91-214

СООБЩЕНИЯ Объединенного института ядерных исследований дубна

P6-91-214

О.Д.Маслов, К.А.Гаврилов

КОНЦЕНТРИРОВАНИЕ ЛЕГКИХ АНАЛОГОВ СВЕРХТЯЖЕЛЫХ ЭЛЕМЕНТОВ ПРИ СЖИГАНИИ УГЛЕЙ

Маслов О.Д., Гаврилов К.А. Концентрирование легких аналогов сверхтяжелых элементов при сжигании углей

Описаны результаты изучения распределения легких аналогов сверхтяжелых элементов по технологическим фракциям при сжигании бурых углей и переработке зольных уносов с целью получения образцов малой массы для регистрации осколков спонтанного деления нуклидов с помощью низкофоновых диэлектрических детекторов. Определен верхний предел содержания летучих СТЭ в бурых углях, равный 10⁻¹⁶ г/г.

Работа выполнена в Лаборатории ядерных реакций ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубна 1991

Перевод авторов

Maslov O.D., Gavrilov K.A. Concentration of Light Homologs of Superheavy Elements in Coal Combustion

The results of the studying of the distribution of light homologs of the superheavy elements on the technological fractions in brown coal combustion and treatment fly ash with the aim for obtaining of the small mass samples for registration of spontaneously fissioning nuclei with the help of the low-back-ground dielectric of the lawsan (PETF) track detectors are described. The upper content limit for the superheavy elements in brown coal was set as 10^{-16} g/g.

The investigation has been performed at the Laboratory of Nuclear Reaction, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna 1991

P6-91-214

Угли являются концентраторами редких и рассеянных элементов, таких как германий, ванадий, молибден, уран и др. Накопление микроэлементов происходит в результате длительного функционирования угленосных отложений в качестве сорбционных, восстановительных, биогенных и термодинамических барьеров [1]. Можно предположить, что в углях некоторых месторождений могли бы концентрироваться и сверхтяжелые элементы (СТЭ) с Z ≥107,по поиску которых в природных объектах выполнено большое число экспериментальных работ [см. обзоры 2-4].

При энергетическом сжигании углей микроэлементы в зависимости от их физико-химических свойств распределяются между шлаком, зольными уносами и газовой фазой. Можно ожидать повышенную летучесть некоторых СТЭ в восстановительных и окислительных условиях, поэтому они могли бы концентрироваться в зольных уносах [5-7].

В работе [8] зольные уносы из рукавных фильтров после сжигания 116 кг бурых углей и углистых пород анализировали с помощью счетчиков осколков деления [9] и мгновенных нейтронов деления [10]. Верхний предел возможного содержания СТЭ в углях оказался равным 10⁻¹⁴г/г. Такой же предел содержания СТЭ был получен и при анализе зольных уносов, собранных после сжигания 600 кг углей, взятых из различных месторождений [11].

Дальнейшее повышение степени концентрирования микроэлементов и очистки от примесей урана, чтобы понизить предел обнаружения спонтанно делящихся элементов, возможно, при переработке зольных уносов.

В настоящей работе приведены результаты изучения распределения легких аналогов СТЭ по технологическим фракциям при сжигании бурых углей и переработке зольных уносов с целью

Объслененный институт алемных несоваования БИБЛИОТЕНА

получения образцов малой массы для регистрации осколков спонтанного деления нуклидов с помощью низкофоновых диэлектрических детекторов.

Установка для сжигания углей

Сжигание углей производили на установке, созданной на базе бытового аппарата, снабженной приспособлениями для улавливания зольных уносов. Схема установки представлена на рис.1.

Рис. 1. Схема установки для сжигания углей. 1,15 - вентиляторы, 2 - питаз – бункер, 4 - колосниковая тель. 6 - шибер, решетка, 5 - радиатор, 7, 8 - пламегаситель, 9 - задвижка, 10 - труба, 11 - фильтродержатель, 12 - ФИЛЬТР, 13 - термопара, 14 -измерение расхода газа, 16 - подача воды для охлаждения, 17 - котел, 18 - зольник, 19 - сборники зольных уносов, 20 - коллектор для подачи воздуха, 21 - шурующая планка, 22 -топочное пространство.

поступали в пламегаситель (7,8), где частично очищались от крупных частиц зольного уноса, и далее – через охлаждаемую

Производительность аппарата по топливу

составляла 1-4 кг/час. Пробы углей массой 10 кг загружали в бункер (3), из которого их непрерывно подавали через питатель (2) на колосниковую решетку (4) топки. Образующийся шлак удаляли шурующей планкой (21). Режим горения регулировали подачей воздуха вентилятором (1) в топочное пространство (22). Расход воздуха составлял 50 м³/час. Газы из топочного пространства проходили через сборники зольных уносов (19), охлаждались радиаторами (5), частично очищались от

трубу (10) и волокнистый фильтр (12) с помощью вентилятора (15) выбрасывали в атмосферу. Температура в зоне горения угля была около 1160^OC. Температуру на сборниках зольных уносов поддерживали равной 120^OC, а перед волокнистым фильтром - не более 80-90^OC. После сжигания каждой порции угля установку разбирали, очищали поверхность всех частей газового тракта от осажденных зольных уносов и их образцы анализировали.

Установка для сжигания зольных уносов

Установка для сжигания зольных уносов представлена на рис.2. Образец (3) массой 10-15 г помещали в кварцевую трубку (2) длиной 30 см и внутренним диаметром 20 мм. Воздух в зону нагревания подавали мембранным насосом (10) с расходом 10 мл/мин через трубку (4). Образец нагревали с помощью трубчатой электропечи (1) до 1000⁰С. Летучие фракции собирали на сборнике, изготовленном из нержавеющей стали (5) и располо-

Рис. 2. Схема установки для сжигания зольных уносов. 1 – трубчатая электропечь, 2 – кварцевая трубка, 3 – образец, 4 – кварцевая трубка для подачи воздуха, 5 – сборник из нержаверщей стали, 6 – сборник из золотой фольги, 7 – ловушка для сбора конденсата, 8 – ловушка с раствором 6н NaOH, 9 – угольный фильтр, 10 – мембранный насос.

женном на температурградиенте от 8000 ном 20⁰С. На выходе ДО газов из колонки помещали сборник из золотой фольги (6). Затем газы пропускали через ловушку (7) для сбора конденсата и ловушку (8), заполненную раствором 6н NaOH для улавливания возможных летучих соединений. На выходе газов из колон-КИ был расположен угольный фильтр (9). После каждого опыта установку разбирали,

собирали фракции, осажденные при различных температурах. Конденсат и щелочной раствор объединяли, вносили 25 мг хлористого железа в качестве носителя и осаждали щелочью гидроокислы железа. Осадок отделяли, а из раствора, в присутствии 25 мг хлористой меди, осаждали сульфиды элементов сульфидом натрия при pH =2.

Выщелачивание микроэлементов из зольных уносов

Схема переработки зольных уносов выщелачиванием показана на рис.3. Образец обрабатывали раствором 6н HCl при т:ж = 1:1. После трехсуточного выдерживания от 20⁰ до 90⁰C

раствор декантировали, осадок промывали дистиллированной водой и из полученных растворов последовательно осаждали гидроокислы железа, металлы и окислы металлов электролизом раствора в восстановительных условиях, сульфиды элементов.

Рис. 3. Схема переработки зольных уносов.

Радиоактивные отметчики, используемые в работе

Изучение распределения элементов по газовому тракту установок и при химической переработке образцов проводили с помощью их радиоактивных изотопов. В качестве отметчиков применяли 74 As, 126 I, 186 Re, 191 Os, 197 Hg, 203 Pb, которые получали облучением элементов или их соединений тормозным излучением микротрона ЛЯР МТ-22. Раствором отметчика смачивали навеску угля массой 1 кг, а затем ее равномерно распределяли в 10 кг образца. Измерение активности производили сцинтилляционным детектором. С целью упрощения процесса измерения радиоактивности в каждый сжигаемый образец угля вносили только один радиоактивный отметчик.

Методы анализа микроэлементов

Исходные угли и технологические фракции, полученные после сжигания углей, анализировали на содержание микроэлементов с применением рентгенофлюоресцентного метода, гамма – и нейтронно-активационного анализов на микротроне МТ – 22 [12].

Содержание урана определяли по трековой методике [13]. Образец толщиной 5 мг/см² и площадью 20 см² помещали между двумя твердотельными трековыми детекторами из лавсана (полиэтилентерефталата) толщиной 175 мкм и облучали вместе с эталоном в течение 1 часа в графитовой призме микротрона при токе электронов, равном 15 мкА. После облучения скрытые следы от осколков вынужденного деления урана проявляли электрохимическим травлением (см. ниже). Определение содержания урана проводили методом сравнения или добавок. Точность определения урана равнялась 10%. Предел обнаружения урана соответствовал 10⁻⁸г/г.

Детектирование спонтанного деления

Регистрацию спонтанно делящихся нуклидов в образцах производили также с помощью твердотельных детекторов (ТТД). Исследуемое вещество измельчали и слоем 1 мг/см² равномерно распределяли по площади 150 см² лавсанового детектора толщиной 175 мкм. Вещество закрепляли спиртовым раствором клея БФ-2. Сверху помещали другой детектор и жестко фиксировали. После многосуточной экспозиции детекторы разъединяли, очищали от вещества образца, промывали и проводили проявление следов от осколков спонтанного деления электрохимическим травлением в растворе 6н NaOH при напряжении 10 кВ/см и частоте 5 кГц [14]. Идентификацию треков, относящихся к осколкам деления,

проводили по двум детекторам. Только если координаты треков совпадали, при совмещении обоих детекторов по предварительно нанесенным меткам, то их определяли как следы от осколков деления.

Эффективность регистрации треков от осколков деления в рассматриваемой геометрии для лавсановых детекторов при их электрохимическом травлении определяли с использованием вещества с содержанием урана 5.10⁻⁶ г/г. Детекторы с образцами вещества облучали нейтронами в графитовой призме микротрона в течение 2 часов. При толщине слоя образца 1 мг/см² треки от осколков вынужденного деления урана проявляются с эффективностью 76% на одном из детекторов и с эффективностью 48% для треков, совпадающих друг с другом при совмещении обоих детекторов [14, 15].

Результаты

В таблице 1 представлены коэффициенты концентрирования (К), равные отношению концентрации элемента в зольном уносе из волокнистого фильтра к его содержанию в угле. Значения К усреднены по ряду опытов [16]. Если К > 1, то элемент концентрируется в летучей фракции, а при К < 1 - в шлаке.

Таблица 1

коэффициенты концентрирования элементов

Элемент	K	Элемент	K K	,
Цинк	35	Рений	190	
Галлий	25	Осмий	125	
Мышьяк	40	Ртуть	[′] 230	£
Селен	20	Таллий	15	
Молибден	30	Свинец	35	
Кадмий	16	Уран	1,5	-
Иод	18			

Коэффициенты концентрирования кобальта, никеля, меди, цезия и бария равны 2, а церия, самария и циркония – 0,1-0,2. Суммарная масса зольных уносов на волокнистом фильтре после сжигания 100 кг углей из различных месторождений составила 250 г.

При дожигании зольных уносов на установке, показанной на рис.2, на сборнике из нержавеющей стали осаждаются элементы, окислы которых летучи до 1000⁰С. В таблице 2 даны интервалы температур, в которых осаждались окислы металлов.

Общее количество вещества, полученное при дожигании 250 г зольных уносов, не превышало 2 г. С применением радиоактивных

Таблица 2

Температуры осаждения окислов металлов

Элемент		Температура осаждения, ^О С		
	Zn, Ga, As, Se,	· · · · · · · · · · · · · · · · · · ·		
	MO, Cd, Te, Pb	800 - 350		
	T1, I, Re	350 - 100		
	Hg, Os	100 - 20		

отметчиков определили извлечение мышьяка, иода, рения, осмия, ртути, таллия и свинца в процессе дожигания, которое равнялось 60-80%.

Выщелачиванием соляной кислотой были извлечены из летучих уносов и сконцентрированы элементы третьей, четвертой и пятой аналитических групп [17]. Выход свинца и таллия составил 60%. Выщелачиванием было переработано 250 г зольных уносов, отобранных по всему газовому тракту установки для сжигания углей и полученных при сжигании 20 кг топлива. Общее количество сконцентрированного вещества составляло 1,9 г.

Полученные концентраты помещали в контакт с ТТД и выдерживали 100 и более суток. Результаты измерения образцов даны в таблице 3.

В осадке гидроокислов железа, полученных переработкой растворов выщелачивания, за 110 суток экспозиции наблюдали один случай совпадения координат треков при совмещении двух детекторов. За время экспозиции в этом образце должно было

6

Таблица З

Результаты измерения образцов на ТТД

№ п/п	Образец	Bec,r	Содер ж ание урана,г/г	Время изме- рения,сут.	Число треков (совпадений)
1. A	Образцы, по.	лученны	не при сжига	ании зольных	уносов
1	Зона осажде-				5.
1	ния:800-350 ⁰ С	0,48	$2 \cdot 10^{-6}$	100	0
2	Зона осажде-				
	ния:350-100 ⁰ C	0,85	3·10 ⁻⁷	100	Ο
3	Зона осажде-				
	ния:100-20 ⁰ С	0,76	$5 \cdot 10^{-7}$	90	Ö
4	Золотая фоль-			•	· · · ·
	га			100	0
5	Гидроокислы		-		
	железа	0,6	$2 \cdot 10^{-7}$	100	0
6	Сульфиды ме-		7		
	таллов	0,2	1.10-1	100	0
7	Угольный				
	фильтр	0,15	$1 \cdot 10^{-6}$	100	0
1	Образцы от	перера	аботки раст	воров выщела	чивания
8	Гидроокислы				
1	железа	0,68	$1, 1 \cdot 10^{-4}$	110	1
9	Электролизный		_	· ·	
	осадок	1,1	$1.3 \cdot 10^{-5}$	200	0
10	Сульфиды ме-	·	<u>,</u>		
	таллов	0,11	2.10-6	.89	0

произойти три акта спонтанного деления урана, поэтому наблюдение одного трека совпадения вполне объясняется спонтанным делением урана. Во всех остальных исследованных образцах не наблюдали ни одного акта спонтанного деления.

ИЗ представленных результатов можно оценить верхний предел возможного содержания СТЭ, определенного химического свойства, в углях по концентрированию их легких аналогов. В таблице 4 представлены пределы содержания СТЭ, рассчитанные в предположении, как принято в литературе [3], что их период полураспада находится в пределах 10⁹лет.

Таблица 4

Пределы содержания СТЭ в углях, рассчитанные по их возможным легким аналогам

Элемент	Предел содер ж ания СТЭ – аналога, х 10 ⁻¹⁶ г/г	Элемент	Предел содер ж ания СТЭ – аналога, х 10 ⁻¹⁶ г/г
Цинк	8 13	Рений	2 · · · · · · · · · · · · · · · · · · ·
Галлий	13	Осмий	
Мышьяк	8 x	Ртуть	
Селен	15	Таллий	19
Молибден	10	Свинец	8
Кадмий	19	Самарий	150000
Иод	15	Уран	1900

Дальнейшее повышение чувствительности определения СТЭ в исследованных образцах можно осуществить увеличением времени экспозиции проб на ТТД.

Выводы

Сжигание горючих ископаемых с последующим концентрированием летучих микроэлементов из зольных уносов и измерение концентратов с помощью твердотельных трековых детекторов позволяет довести предел обнаружения летучих СТЭ до 10⁻¹⁶г/г.

Авторы выражают благодарность члену-корреспонденту АН ЧСФР И.И.Зваре за обсуждение результатов.

Литература

1. Клер В.Р. - Изучение сопутствующих полезных ископаемых

8

при разведке угольных месторождений, М.: "Недра", 1979, с. 187.

- 2. Флеров Г.Н. и др. ЯФ, 1977, 26, с. 449.
- 3. Flerov G.N. et al. Z. Physik, 1979, A292, p. 449.
- Flerov G.N., Ter-Akopian G.M. Pure Appl. Chem., 1981, 53, p. 909.
- 5. Keller O.L., Seaborg G.T. Ann. Rev. Nucl. Sci., 1977, 27, p. 239.
 - 6. Herrman G. Nature, 1979, 280, p. 543.
 - 7. Айхлер Б. ОИЯИ, Р12-7767, Дубна, 1974.
- 8. Шпирт М.Я. и др. ОИЯИ, Р12-84-196, Дубна, 1984.
- 9. Флеров Г.Н. и др. ЯФ, 1974, 20, 9, с. 472.
- Ter-Akopian G.M. et al. Nucl. Instr. Meth., 1981, 190,
 1, p. 119.
- 11. Флеров Г.Н. и др. Физика тяжелых ионов 85. Сборник аннотаций. ОИЯИ, Р7-86-322, Дубна, 1986, с.31.
- 12. Содном Н. и др. Химия тв.топлива, 1989, 1, с. 11.
- 13. Гэрбиш Ш. и др. ОИЯИ, 18-90-427, Дубна, 1990.
- 14. Tommasino L., Armeline C. Rad. Eff., 1973, 20, p. 253.
- 15. Гангрский Ю.П., Марков Б.Н., Перелыгин В.П. Регистрация и спектрометрия осколков деления. М.: "Энергоиздат", 1981, с. 253.
- 16. Sodnom N. et al. Isotopenpraxis, 1989, 25, 7, p. 286.
- 17. Мусакин А.П. Таблицы и схемы аналитической химии. Л.: "Химия", 1975, с. 94.

Рукопись поступила в издательский отдел I4 мая I99I года.