

P6-93-275

Я.Ваврыщук¹, А.В.Потемпа², К.Я.Громов, В.Г.Калинников, Т.М.Муминов³, Я.А.Сайдимов³, Н.Ю.Котовский, Ж.Сэрээтэр, В.И.Фоминых, М.Б.Юлдашев

БЕТА-РАСПАД ¹⁴⁷gTb. НИЗКОСПИНОВЫЕ СОСТОЯНИЯ В ¹⁴⁷Gd

 ¹Университет М.Кюри-Склодовской, Люблин, Республика Польша
²Институт ядерной физики, Краков, Республика Польша
³НИИПФ Ташкентского государственного университета, Ташкент, Республика Узбекистан

1993

1. ВВЕДЕНИЕ

Изотоп ¹⁴⁷ Тb (основное состояние с $T_{1/2} \approx 1,7$ ч, $I^{\pi} = 1/2^+$ и изомерное с $T_{1/2} = 1,8$ мин, E = 50,6 кэВ, $I^{\pi} = 11/2^-$) впервые идентифицировали Чу и др. [1]. Квантовые характеристики обоих состояний установлены окончательно много позднее, в работах [2,3].

Первый вариант схемы распада ¹⁴⁷gTb, включающий 5 возбужденных состояний дочернего ядра ¹⁴⁷Gd с энергиями 1153,0, 1292,8, 1412,5, 1700,2 и 1847,5 кэВ, предложили Афанасьев и др. [4]. Затем Ньюман и др. [5], исследуя распад обоих изомеров, идентифицировали добавочно состояние с энергией 1759,1 кэВ, заселяемое при β -распаде ^{147g}Tb и, впервые, нижайшие высокоспиновые состояния ¹⁴⁷Gd, связанные с распадом короткоживущего изомера ^{147m}Tb(11/2⁻). Дальнейшие исследования структуры ядра ¹⁴⁷Gd проводились в основном методами ядерных реакций и привели к существенному увеличению информации о его высокоспиновых состояниях [6—12]. В работе [13] уточнена схема распада ^{147m}Tb. Число низкоспиновых состояний, наблюдаемых при β -распаде ^{147g}Tb [14], осталось практически таким же, как в работе [5]. Определены лишь их квантовые характеристики [12,14—16] и сделаны попытки уточнения интенсивности и мультипольностей низкоэнергетических γ -переходов [12,14,15,17], разряжающих эти состояния.

В настоящей работе представлены результаты наших исследований распада ^{147g}Tb, выполненных с целью получения более полных данных о спектре низкоспиновых состояний ¹⁴⁷Gd. Проведены измерения γ -спектра и спектров $\gamma\gamma$ -совпадений в диапазоне энергии 50.+ 3800 кэВ с использованием моноизотопных источников ^{147g}Tb, полученных методом оф-лайн масс-сепарации. Предлагается новая схема β -распада ^{147g}Tb. Обсуждаются основные аспекты структуры низкоспиновых состояний ядра ¹⁴⁷Gd.

2. УСЛОВИЯ И РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТА

2.1. Получение источников ^{147g}Tb

Нуклиды ¹⁴⁷gTb получались в реакции глубокого расщепления ядер Та-мишени, облучаемой в течение 1—2 часов протонами с энергией 680 МэВ на внутреннем пучке фазотрона ОИЯИ в Дубне. Из облученной мишени хроматографическим методом выделялась фракция изотопов Tb, которая затем разделялась по массам на электромагнитном масс-сепараторе комплекса ЯСНАПП-2 [18]. Обработка мишеней начиналась после получасовой выдержки для полного распада ядер ¹⁴⁷Tb, образовавшихся в 1,8-минутном изомерном состоянии. Время масс-сепарации составляло 5—10 мин. Таким образом, получаемые нами источники содержали ядра ^{147g}Tb (в долгоживущем состоянии) с небольшой примесью накапливающихся дочерних ядер ¹⁴⁷Gd ($T_{1/2} \approx 38$ ч). Примеси соседних изотопов Tb с A = 148 и 149 не превышали 2%.

2.2. Измерения у-спектра

Изучаемый спектр γ -лучей, сопровождающих β -распад ¹⁴⁷ gTb, измерялся нами с помощью Ge(Li)-детекторов с объемом 75 и 100 см³ и энергстическим разрешением $\Delta E \approx 2,8$ кэВ при $E_{y} = 1,33$ МэВ. Для уменьшения загрузки детекторов и исключения эффектов суммирования импульсов от высокоэнергетических и низкоэнергетических каскадных у-квантов (и Х-излучения) применялись соответствующие фильтры: 1 мм Cd + 4 мм Pb (полностью абсорбирующий интенсивные у-кванты с энергией 120 и 140 кэВ) при измерении жесткой области (E_v ≥ 0,5 МэВ) и 1 мм Cd — при измерении мягкой области спектра. Расстояние «источник — детектор» составляло 3—5 см. Время измерения одного источника не превышало 3 периода полураспада ¹⁴⁷^gTb. В таких же условиях проведены дополнительные измерения с «подсветкой» у-квантами из распада ¹⁸²Та и ⁵⁶Со, по которым определены энергии 25 наиболее интенсивных, чисто выделяемых одиночных у-пиков, принадлежащих распаду ¹⁴⁷ Tb, которые затем использовались для контроля и внутренней коррекции энергетической шкалы спектрометра при обработке основных спектров, измеренных без «подсветки».

Не исследованная ранее высокоэнергетическая область γ -спектра 147g Tb, измеренная нами с помощью 75 см³ Ge(Li)-детектора, представлена на рис.1. Обращает внимание большая плотность слабых γ -линий по всему спектру, вплоть до энергии $\approx 3,5$ МэВ.

2

Рис.1. Высокознергетическая часть спектра¹⁴⁷в Tb (1,7 часа). Отмечены: ¹⁴⁷Gd, ⁴⁰K, ²⁰⁸Tl-фотопики примесного¹⁴⁷Gd и фоновых ⁴⁰K и ²⁰⁸Tl, (C) — сложные пики, (DE) — пики двойного вылета, (SE) — пики одиночного вылета

Обработка всех спектров проводилась по программе КАТОК [19], приспособленной к РС IBM АТ. В случае сложных γ -линий совместно анализировались спектры $\gamma \gamma$ -совпадений, по которым определялись число компонентов и их относительные интенсивности. Полученные таким образом энергии и относительные интенсивности γ -переходов с $I_{\gamma} \ge 0,06 \% I_{\gamma}$ (1152), приписанных ядру ¹⁴⁷Gd, представлены в табл. 1. Указанные погрешности обеих величин включают в себя, кроме статистической ошибки, ошибку калибровки энергетической шкалы и эффективности спектрометра.

:

Сравнение результатов наших измерений с результатами работ [4,5,14] указывает на то, что имеющиеся до сих пор данные о у-спектре ¹⁴⁷^gTb касались лишь наиболее интенсивных у-квантов: из 130 у-переходов, перечисленных в табл. 1, 115 зарегистрированы впервые.

		······································	
Энергия (кэВ)	Интен- сивность <i>Гу</i>	Совпадает с «окнами» <i>Е</i> у (кэВ)	Размещение Е _і (кэВ)—Е _/ (кэВ)
119,74(3)	7,5(2)	140 348 1152	1412,2 - 1292,4
139,89(3)	34,1(9)	120 348 407 1152	1292,4 — 1152,5
259,6(1)	≤ 0,4	348 1152	1412,2 — 1152,5
287,4(1)	0,19(6)	120140	1699,5 — 1412,2
347,65(3)	2,63(6)	120 140 1152	1759,8 — 1412,2
407,06(3)	1,95(7)	140 1152	1699,5 — 1292,4
434,96(4)	0,68(5)	120 140 1152	1847,1 1412,2
467,4(1)	0,14(7) ^{a)}	140	1759,8 — 1292,4
546,96(3)	2,19(6)	1152	1699,5 — 1152,5
554,65(3)	5,75(13)	140 1152	1847,1 - 1292,4
694,54(3)	41,4(9)	1152	1847,1 1152,5
1025,8(1)	0,32(4)	120	2438,0 1412,2
1080,5(3)	0,06(4)		(2233,2 1152,5)
1117,8(4) ⁶⁾	0,41 (5)	120 140 348 1152	2978,0 — 1759,8 ^{p)}
1134,5(3)	0,07(2)		
1136,1(3)	0,16(2)		(3573,6 - 2438,0)
1152,54(3)	100,0(2,7)	120 140 348 407 694	1152,5 - 0,0
1178,6(4)	0,11(3)	140 407	2878,0 - 1699,5
1199,52(9)	0,68(4)	120 140 1152	2611,7 - 1412,2
1243,5(4) ⁶⁾	0,22(3)	1628	$2871,6 - 1627,9^{p}$
[1		(4051,9 - 2808,3)
1262,8(2)	0,17(3)		

Таблица 1. Гамма-переходы в ¹⁴⁷Gd при β-распаде ¹⁴⁷Tb и сведения о у у-совпадениях

Продолженне табл.1

Энергия (кэВ)	Интен- сивность <i>І</i> у	Совпадает с «окнами» <i>Е</i> у (кэВ)	Размещение <i>Ei</i> (кэВ) <i>— Ef</i> (кэВ)
1285,48(9)	0,36(3)	1152	2438,0 — 1152,5
1 292,53(8)	1,22(6)	120 348 407	1292,4 — 0,0
1310,2(1) ^{a)}	0,41 (6)	1401152	2611,7 — 1292,4
1319,8(3) ^{a)}	0,15(3)	1628	2947,6 — 1627,9
1324,3(2)	0,20(4)	120 140 694 (1152)	2736,4 — 1412,4
			3171,6 — 1847,1
1368,8(2)	0,12(3)	(1628)	(4176,6 — 2808,3)
1396,4(4) ⁶⁾	0,32(4)	120 140 (1152)	2808,3 — 1412,2 ^{p)}
1411,8(3)	0,09(3)		(3171,6 — 1759,8)
1415,6(5)	0,22(5)		3853,2 2438,0
1465,81(8)	0,31 (3)	120 140 1152	2878,0 - 1412,2
1535,38(14)	0,31(3)	120 140 (1152)	2947,6 — 1412,2
1579,3(2)	0,16(3)	120140	2871,6 1292,4
1583,7(2)	0,25(4)	1152	2736,4 — 1152,5
1585,6(1) ^{a)}	0,28(5) ^{a)}	140 (407) 1152	2878,0 - 1292,4
1627,85(7)	3,22(15)	(1948)	1627,9 — 0,0
1655,4(2)	0,18(3)	1152	2808,3 — 1152,5
1707,1(2)	0,28(5)	(140) (1152)	
1709,5(2)	0,14(4) ^{a)}	120 (140)	3121,7 — 1412,2
	0,56(8)	1152	2862,0 - 1152,5
1718,7(3) ⁶⁾	0,19(3)	(1152)	$2871,6 - 1152,5^{p}$
1727,3(5)	0,12(2)	694	3573,6 — 1847,1
1829,5(3)	≈ 0,08 ^{a)}	140	3121,7 — 1292,4
1907,3(5)	0,11(5)		(3319,6 1412,2)
1912,6(4)	0,16(4)	(120)	
1916,3(3)	0,18(4)		
1947,57(7)	2,12(7)	(1628)	1947,6 — 0,0
1969,0(4)	0,12(4)	(120)	
1971,5(6)	0,16(5)	(1152)	(3124,1 - 1152,5)
1986,2(2)	0,13(3)	694	3833,3 - 1847,1
2006,16(8)	0,48(3)	694 1 1 5 2	3853,2 - 1847,1

Продолжение табл. І

Энергия (кэВ)	Интен- сивность І _у	Совпадает с «окнами» Еу (кэВ)	Размещение <i>Еі</i> (кэВ)- <i>Е</i> (кэВ)
2027,2(2)	0,27(3)	1401152	3319,6 - 1292,4
2033,4(1)	0,51(3)	140 1152	3325,8 - 1292,4
2038,2 (2)	0,14(2)		
2044,5(4)	0,08(1)	694	3891,6 — 1847,1
2093,4(4)	0,12(4)	348	3853,2 - 1759,8
2131,8(3)	0,18(3)	(140) 348 1152	3891,7 1750,8
2165,9(4) ^{a)}	0,16(4) ^{a)}	120 140 348	3926,0 — 1759,8
2168(2) ⁶⁾	0,45(5)	1152	3319,6 — 1152,5
2173,4(3)	0,17(2)	1152	3325,8 — 1152,5
2192,6(4)	0,09(2)	(407)	(3891,7 — 1699,5)
2197,0(2)	0,23(3)	1948	4144,4 — 1947,6
2205,47(9)	0,50(3)	1628 (1152)	3833,3 — 1627,9
2226,5(5)	0,08(2)	694	4073,7 — 1847,1
2233,18(9)	0,70(4)		2233,2 - 0,0
2258,3(8)	0,12(3)		
2263,8(3)	0,14(2)	1628	3891,7 — 1627,9
2329,0(1) ⁶⁾	0,12(6)*)	(1152)	
	0,39(7)		2329,0 — 0,0
2354,2(2)	0,10(3)	694	4201,2 1847,1
2374,1(1)	0,35(4)	140 407 1152	4073,7 — 1699,5
2418,5(4)	0,11(3)	(407)	((4118,0) 1699,5)
2421,0(4) ^{a)}	0,42(5) _{a)}	119,7	3833,3 — 1412,2
	0,18(7)	139,91152	3573,6 - 1152,5
2422,8(2)	0,20(6)		3715,2 - 1292,4
2432,5(4)	0,19(3)	ł	(4132,3 - 1699,5)
2438,04(9)	0,96(4)	}	2438,0 - 0,0
2444,8(4)	0,15(3)	(407)	4144,4 — 1699,5 ^{p)}
2481,6(2)	0,32(4)		
2486,2(4)	0,28(5)	-	1
2489,5(4)	0,22(5)	(1152) (140) (348) (1627)	(4249,7 — 1759,8) ((4118,0) — 1627,9)
2560,6(4)	0,30(6)	140	3853,2 - 1292,4

1	1		
Энергия (кэВ)	Интен- сивность / _у	Совпадает с «окнами» Е _У (кэВ)	Размещение <i>Еі</i> (кэВ) <i>— Е</i> ƒ (кэВ)
2562,7(1)	2,04(12)	1152	3715,2 - 1152,5
2580,8(1)	0,18(2)	407	4280,4 — 1699,5
2586,6(2)	0,12(2)	120 140	3998,7 1412,2
2610,0(5)	0,07(2)	348	4369,8 — 1759,8
2639,7(4)	0,11(3)	140	4051,9 1412,2
2642,9(4)	0,22(4)		
2661,5(2)	0,12(2)	120 140 1152	4073,7 - 1412,2
2680,75(8)	3,64(14)	(407) 1152	2833,3 1152,5
2702,0(4)	0,11(3)		
2706,3(2)	0,20(4)	140 1152	3998,7 1292,4
2716,5(3)	0,13(3)		
2719,8(4)	0,08(3)	120 140	4132,3 1412,2
2732,3(1)	0,32(3)	120 140 1152	4144,4 1412,2
2738,9(3)	0,14(3)		(3891,6 1152,5)
2759,48(9)	0,80(7)	1401152	4051,9 - 1292,4
2764,4(1)	0,25(3)	120 140 1152	4176,6 - 1412,2
2775,4(3)	0,12(2)	(1152)	(3926,0 - 1152,5)
2789,08(9)	0,51(4)	120 140 1152	4201,2 1412,2
2815,2(1)	0,45(3)	1152	3967,7 - 1152,5
2837,8(3)	0,22(4)	120 140 1152	4249,7 - 1412,2
2840,1(2)	0,50(7)	120 140	4132,3 - 1292,4
2852,0(1)	0,45(3)	120 140	4144,4 — 1292,4
2865,5(3)	0,06(1)		
2896,6(4) ⁶⁾	0,15(4)		
2908,8(2)	0,25(2)	120140	4201,2 - 1292,4
2921,3(3)	0,11(2)		(4073,7 - 1152,5)
2957,1(2)	0,10(3)	(140)	(4249,7 1292,4)
2961,5(3)	0,06(2)		
2979,5(2)	0,12(2)		(4132,3 - 1152,5)
2991,8(1)	0,36(3)	1152	4144,4 — 1152,5
3007,2(2)	0,34(3)	120 140	4299,7 - 1292,4

Продолжение табл. 1

Продолжение т	габл.1
---------------	--------

Энергия (кэВ)	Интен- сивность <i>І</i> у	Совнадает с «окнами» Е _у (кэВ)	Размещение <i>Еі</i> (кэВ) <i>—Е</i> f (кэВ)
3018,8(3)	0,08(2)	(140)	(4431,4) — 1412,2
3024,1(1)	0,20(4)	1152	4176,6 - 1152,5
3048,6(2)	0,24(2)	1152	4201,2 - 1152,5
3068,4(4)	0,09(2)		
3082,8(3) ⁶⁾	0,13(2)	(1152)	
3119,0(2)	0,26(2)		3119,0 - 0,0
3124,2(3)	0,22(3)		3124,1 - 0,0
3128,3(4)	0,18(3)	1152	4280,4 - 1152,5
3139,0(3)	0,04(1)		(4431,4) - 1292,4
3147,2(2)	0,10(2)	(1152)	(4299,7 - 1152,5)
3167,8(5)	0,09(3)		
3171,8(5)	0,05(2)		
3192,6(2)	0,04(1)		
3217,3(4) ⁶⁾	0,06(2)		(4359,8 - 1152,5)
3267,7(4)	0,08(2)		
3279,3(2)	0,12(2)		(4431,4) 1152,5
3317,7(3)	0,09(2)		

^{а)} Из спектров у у-совпадений.

⁶⁾ В у-спектре — линия сложная.

^{р)} Часть интенсивности у-перехода.

2.3. Измерения уу-совпадений

Спектры $\gamma \gamma$ -совпадений при распаде ¹⁴⁷⁸Tb измерялись с помощью спектрометра трехмерных EET-совпадений, включающего два Ge(Li)-детектора объемом 100 и 75 см³ и систему отбора совпадений, собранную в стандарте КАМАК с PC IBM AT по принципу цифровых окон, устанавливаемых по одному из энергетических и по временному каналам. Так как особое внимание было уделено изучению размещения в схеме возбужденных уровней ¹⁴⁷Gd новых, прежде всего высокоэнергетических, γ -переходов с малой относительной интенсивностью, измерения проводились с энергетическими окнами, установленными на фотопики γ -переходов 1152, 140, 120, 407(546), 347 и 694 кэВ, разряжающих известные уже возбужденные уров-

Рис. 2в. Спектры у у-совпадений с окнами 1627,8 кэВ и 694,5 кэВ

ни ¹⁴⁷Gd (с энергиями 1152, 1292, 1412, 1699, 1759 и 1847 кэВ), и наиболее интенсивных высокоэнергетических неразмещенных переходов 1628 и 1947 кэВ. Каждому из перечисленных окон соответствовало дополнительное «фоновое» окно, размещенное чаще всего непосредственно за данным фотопиком. В ответном канале, с Ge(Li)-детектором, оснащенным фильтром 1 мм Cd + 4 мм Pb + 1 мм Cd, регистрировались спектры совпадений в энергетическом диапазоне 100 + 3300 кэВ. Ширина временного окна и окна случайных совпадекий была ~ 50 нс. Радиоактивный источник помещался между детекторами, расположенными под углом 180°.

Полученные нами в одном из двух независимых экспериментов спектры совпадений (высокоэнергетические их участки) с γ -квантами 1152,5, 139,9, 119,8, 347,6, 694,5 и 1627,9 кэВ показаны на рис.2. В колонке 3 табл. 1 указаны окна, в спектрах которых наблюдены соответствующие γ -переходы. Можно заметить, что большинство даже слабых γ -лучей, зарегистрированных в одиночном γ -спектре, мы смогли идентифицировать и в спектрах совпадений.

3. СХЕМА РАСПАДА 1478ТЬ

На основании результатов наших измерений и имеющихся уже литературных данных о свойствах низкоспиновых состояний ядра ¹⁴⁷Gd можно предложить новую, более полную схему β -распада ¹⁴⁷gTb (табл. 2), которая включает в себя 44 возбужденных уровня ядра ¹⁴⁷Gd и 108 γ -переходов. Размещение последних в предложенной схеме возбужденных уровней ¹⁴⁷Gd указано также в табл.1.

Все возбужденные уровни ¹⁴⁷Gd, расположенные выше уровня 1847,1 кэВ, идентифицированы нами впервые, в большинстве случаев непосредственно на основании γ -переходов, зарегистрированных в совпадениях с γ -переходами, разряжающими хорошо уже известные нижележащие уровни. Итак, уровни с энергиями 2878,0, 3833,3, 3853,2, 3891,6, 4073,7, 4132,3, 4144,4 и 4201,1 кэВ введены по трем и больше совпадающим γ -переходам; уровни 2438,0, 2611,7, 2736,3, 2808,3, 2871,6, 2947,6, 3121,7, 3319,7, 3325,8, 3573,6, 3715,2, 3998,7, 4176,6 и 4299,7 кэВ — по наличию двух таких переходов; уровни 2862,0, 3171,6, 3926,0, 3967,7, 4051,9, 4118,0, 4249,7, 4280,4, 4369,8 и (4431,4) кэВ — по наличию одного совпадающего γ -перехода. В свою очередь, отсутствие в измеренных нами спектрах совпадений достаточно интенсивных для их обнаружения γ -переходов 1947,6, 2233,2, 2329,5, 3119,0 и 3124,2 кэВ являлось основным аргументом в пользу того, что эти переходы идут в основное состояние, т.е. в ¹⁴⁷Gd су-

Уровень	Переходы с уровня: <i>E_y L I_{tot} (ΔI_{tot})^{a)}</i>	$I_{EC+\beta}^+$ (%)	log ft	<i>ا</i> ^π
0,0		≡ 0,00		7/2 ⁻⁶⁾
1152,54(3)	1152,5 E2 100,2(2,7)	6,9(2,4)	6,94	3/2 ⁻⁶⁾
1292,43(4)	1292,5 (E3) 1,22(6), 139,9 E1 38(1)	9,01 (9)	6,79	1/2 ^{+ 6)}
1412,17(5)	259,6 (E1) ≤ 0,4 119,7 M1 (+ E2) 17,1 (5)	8,02(7)	6,80	3/2 ^{+ 6)}
1627,85(8)	1627,85 3,20(14)	1,98(13)	7,35	(5/2)+
1699,49(4)	547,0 E1 2,20(6), 407,1 M1 2,04(7), 287,4 (M1) 0,22(7)	2,97(10)	7,15	3/2 ^{+ 6)}
1759,83(6)	467,4 0,14(7), 347,7 M1 2,80(7)	1,80(9)	7,39	1/2 ^{+ 6)}
1847,08(4)	694,5 M1 41,6(9), 554,6 E1 5,80(13), 435,0 (E1) 0,68(5)	42,4(8)	5,95	1/2 ⁻⁶⁾
1947,57(7)	1947,6 2,12(7)	1,63(7)	7,34	(5/2-)
2233,18(9)	2233,2 0,70(4), (1080,5 0,06(4))	0,69(6)	7,62	(5/2-)
2329,5(5)	2329,0 0,36(7)	0,32(7)	7,91	
2438,03(7)	2438,0 0,96(4), 1285,5 0,36(3), 1025,8 0,32(4)	1,14(7)	7,32	5/2-,3/2-
2611,68(8)	1319,2 0,41 (6) , 1199,5 0,68 (4)	0,98(7)	7,30	
2736,3(2)	1583,7 0,25(4), 1324,3 0,10(5)	0,32(7)	7,73	
2808,3(3)	1655,40,18(3), 1396,40,20(6)	0,15(8)	8,0	
2862,0(3)	1709,5 0,56(8)	0,51(7)	7,48	
2871,6(2)	(1718,7 0,10(5)), 1579,3 0,16(3), 1243,5 0,12(5)	0,34(7)	7,64	
2878,00(9)	1585,6 0,28(5), 1465,8 0,79(5), 1178,6 0,11(3)	1,33(12)	7,06	
	1117,80,3(1)			

Таблица 2. Свойства уровней ¹⁴⁷Gd, заселяемых при распаде ¹⁴⁷Tb. Все энергии даны в кэВ

Продолжение табл.2

Уровень	Переходы с уровня: <i>Е_γ L I_{tot} (ΔI_{tot})^{a)}</i>	<i>IEC+β</i> ⁺ (%)	log ft	j ⁿ
2947,58(12)	1535,4 0,31 (3), 1319,8 0,15 (3)	0,42(4)	7,51	
3119,0(2)	3119,0 0,26(2)	0,23(6)	7,67	
3121,7(2)	1829,5 0,08(4), 1709,5 0,14(4)	0,20(5)	7,81	
3124,2(3)	3124,20,22(3), 1971,50,16(4)	0,34(5)	7,50	
3171,6(4)	1411,8 0,09(3), 1324,3 0,10(5)	0,17(6)	7.79	1
3319,7(3)	2169(2) 0,25(10), 2027,2 0,27(3), (1907,3 0,11(5))	0,57(11)	7,14	
3325,8(2)	2173,40,17(2), 2033,40,51(3)	0,62(4)	7,11	
3573,6(3)	2421,00,18(7), 1727,30,12(2), (1136,10,16(2))	0,42(8)	7,07	
37(5,2(1)	2562,7 2,04(12), 2422,8 0,20(6)	2,02(13)	6,26	1/2, 3/2
3833,30(8)	2680,8 3,64(14), 2421,0 0,42(5), 2205,5 0,50(3)	4,10(14)	5,82	1/2
3853,24(9)	2560,6 0,30(6), 2093,4 0,12(4), 2006,2 0,50(3)	1,01(9)	6,42	
	(1415,60,22(5))		}	
3891,6(2)	(2738,9) 0,14(3), 2263,8 0,13(2), 2192,6 0,09(2)	0,57(9)	6,61	
	2131,8 0,18(3), 2044,5 0,08(1)			
3926,0(4)	(2775,40,12(2)), 2165,90,16(5)	0,25(6)	6,88	
3967,7(1)	2815,20,45(3)	0,41 (3)	6,64	
3998,7(2)	2706,3 0,20(4), 2586,6 0,12(2)	0,29(5)	6,74	
4051,9(1)	2759,50,80(7), 2639,70,11(3), (1243,50,10(4))	0,91 (9)	6,17	1/2, 3/2

. . . **. .**

Уровень	Переходы с уровня: <i>Е_у L I_{tot} (ΔI_{tot})^{a)}</i>	$I_{EC+\beta}^{+}(\%)$	log ft	I ⁿ
4073,7(1)	(2921,30,11(2)), 2661,50,12(2), 2374,10,35(4)	0,55(5)	6,35	
	2226,5 0,08(2)			
4118,0(4)	(2489,5 0,10(5)), 2418,5 0,12(3)	0,20(6)	6,70	
4132,3(1)	(2979,5 0,12(2)), 2840,1 0,50(7), 2719,8 0,08(3)	0,80(9)	6,08	1/2, 1/3
	(2432,5 0,19(3))			
4144,4(1)	2991,80,36(3), 2852,00,45(3), 2732,30,32(3)	1,31(9)	5,84	1/2
	(2444,8 0,10(3)), 2197,0 0,23(3)	ł		
4176,6(1)	3024,1 0,29(4), 2764,4 0,25(3), (1368,8 0,12(3))	0,60(6)	6,11	1/2, 3/2
4201,2(1)	3048,6 0,24(2), 2908,8 0,23(2), 2789,1 0,51(4)	1,05(6)	5,80	1/2
	2354,2 0,10(3), (2253,7 0,08(2))			
4249,7(2)	(2957,1 0,10(3)), 2837,8 0,22(4), 2489,5 0,10(5)	0,38(7)	6,13	1/2, 3/2
4280,4(1)	3128,3 0,18(3), 2580,8 0,18(2)	0,33(4)	6,09	1/2, 3/2
4299,7(2)	3147,2 0,10(2), 3007,2 0,34(3)	0,40(4)	5,95	1/2
4369,8(5)	(3217,30,06(2)), 2610,00,07(2)	0,12(3)	6,21	1/2, 3/2
(4431,4(3))	(3279,30,12(2)), (3139,00,04(1)), (3018,80,08(2))	0,22(3)	5,61	1/2

Продолжение табл.2

а) Мультипольности переходов из [12,15,17]. Переходы, размещенные в схеме уровней только по суммам энергий, взяты в скобки. ⁶⁾Спины установлены в [12,14,15].

÷

15

ществуют возбужденные состояния с такой же энергией. В случае уровня 1947,6 кэВ найдены также заселяющие его у-переходы. Наиболее интенсивные из них зарегистрированы непосредственно в совпадениях с у-квантами 1947,6 кэВ.

Ниже уровня 1847,1 кэВ введен только один новый уровень с энергией 1627,8 кэВ. Основанием для этого являлись интенсивный γ -переход 1627,8 кэВ и ряд совпадающих с ним слабых γ -переходов (рис.2в), разряжающих установленные по другим совпадениям вышележащие состояния. Следует отметить, что рансе авторы работы [12], исследуя возбуждения ¹⁴⁷Gd (с низкими и промежуточными значениями спина) в реакциях (³He3*n*) и (α , *n*), обнаружили состояние с энергией 1628,3 кэВ, которому приписали характеристики $I^{\pi} = 7/2^{+}$.

Число неразмещенных *у*-переходов в предлагаемой нами схеме распада ^{147g}Tb составляет около 18% от числа всех *у*-переходов, перечисленных в табл.1, а их суммарная интенсивность — менее 4% интенсивности *у*-перехода 1152,5 кэВ (принятой в табл.1 как 100 отн. ед.). При этом на основании анализа интегральных спектров совпадений можно предположить, что наиболее интенсивные из этих переходов с суммарной интенсивностью 1,8 отн. ед. идут непосредственно в основное состояние ¹⁴⁷Gd. Суммируя полные интенсивности переходов, идущих в основное состояние (размещенных в обсуждаемой схеме распада), с учетом последнего замечания, находим значение 111(3) отн. ед., которое с точностью до маловероятного β -распада ^{147g}Tb(1/2)⁺ в основное состояние ¹⁴⁷Gd(7/2⁻) соответствует полной интенсивности ($EC + \beta^+$)-распадов ^{147g}Tb. Ее процентное распределение по возбужденным состояниям ¹⁴⁷Gd и соответствующие значения log *ft* указаны в табл.2. При расчете log *ft* принято: $T_{1/2}(^{147g}Tb) = 1,67(9)$ ч (среднее значение данных из таблиц [20]) и $Q_{EC}(^{147g}Tb) = 4610(16)$ кэВ [21].

Значения спина и четность ранее известных, низковозбужденных состояний ядра ¹⁴⁷Gd установлены в [12,14—16]. Спин основного состояния измерен в [22]. Анализ значений I^{π} новых состояний, введенных в настоящей работе, затруднен из-за отсутствия данных о мультипольностях переходов, разряжающих эти состояния. Имея в виду $I^{\pi} = 1/2^+$ основного состояния материнского ядра ^{147g}Tb, следует предположить, что в большинстве это состояния с $I \leq 5/2$. Вероятное значение I = 1/2 можно предложить лишь состояниям 3833,3, 4144,4, 4201,2, 4299,7, (4431,4) кэB, для которых получены самые низкие значения log $ft \approx 5, 6 + 5,9$. Кроме того, для некото-

рых уровней набор вероятных значений I^{π} можно ограничить (табл.2), учитывая наряду со значением log *ft* способ разрядки и заселения *γ*-переходами. В частности, на основании значения log *ft* = 7,4, существования *γ*-перехода в основное состояние, ряда заселяющих *γ*-переходов с вышележащих уровней с исключительно высокими значениями log *ft*, отсутствия *γ*-переходов на нижележащие низкоспиновые состояния 1292 кэВ (1/2⁺) и 1412 кэВ (3/2⁺) для уровня 1627,9 кэВ можно предложить, как наиболее вероятное, значение спина 5/2. Данный вывод указывает на то, что это состояние и состояние 1628,3 кэВ (7/2⁺), наблюдаемое в работах [12,13], — два разных состояния ¹⁴⁷Gd, возможно, оба члены мультиплета ($v f_{7/2} \times 3^{-}$) с $I^{\pi} = 5/2^{+}$ и 7/2⁺ (см. ниже).

4. АСПЕКТЫ СТРУКТУРЫ НИЗКОСПИНОВЫХ СОСТОЯНИЙ ЯДРА ¹⁴⁷Gd

Рассматривая ядро ¹⁴⁷Gd как систему, состоящую из сильно связанного четно-четного остова (магического ядра $^{146}_{64}$ Gd₈₂) и одного валентного нейтрона, в рамках сферической оболочечной модели ядра можно предположить, что спектр его возбужденных состояний в диапазоне энергий, доступных бета-распаду ¹⁴⁷Tb (E < 4,5 МэВ), определяют:

— однонейтронные возбуждения оболочки 82 < N ≤ 126;

— нейтронно-дырочные возбуждения с образованием внешней пары нейтронов в состоянии с $j^{\pi} = 0^+$, т.е. двухчастично-однодырочные (2*p*1*h*) возбуждения с дыркой в нейтронной оболочке $50 < N \le 82$;

 коллективные, квазичастично-фононные возбуждения, возникающие при взаимодействии обоих типов одночастичных возбуждений с нижайшими возбуждениями остова;

- трехквазичастичные, в том числе нейтронно-протонные возбуждения.

На основе анализа вероятностей β -переходов из обоих изомерных состояний ¹⁴⁷ Tb (одночастичные состояния $\pi s_{1/2}$ и $\pi h_{11/2}$) и систематики одночастичных состояний в нечетных изотонах с N = 83 и Z < 64, для которых имеются данные из реакций однонуклонной передачи, авторы работ [12,14,15] интерпретируют в ядре ¹⁴⁷Gd как одночастичные (с возможной примесью соответствующих квазичастично-фононных конфигураций) состояния с энергией 0,0 кэВ ($2f_{7/2}$), 1152,5 кэВ ($3p_{3/2}$), 1387,3 кэВ ($1h_{9/2}$) и 1847,1 кэВ ($3p_{1/2}$) (рис.3). Одночастичные возбуждения $\nu 2f_{5/2}$ и $\nu 1i_{13/2}$,

Рис.3. Одночастичные состояния в области N = 82 и Z = 64

комплектующие полностью сферическую оболочку $82 < N \le 126$, в ядре ¹⁴⁷Gd до сих пор не были идентифицированы. По данным работы [23], полученным из анализа энергии двухчастичных возбужденных состояний типа $(v f_{7/2} i_{13/2})_{10}^{-6}$ в четно-четных изотонах с N = 84 и трехчастичных состояний типа $(v f_{7/2} i_{13/2})_{25/2}^{+}$ в нечетных изотонах с N = 85, энергия невозмущенного одночастичного состояния $v i_{13/2}$ в ¹⁴⁷Gd должна составлять 2,1(1) МэВ. Учет отталкивающего взаимодействия с близким по энергии состоянием $(v f_{7/2} \times 3^{-})_{13/2}^{+}$ приводит к сильному смешиванию обеих конфигураций [24—26] и к существенному сдвигу их энергии. По оценкам авторов работ [16,23], в ядре ¹⁴⁷Gd энергия состояния с главным одночастичным компонентом $v i_{13/2}$ составляет около 2,5 МэВ. Возмущенное состояние $(v f_{7/2} \times 3^{-})_{13/2}^{+}$ наблюдается экспериментально при энергии 997,2 кэВ [5].

Рис.4. Систематика состояний отрицательной четности в изотонах с N=83 и четным Z

Реальная структура возбуждения $\nu f_{5/2}$ в ядре ¹⁴⁷Gd, по-видимому, тоже сложная, так как в его близком соседстве находится квазичастичнофононное состояние ($\nu f_{7/2} \times 2^+$)_{5/2}⁻. Оба состояния ожидаются нижайшими с $I^{\pi} = 5/2^-$ и, очевидно, связаны с основным состоянием $\nu f_{7/2}$ интенсивными γ -переходами. Хорошие кандидаты для такой интерпретации — установленные нами новые уровни с энергиями 1947,6 и 2233,2 кэВ (или 2329,5 кэВ). На это указывают их энергии, вероятные значения спинов (5/2, 3/2), способ разрядки и представленная на рис.4 систематика состояний отрицательной четности, интерпретированных как одночастичные, и двух нижайших состояний с $I^{\pi} = 5/2^-$ в нечетных изотонах с N = 83. Отметим, что согласно расчетам спектра одночастичных состояний с потенциалом Саксона — Вудса энергия состояния $\nu 2f_{5/2}$ на 100—150 кэВ больше энергии состояния $\nu p_{1/2}$ 1847,1 кэВ, т.е. близка к энергии уровня 1947,6 кэВ.

Решить однозначно проблему идентификации в ядре ¹⁴⁷Gd ожидаемых 1/2р-возбуждений в настоящее время еще сложнее. Авторы работ [12.14]. сравнивая энергетические интервалы между однодырочными состояниями $v s_{1/2}^{-1}$ (0,0 кэВ) и $v d_{3/2}^{-1}$ (27 кэВ) и 1*p*2*h*-состоянием $v f_{7/2} j_0^{-2}$ (1273 кэВ) в ядре ¹⁴⁵Gd [27] и нижайшими состояниями в ядре ¹⁴⁷Gd, приходят к выводу, что в ядре ¹⁴⁷Gd возбужденные состояния положительной четности с энергиями 1292,4 кэВ (1/2⁺) и 1412,2 кэВ (3/2⁺) следует рассматривать как нижайшие 1h2p-возбуждения типа $v s_{1/2}^{-1} j_0^2$ и $v d_{3/2}^{-1} j_0^2$ соответственно. Результаты недавней работы [16], в которой впервые измерены спектроскопические факторы dt-реакции для четырех нижайших уровней ¹⁴⁷Gd с $I^{\pi} = 1/2^{+}$ и $3/2^{+}$, противоречат этим выводам и указывают однозначно на то, что уровни 1292,4 и 1412,2 кэВ следует интерпретировать как члены мультиплета (v f_{7/2} ×3⁻⁾ с небольшой примесью обсуждаемых дырочных конфигураций $v s_{1/2}^{-1} j_0^2$ и $v d_{3/2}^{-1} j_0^2$ и что с последними следует связывать вышележащие состояния 1759,8 кэВ (1/2⁺) и 1699,5 кэВ (3/2⁺) соответственно. Новым аргументом, свидетельствующим в пользу приписания главного компонента $(\nu f_{7/2} \times 3^{-})_{1/2}$ + состоянию 1292,4 кэВ, является обнаруженный в настоящей работе относительно интенсивный (ЕЗ) у-переход, разряжающий этот уровень непосредственно в основное состояние.

Более глубокие 1*h*2*p*-возбуждения $v h_{11/2}^{-1} j_0^2$, $v d_{5/2}^{-1} j_0^2$ и $v g_{7/2}^{-1} j_0^2$ оболочки 50 < N < 82 в ядре ¹⁴⁷Gd неизвестны. Оценки их энергий, основанные на спектре дырочных возбуждений, наблюдаемых в ядре ¹⁴⁵Gd [14], приводят к значениям 2,41, 2,68 и 3,08 МэВ соответственно (принято $E_{S_{1/2}^{-1} 0}^{-1} =$ = 1,66 МэВ [16]). Исходя из этих оценок, можно пытаться интерпретиро-

вать состояние с энергией 2386 кэВ (13/2⁻, 11/2⁻), наблюдаемое в работах [12,13], как $\nu h_{11/2}^{-1} j_0^2$.

Взаимодействие нижайшего октупольного возбуждения остова (E = 1579 кэВ) с одночастичными состояниями 83-го нейтрона (из оболочки 82 < N < 126) генерирует в энергетическом спектре ядра ¹⁴⁷Gd 26 возбужденных состояний положительной четности с I < 15/2 и E < 3,6 МэВ. Среди них 11 низкоспиновых состояний с $I^{\pi} < 5/2^{+}$. Поиски состояний нижайшего мультиплета ($\nu f_{7/2} \times 3^{-}$) $_{I^{\pi}=1/2^{+}-13/2^{+}}$ проводились авторами многих работ. После интерпретации состояний с $I^{\pi} = 1/2^{+}$ (1292,4 кэВ) и $3/2^{+}$ (1412,2 кэВ) как членов этого мультиплета стали известными [16] все из них кроме одного, с $I^{\pi} = 5/2^{+}$. С большой вероятностью можно предполагать, что этим состоянием является найденное нами состояние 1627,9 кэВ. Основанием для этого является не только его энергия и вероятное значение спина I = 5/2, но и разрядка уровня только одним γ -переходом в основное состояние.

Структура состояний положительной четности других частично-октупольных конфигураций в ядре ¹⁴⁷Gd, по всей видимости, сложная. Их энергии ожидаются выше 2,3 МэВ, где могут находиться многие примешивающиеся состояния (этой же четности) других конфигураций, в том числе мультиплетов ($v s_{1/2}^{-1} \times 2^+$), ($v d_{3/2}^{-1} \times 2^+$) и ($v f_{7/2} \times 5^-$). Высокоспиновый член последнего мультиплета с $I^{\pi} = 17/2^+$ принадлежит угаst-полосе ¹⁴⁷Gd и наблюдается при энергии возбуждения 2488 кэВ.

Нижайшие частично-фононные состояния отрицательной четности в ядре ¹⁴⁷Gd связаны с квадрупольным возбуждением остова (E_{2^+} = = 1972 кэВ) и принадлежат мультиплету ($\nu f_{7/2} \times 2^+$) $_{I^{\pi}=3/2^--11/2^-}$. Взаимодействие с нижерасположенными одночастичными состояниями отрицательной четности приводит, вероятно, к модификации их структуры и сдвигам энергии. Первые, высокоспиновые члены этого мультиплета, с $I^{\pi} = 11/2^{-}$ (1944 кэВ) и 9/2⁻ (1798 кэВ) со значительной примесью одночастичного компонента v ho/2 идентифицированы в работах [12,13]. Низкоспиновые члены могут находиться среди наблюдаемых нами новых уровней, в диапазоне энергии 1,9 + 2,5 МэВ. Обсуждая одночастичные возбуждения, мы уже предполагали, что состояние $(v f_{7/2} \times 2^+)_{5/2^-}$, сильно смешанное с v f_{5/2}, можно идентифицировать с уровнем 2233,2 кэВ или 2329,0 кэВ (для обоих допускаются $I^{\pi} = 5/2^{-}$ и $3/2^{-}$). Следующий возбужденный уровень с энергией 2438,0 кэВ (3/2⁻, 5/2⁻) можно тогда рассматривать как возбуждение типа $(v f_{7/2} \times 2^+)_{3/2^-}$, хотя нельзя исключить возможность приписания этой структуры и уровню 2233,2 кэВ.

Классифицируя состояния ¹⁴⁷Gd, расположенные в области 2,6 + 2,9 МэВ, следует учитывать, что в этой области могут находиться также верхние состояния мультиплета ($\nu d_{3/2}^{-1} \times 3^{-}$), нижайшие состояния мультиплетов ($\nu f_{7/2} \times 4^{+}$), ($\nu p_{3/2} \times 3^{-}$) и двухфононного ($\nu f_{7/2} \times 3^{-}$)2.

В энергетическом диапазоне E = 3,0 + 4,4 МэВ исследуемого спектра низкоспиновых состояний ядра ¹⁴⁷Gd мы нашли 26 уровней, подавляющее большинство которых группируется выше 3,8 МэВ и отличается значениями log ft = 5,8 + 6,6 — явно меньшими, чем значения log ft, полученные для большинства нижележащих состояний. Для простого объяснения этого факта необходимо предположить, что основные конфигурации этой группы возбуждений другие, чем квазичастично-фононные, для которых наблюдаемые log ft > 6,8. Очевидно, следует в первую очередь рассматривать трехквазичастичные конфигурации и среди них те, которые позволяют ядру ^{147g}Tb, реализовать быстрые (разрешенные) β -переходы, такие как GT-переходы, связанные с распадом протонной пары типа $(\pi h_{11/2}^2)_0^+ \rightarrow$ $\rightarrow (\pi h_{11/2} \nu h_{9/2})_1^+$ {13]. Для такого анализа требуются и более точные измерения квантовых характеристик обсуждаемых состояний, и детальные теоретические расчеты, вероятно, сильно смешанных трехквазичастичных конфигураций как в ядре ¹⁴⁷Gd, так и в ядре ¹⁴⁷Tb.

5. ЗАКЛЮЧЕНИЕ

При подготовке этой статьи к печати нам стали известны новые результаты исследований распада ¹⁴⁷Tb, полученные группой П.Кляйнхайнца [27]. Сравнивая результаты обеих работ, можно прийти к выводу, что:

— наши измерения выполнены в лучших условиях и с более высокой статистической точностью;

- предложенная нами схема распада ¹⁴⁷ Tb более полная, чем в [27];

— найденные в [27] возбужденные уровни ¹⁴⁷Gd с энергиями 4081 и 3621 кэВ не существуют (γ -переход 2788,6 кэВ идет на уровень 1412,2 кэВ, а γ -переход 2329,0 кэВ не обнаруживается в совпадениях с переходом 140 кэВ);

— фотопик 1970 кэВ сложный (1969,0 + 1971,5). Оснований для введения уровня с энергией 1970 кэВ мы не находим;

— другие состояния ¹⁴⁷Gd, найденные в [27], и основные выводы об их структуре находятся в полном согласии с нашими результатами.

Авторы выражают свою глубокую признательность проф. В.Каминскому за плодотворные обсуждения результатов исследований и доктору К.Зуберу за предоставление работы [27] и полезные дискуссии. Работа выполнена при частичной финансовой поддержке Российского фонда фундаментальных исследований (код проекта 93-02-3756) и Народной академии культуры и общечеловеческих ценностей.

ЛИТЕРАТУРА

- Chu Y.Y., Franz E.M., Friedlander G. Phys. Rev. Lett., 1969, A21, p.23; Phys. Rev., 1969, 187, p.1529.
- 2. Nagai Y. et al. Phys. Rev. Lett., 1981, 47, p.1259.
- 3. Liang C.F. et al. Phys. Lett., 1987, B191, p.245.
- 4. Афанасьев В.П. и др. Известия АН СССР, сер.физ., 1971, 35, с.659.
- 5. Newman E. et al. Phys. Rev., 1974, C9, p.674; Phys.Rev., 1975, C12, p.346.
- 6. Kownacki J. et al. Phys. Scr., 1972, 5, p.66.
- 7. Haratym Z. et al. Nucl. Phys., 1977, A276, p.209.
- 8. Kleinheinz P. et al. Z. Phys., 1979, A290, p.279.
- 9. Broda R. et al. Z. Phys., 1982, A305, p.281.
- 10. Bakander O. et al. Nucl. Phys., 1982, A389, p.93.
- 11. Haas B. et al. Nucl. Phys., 1981, A362, p.254.
- 12. Komppa T. et al. Z. Phys., 1983, A314, p.33.
- 13. Piiparinen H. et al. Annual Report 1984, KFA Julich, ISSN 0170-89-37, 1985, p.110.
- 14. Styczen J. et al. Proc. 4th Int. Conf. on Nuclei Far from Stability, Helsinger, 1981, CERN 81-09, p.548.
- 15. Каминский В.А., Ваврыщук Я. Тезисы докладов 30 Совещания по ядерной спектроскопии и структуре атомного ядра. Л.: Наука, 1980, с. 161.
- 16. Kader H. et al. Phys. Lett., 1989, B227, p.325.
- 17. Вылов Ц. и др. Тезисы докладов 22 Совещания по ядерной спектроскопии и структуре атомного ядра, часть І. Л.: Наука, 1972, с.107.
- 18. Kalinnikov V.G. et al. Nucl. Inst. and Methods, 1992, B70, p.62.
- 19. Гаджоков В. ПТЭ, 1970, 5, с.82.

:

The state of the s

224 11

- 20. Table of Isotopes, Lederer C.M., Shirley V.S. (eds). 7th Edn, Wiley, New York, 1978.
- 21. Keller H. et al. Z. Phys., 1991, A340, p.363.
- 22. Ekstrom C. et al. Phys. Scripta, 1972, 6, p.181.
- 23. Piiparinen M. et al. Z. Phys., 1992, A337, p.387.
- 24. Hausser O. et al. Nucl. Phys., 1982, A379, p.287.
- 25. Kleinheinz P. et al. Phys. Rev. Lett., 1982, 48, p.1457,
- 26. Dafni E. et al. Phys. Lett., 1987, B199, p.26.
- 27. Manegazzo R. et al. Ann. Rep., KFA Julich, 1990, p.20.

Рукопись поступила в издательский отдел 19 июля 1993 года.