения основного уравнения термохроматографии (10), то [22]:

$$\Delta H_{a}^{0} = [-210, 18 + 8, 80m - 1, 04Rln (-at_{p} \overline{V}_{o} / S_{l} T_{o})] T_{a}.$$
 (18)

как видно из данных табл. 2, ч. I, в системе с глубокой очисткой для соединений, в стехиометрическом составе которых можно быть уверенными, соблюдается правило

$$-\Delta H_{\mathbf{a}}^{\mathbf{o}} \leq \Delta H_{\mathbf{vap}},\tag{19}$$

где 🏧 • энтальпия испарения.

В качестве критерия соблюдения правила (19) можно принять фактор [22]:

$$V = (\Delta H^0 + \Delta H_{VAR}) / \Delta H_{VAR}. \tag{20}.$$

Отметим, что значения ΔH_{vap} для соединений рассматриваемого здесь класса, представленные в справочной литературе, не всегда надежны. Температуры кипения обычно известны с достаточной точностью, поэтому может оказаться более целесообразным использовать правило Трутона, которое не дает больших ошибок в значениях ΔH_{vap} ; последнее, разумеется, является единственной возможностью, когда известна только температура кипения, а не энтальния испарения.

При менее глубокой осушке газа-носителя, как в работах $\{4,13\}$, или при меньшем времени предварительной осушки капилляра сухим газом в настоящей работе (табл.2, ч.II), для одних и тех же ТХ систем у всех сорбатов значения \hat{T} превышают T (сравни с табл.1 и табл. 2, ч.I).

Поэтому нельзя непосредственно сравнивать и $\Delta \hat{H}_{a}^{\sigma}$ сорбатов, найденные по данным разных опытов с нелостаточно глубокой очисткой, и нельзя их сопоставлять с $\Delta H_{\rm vap}$. Чтобы преодолеть это затруднение , в качестве первого приближения можно предположить, что в двух сравниваемых состояниях ТХ системы, отличающихся соответственно совершенной и нелостаточно глубокой очисткой, \hat{T}_{a} и T_{a} всех сорбатов находятся в постоянном отношении, а изменение энтропии можно оценивать по (15) и в условиях несовершенной очистки. Если хотя бы один сорбат предварительно изучен в системе с глубокой очисткой, тогда есть возможность использовать постулируемую корреляцию.

Например, чтобы таким способом процализировать данные работы [13], берем $\Delta H_{\rm a}^0$ для ${\rm NbCl}_5$ и ${\rm TbCl}_3$ из табл.2, ч.1 и с помощью уравнения (18) (при ${\bf a}$, $t_{\rm R}$, \overline{V}_0 , S_1 из этой работы) находим $T_{\rm a}$ указанных двух соединений для совершенных условий ТХ опытов [13]. На рис.6 эти $T_{\rm a}$ отложены в зависимости от соответствующих $\hat{T}_{\rm a}$. По прямой, проведенной через эти две точки, оцениваем $T_{\rm a}$ для других сорбатов, изученных в работе [13]. Найденные таким образом значения $\Delta H_{\rm a}^0$, см. табл.3, хорошо согласуются с правилом (19).

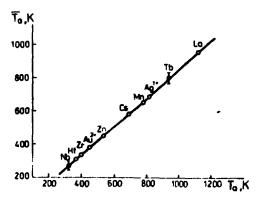


Рис. 6. Зависимость T_{a} от \hat{T}_{a} для ТХ системи, использованной в работе [13]. Прямая построена по точкам для NbCl $_{g}$ и TbCl $_{3}$; см. объяснения в тексте и в табл. 3.

Группа		τ̂_/κ	-ΔĤ°	T_/K	-ΔH ^Δ
	Сорбат	[13]	[13]	по рис. 6	по ур. (18) при <i>Т</i>
I	CsC1	718	155	580	120
I	AgC1	813	173	685	154
11	ZnCl ₂	533	112	450	96
III	LaCl3	1123	230	950	190
III	тьсіз	943	215	812	180*
IA	ZrCl ₄	393	74	373	64
IV	HfCl4	3 73	73	342	60
V	NbC15	333	66	274*	46,7*
VII	MnCl	733	163	650	140

[•] ДН⁰ из табл. 2, ч. I, Т по уравнению (18)

В работе [4] для хлоридов ряда элементов в ТХ опытах по формулам (3), (4), (5) были получены значения \hat{k}_a при одной температуре для каждого элемента; см. табл. 4. По уравнению (17) оцениваем $\Delta \hat{H}_a$. В случае NbCl₅ и HfCl₄ значения $\Delta \hat{H}_a^0$ из табл. 2, ч. I для обоих соединений составляют 0, 8 от $\Delta \hat{H}_a^0$. Пользуясь этим коэффициентом, находим $\Delta \hat{H}_a^0$ и для остальных сорбатов, содержащих In, Th, Ta и Pa. В табл. 4 даны результаты таких расчетов для разных предположительных стехиометрических составов этих сорбатов.

III. О химическом состоянии некоторых элементов в газе

<u>Та, Ра</u>: По имеющимся данным [24] окситрихлориды Та и Ра менее летучи, чем пентахлориды. Значения W в табл. 4 , скорее, указывают на присутствие $TaOCl_3$ и $PaOCl_3$.

Таблица 4 Значения $\Delta H^{\circ}/\kappa \Lambda x \cdot m$ оль $^{-1}$ по результатам анализа данных работы [4].

Групп	па Сорбат	T _{ad} /K [4]	k /cm [4]	$-\Delta H^{0} = -0, 8\Delta \hat{H}^{0}_{a}$ $\Delta \hat{H}^{0}_{a}$ Вычисл. по ур. (17)	ΔН Vap [25] При т.ки	¥•100 m.
111	InCl	603	16,3	92, 2	88,8 ^[33]	-4(-18)
	InCl ₃			84,0	неизвестн	a
III	ThC14	703	150	102	(96.9)**	(-5)
		673	19	89.4		(8)
III	PaC1 ₅	573	78, 3	77,0	63	-24
	PaOC13			80,0	>63	мало [†]
	PaC1 ₄		-	80,0	117	32
	PaC1 3			84,0	180	53
IV	HfCl ₄	463	15, 1	60, 3 [*]		
V	NbC1 ₅	373	15, 3	46, 5		
V	TaCl ₅	393	51,4	52,0	50,2(45	,5)** -4(-14)
	TaOC13			54, 6	(67)** *	18
	TaCl ₄			54,6	83,7	35
	TaCl ₃			57,3	167	66

 ⁻ значения из табл. 2, ч. I.

^{•• -} согласно правилу Трутона-Хильдебранда; см. примечание к табл. 2.

^{••• -} Оценка на основе энтальпий образования твердого и газообразного веществ и энтальпии плавления.

^{+ -} согласно [24] оксихлорид Ра менее летуч, чем РаС15.

<u>In:</u> Известно [25], что газообразный InCl₃ более устойчив по сравнению с InCl. Данные табл. 4 не противоречат его присутствию в ТХ системе [4].

 Z_{Γ} , Nb: Следует отметить результаты опытов с воздухом при глубокой осушке системы в табл.2, ч. IIIб. Здесь значения T_a для Z_{Γ} и Nb значительно выше соответствующих T_a в табл.2, ч. I. Поведение микроколичеств радиоизотопов Z_{Γ} и Nb при разной концентрации O_2 в газе-носителе систематически изучали в работе [26]. Было показано, что высокотемпературный пик Z_{Γ} и Nb с таким же значением T_a , как и в наших опытах, появляется лишь при добавлении заметного количества O_2 . Полностью все атомы Z_{Γ} и Nb переходят в этот пик лишь при концентрации O_2 , соизмеримой с концентрацией $SOC1_2$ (~10 об.%).

Это можно объяснить взаимодействием O_2 с $SOCl_2$, приводящим к уменьшению концентрации модифицирующего поверхность SIO_2 агента. При других агентах, не взаимодействующих с O_2 , добавление O_2 в газ не приводит к снижению переноса $ZrCl_4$ [27], т.е. сам сорбат в хлоридной системе не взаимодействует с кислородом. Кроме того, обращает на себя внимание тот факт, что NbOCl $_3$ весьма летуч, а его низкотемпературный пик на ТХ в наших опытах с воздухом не наблюдался. В то же время даже при малых концентрациях O_2 в работе [28] видели пик летучего оксихлорида W. Создается впечатление, что увеличение T_4 при большой концентрации кислорода может быть связано с другим состоянием (модификацией) поверхности кварца.

Ві: Известно [25], что у Ві более устойчиво окислительное состояние $\mathbf{3}^+$. С этим согласуется близость ΔH° и $\Delta H_{\mathbf{vap}}$ для BiCl_3 в табл. 2, ч. І. Более высокие значения $T_{\mathbf{a}}$ для BiCl_3 и других сорбатов в условиях с недостаточно глубокой очисткой в табл. 2 ч. ІІ можно рассматривать как результат отклонения от модификации новерхности но сравнению с условиями глубокой очистки.

В присутствии воздуха однозначно исключить образование ВіОС1 не представляется возможным из-за недостатка данных о его $\Delta H_{\rm vap}$. Однако близость значений $\Delta H_{\rm a}^{\rm d}$ для ${\rm BiCl}_3$, полученных в обоих опытах, свидетельствует против существования Ві в газовой фазе в виде оксихлорида; сравни табл. 2, ч. І и ч. Піа.

<u>Sb:</u> Сксихлорил SbCCl $_3$ неизвестен, а по данным опытов с воздухом существование в газе SbCCl маловероятно, см. табл.2, ч.111а. Сделать однозначный выбор между SbCl $_3$ и SbCl $_5$ не представляется возможным, но следует учитывать, что газообразный SbCl $_5$ более устойчив, чем SbCl $_3$ {251.

<u>А</u><u>и</u>: В [13] при изучении поведения ли в ТХ хлоридной системе наблюдались две адсорбционные зоны. Мы также обнаружили два пика, причем оба они с увеличением стенени осушки системы смещались в сторону более низких температур, как и у ряда других сорбатов (см. выше). Однако при этом наблюдалось относительное уменьшение доли Аи в высокотемпературном пике с улучшением осушки. Примем, что золото при данном уровне очистки газа в высокотемпературном пике сорбировано в виде Au(OH)Cl₂, а в низкотемпературном – в виде AuCl₃. Отметим высокую энтальнию образования газохбразного AuCl (197кдж-моль⁻¹ [25]), поэтому вряд ли можно ожидать его присутствие в газе. Сделать однозначный вывод о стехиометрии соединений ли не представляется возможным, т.к. нет данных о их $\Delta H_{\text{маль}}$, хотя для ΔCl_3 можно воснользоваться правилом Трутона.

Список литературы

- 1. Merinis J., Boussieres G., Anal.Chim.Acta, 1961, v.25, p. 498.
- 2. Звара И., Чубурков Ю.Т., Цалетка Р., Зварова Т.С., Шалаевский М.Р., Шилов Б.В., Атомн. энергия, 1966. т.2, с.83.
- Звара И., Чубурков Ю.Т., Зварова Т.С., Цалетка Р., Сообщение ОИЯИ, Д6-3281, Дубна, 1967.
- Зварова Т.С., Чубурков Ю.Т., Звара И., Сообщение ОМЯИ, Р6-4130, дубна, 1968.
- Чубурков Ю.Т., Букланов Г.В., Звара И., Сообщение ОИЯИ, Р12-4547, Дубна, 1969.
- Merinis J., Boussieres G., Legoux Y., Radioanal. Letters, 1970,
 p. 255.
- 7. Звара И., Чубурков Ю.Т., Белов В.Э., Радиохимия, 1970, т.12, с.565.
- 8. Айхлер Б., Препринт ОИЯИ, Р12-7767, Дубна, 1974.
- 9. Айхлер Б., Препринт ОИЯИ, Р12-6662, Дубна, 1972.
- 10. АЙХЛЕР Б., ДОМАНОВ В.П., СООбщение ОНЯИ P12-7775, Дубна, 1974.
- 11. Eichler B., Dissertation Dr. sc. nat., Dresden, 1976.
- 12. Fan W., Gaggeler H., Radiochim. Acta, 1982, v. 31, p. 957.
- Ким У Зип, Тимокин С.Н., Звара И., Isotopenpraxis, 1988. v.24, p.30.
- Chuburkov Yu.T., Rossbach H., Yakushev A.B., Nghun Thi Din, Alpert L.K., Zvara I., Heavy Ion Physics, Scientific Report JINR, LNR, 1989-1990, p. 140, Dubna, 1991.
- Chuburkov Yu.T., Zvara I., Heavy Ion Physics, Scientific Report JINR, LNR, 1989-1990, p. 38, Dubna, 1991.
- 16. Де Бур Я., Динамический характер адсорбции. М., ИЛ, 1962, с.273.
- 17. Eichler B., Zvara I., Radiochim. Acta, 1982, v. 30, p. 233.
- 18. Айхлер Б., Звара И., Сообщение ОИЯИ, Р12-8943, Дубна, 1975.
- 19. Ким у Зин, Звара И., Сообщение ОИЯИ, Р6-86-228, Дубна, 1986.
- Звара И., Нам ХО Себ, Чубурков Ю.Т., Сообщение ОИЯИ, Р6-92-314,
 Лубна, 1992.
- Чуйко А.А., Горлов Ю.И., Химия поверхности кремнезема. Строение поверхности, активные центры, механизм сорбции. Киев: Наук. думка, 1990, с.310.
- 22. Chuburkov Yu.T., Nam Ho Seb, Alpert L.K., Heavy Ion Physics,
- Scientific Report JINR, LNR, 1991-1992, p. 180, Dubna, 1993.
- Киселев А.В., Йльин В.И., Инфракрасные спектры поверхностных соединений, М., Наука, 1972, с. 423.
- Pershina V., Sepp W.D., Fricke B., Bastug T., Scietific Report GSI
 92-1, March 1992, p. 326.

- 25. Рузинов Л.П., Гуляницкий Б.С., Равновесные превращения металлургических реакций, М., Металлургия, 1975.
- 26. Доманов В.П., Ким У Зин, Бердоносов С.С., Копылова И.А., лебедев В.Я., ЖНХ, 1990, Т.34, С.20.
- 27. Звара И., Тарасов Л.К., Крживанек М., Су Хун-Гуй, Зварова Т.С., ДАН СССР. 1963. т.148. с. 537.
- 28. Zvara I. et al., Heavy Ion Physics, Scientific Report JINR, LNR, 1991-1993, p. 169, Dubna, 1993.
- 29. Chuburkov Yu.T., Nam Ho Seb., Heavy Ion Physics, Scientific Report JINR, LNR 1991-1992, p. 182, Dubna 1993.
- 30. Нисельсон Л.А., Соколова Т.В., Столяров В.И., ЖФХ, 1967, т.41, с.1654.
- 31. Нисельсоп Л.А., Столяров В.П., Соколова В.П., ЖФХ, 1965, т.39, с.3025.
- 32. Бердоносов С.С., Ланицкий А.В., Баков В.К., ЖНХ,1965, Т.10, с.322.
- А.П.Зефиров., Термодинамические свойства неорганических веществ, М., Атомиздат, 1965.

Рукопись поступния в издательский отдел 23 июня 1993 года.